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Abstract

We study pricing dynamics and risk-sharing in a market with rational investors and

a Q-learning trader. The Q-learner’s trading generates a feedback loop in prices: their

demand for the risky security depends on their perceived benefit from trading, which

in turn, depends on realized returns. We show that this loop generates state-dependent

stochastic volatility, predictable returns, and novel price dynamics which depend on

the mass and learning rate of the Q-learner. When rational investors have strong risk-

sharing motives for trading, we show that Q-learners can (i) earn trading profits and

(ii) improve average investor utility, even though they increase the volatility of prices.
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1 Introduction

Algorithmic trading is transforming financial markets. An increasing share of trading volume

in US stocks is generated by algorithms that are designed to learn and adapt to market

conditions in real time.1 Moreover, such strategies are no longer restricted to high frequency

traders or quantitative hedge funds, but are increasingly popular among ETF providers and

large asset managers.2 As a result, regulators are increasingly concerned about algorithmic

trading’s effect on price volatility, market stability, shock amplification, and liquidity.3 While

a growing body of empirical and simulation-based work explores the implications of such

trading, a theoretical framework for understanding their economic impact is largely missing

from the literature.

We develop a stylized model to answer a fundamental question: How does the presence

of algorithmic traders affect equilibrium asset prices, return dynamics, and the welfare of

rational investors? Existing simulation-based studies are limited in their ability to address

this question because they often restrict attention to economies that are exclusively populated

by algorithmic agents. In contrast, our paper provides a first step in understanding human-AI

interaction in financial markets. By explicitly modeling how rational investors and algorithms

trade against each other, we can characterize the impact of algorithmic trading not only on

market outcomes, but also on investor welfare.

Model. We consider a stylized, continuous-time economy in which there is a continuum of

rational investors with CARA utility and a representative algorithmic trader of non-negligible

mass.4 The algorithmic trader uses Q-learning, which is a foundational reinforcement learn-

ing algorithm known for its tractability, economic interpretability, and performance.5 The

market participants trade a risky security in fixed supply which pays dividends following an

arithmetic Brownian motion. In the absence of Q-learners, the equilibrium is standard: the

price reflects the present value of future dividends, adjusted for a constant risk premium,

which depends on the supply of the asset. Expected returns are constant, and prices exhibit

1For example, Brogaard, Hendershott, and Riordan (2014) finds that algorithms make up 42% of the
trading volume in stocks, and Chaboud, Chiquoine, Hjalmarsson, and Vega (2014) find that algorithms
make up above 60% of trading volume in some currency markets.

2Blackrock, the largest asset manager in the world, introduced active ETFs that are managed by machine
learning algorithms in 2018, and more recently announced the introduction of a virtual investment analyst,
“Asimov”, for use by the firm’s fund managers. Traditional money managers, like AQR, are also quickly
adopting machine learning-based strategies.

3See Regulatory approaches to Artificial Intelligence in finance, OECD Intelligence Papers, No. 24, Sept.
2024, and Financial Stability in Focus: Artificial intelligence in the financial system, Bank of England,
Financial Policy Committee, April 2025, for instance.

4The algorithmic trader’s mass reflects their aggregate wealth share. One could instead assume a contin-
uum of algorithmic traders with perfectly correlated strategies.

5See e.g. Wiering and Otterlo (2012), Ch. 1.7.1 or Sutton and Barto (2018), Ch. 6.5.
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no predictability or stochastic volatility.

When a Q-learner is introduced, the equilibrium changes fundamentally. Rational in-

vestors face a nontrivial forecasting problem, because their optimal portfolio choice depends

on their expectation of how the Q-learner will trade in the future. The Q-learner’s future

behavior, in turn, depends endogenously on realized returns. With standard Q-learning in

discrete time, solving for this equilibrium is not analytically tractable as it involves tracking

the evolution of the entire distribution of Q-values. However, by taking the appropriate

continuous-time limit, we show that the Q-learner’s trading strategy can be summarized by

a single state variable, Qt, which reflects their current estimate of the net benefit to buying

a share, and is predictable given the price path.6

When Qt is positive (negative), the Q-learner is more likely to buy (sell) shares of the

security. Moreover, a positive return realization increases the estimated net benefit, while

a negative return realization decreases it. Because realized returns affect the evolution

of Qt, and consequently, future trading decisions, there is a feedback loop between the

security price and the Q-learner’s trading. This feedback loop between the security price and

the Q-learner’s trading leads to an amplification of fundamental shocks and is potentially

destabilizing. We characterize conditions on the Q-learner’s algorithm under which there

exists an equilibrium.

Return dynamics. The feedback loop between returns and the Q-values gives rise to rich

endogenous dynamics. We show that the equilibrium Qt process is stochastic and exhibits

mean-reversion. A positive dividend shock increases the net benefit of a share, Qt, and thus

Q-learner demand. This pushes the price up, which makes it less attractive to buy the risky

asset going forward, which leads to lower future Qt. The volatility of the Qt process depends

on how sensitive it is to innovations in security returns, which depends on the learning rate

of the Q-learning algorithm. Moreover, the Q-learner’s demand is most sensitive to Qt when

the trader is most uncertain about the benefit of trading, i.e., when Qt is near zero.

As a result, in the presence of Q-learners, security prices exhibit stochastic volatility

and predictable returns, even though fundamentals evolve as a Brownian motion. Since

contemporaneous Q-learner demand is positively correlated with dividend shocks, trading

by the Q-learner amplifies return volatility. In fact, we show that return volatility is a

6Specifically, we assume that the Q-learner can only buy or sell up to one share of the risky asset, but (i)
uses Boltzmann exploration when choosing her demand and (ii) engages in counterfactual learning. As we
show in Section 3.3, this allows us to reduce the number of state variables that drive the Q-learner’s demand
to Qt. A key technical contribution of the paper is to formally show that the evolution of the Qt process
can be approximated by a stochastic differential equation in continuous time, where the (instantaneous)
innovation in the Qt process is driven by instantaneous return process. Moreover, as we discuss in Section
4.3, our analysis is robust to relaxing the assumption that the rational investors know the hyper-parameters
trying the Q-learning algorithm.
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hump-shaped function of Qt: it is highest for Qt near zero (but lower for extreme Qt),

since Q-learner demand is very sensitive to realized returns in this region. Moreover, return

volatility increases in both the mass of Q-learning traders and the rate of learning of the

Q-learning algorithm.

We show that expected returns can also depend non-monotonically on Qt. This is because

the expected return on the security depends on the product of the return volatility and

(approximately) the residual supply of the security that rational investors have to bear in

equilibrium. Since Q-learner demand affects the residual supply borne by rational investors,

higher Qt typically lowers the expected return by lowering the quantity of risk investors have

to bear. However, because the return volatility is a hump-shaped function of Qt which peaks

at zero, expected returns can be increasing, then decreasing, and then increasing again in

Qt.

Finally, while returns exhibit negative auto-correlation at all horizons, the degree of

reversals first increases and then decreases with horizon. This is because shocks to the

return process induce moves in Qt and, consequently, Q-learner demand, that are persistent

in the short run, but gradually unwind. We show that the learning rate and the size of the

Q-learner differentially affect the strength and persistence of these return dynamics.

Risk sharing and investor utility. A common justification for regulating algorithmic

trading is that it leads to heightened volatility and possible fragility and destabilization in

markets. For instance, the Financial Policy Committee of the Bank of England emphasizes

that7

Advanced AI models could rationally exploit profit-making opportunities in a

destabilising way or engage in other adverse behaviours. Under a scenario of

advanced AI trading models being deployed to act with more autonomy, these

models might identify and exploit weaknesses in the trading strategies of other

firms in a way that triggers or amplifies price movements.

Similarly, the OECD report on “Regulatory approaches to Artificial Intelligence in Finance”

finds that “Herding and Volatility,” “Shock Amplification,” and “Destabilising Events” were

among the top five financial stability risk areas in relation to the use of AI in finance identified

by a survey of OECD countries.

To evaluate such concerns, we extend our main model to incorporate hedging needs for the

rational investors. Specifically, we assume that rational investors are exposed to background

risks that are correlated with the dividend process, and so have an intrinsic motive to trade.

7See Bank of England, Financial Policy Committee, April 2025.
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A fraction of the rational investors have an incentive to be long the risky asset, while the

rest have an incentive to be short. As in our main model, trading by the Q-learner leads to

volatility amplification and non-trivial return dynamics. Yet, we show that rational investors

can often benefit from the presence of the Q-learner. Perhaps surprisingly, we show that the

Q-learner can earn positive profits while improving aggregate investor utility at the same

time.

The presence of Q-learners affects investor utility via two channels. First, rational in-

vestors are able to exploit the Q-learner’s lack of sophistication to extract trading gains.

This is because rational investors choose optimal consumption and portfolio allocations tak-

ing into account the endogenous demand dynamics induced by the Q-learner, while the

Q-learner adjusts their demand based on realized returns without internalizing equilibrium

consequences.

Second, the Q-learner “learns” to provide liquidity to one side of the market or the other.

For instance, suppose the net demand from rational investors is to short the risky security

(e.g., if the hedging demand from the short side of the market exceeds the hedging demand

from long investors). This excess demand pushes the security price down, and as a result, the

Q-learner learns that trading along long investors is profitable. This makes long investors

worse off, since they now compete with the Q-learner. Short investors, however, profit,

as the Q-learner’s trading leads to more favorable prices for them. On average, investor

utility increases in the presence of the Q-learner and the Q-learner realizes positive profits.

This liquidity provision role of the Q-learner is consistent with the evidence documented by

Hendershott, Jones, and Menkveld (2011), Brogaard et al. (2014) and Boehmer, Fong, and

Wu (2021) who show that algorithmic traders improve liquidity, especially for large stocks.

Our setting delivers clean comparative statics on the Q-learner’s profits and the rational

investors’ utilities. When the magnitude or asymmetry in hedging needs increases, the Q-

learner’s profits increase, while rational investor are worse off. On the other hand, holding

all else fixed, average investor utility tends to increase as the mass of Q-learners increases

because of both more trading profits and higher liquidity provision. Finally, we show that an

increase in fundamental volatility can lead to both higher Q-learner profits and an increase

in average investor utility. Together, these findings suggest that blanket regulatory efforts to

limit algorithmic trading may be misguided. Even if Q-learners increase volatility or amplify

fundamental shocks, their presence can improve allocative efficiency and investor welfare.

Overview. The rest of the paper is as follows. The next section provides a brief discussion

of the related literature. Section 3 introduces the model and provides a discussion of the

key assumptions. Section 4 provides the main analysis of the paper, by characterizing the

equilibrium and describing its properties. Section 5 discusses the model’s implications for

4



volatility, liquidity and expected returns. Section 6 presents an extension of the model

that incorporates risk-sharing motives for trading. Section 7 concludes. Unless mentioned

otherwise, all proofs and additional analysis are in Appendix A and B, respectively.

2 Related literature

Our paper is most closely related to the small but growing literature that focuses on the

impact of Q-learners in financial markets. Colliard, Foucault, and Lovo (2022) show that a

Q-learning market maker in a Glosten and Milgrom (1985)-setting adapts to adverse selection

due to informed trading, but charges a markup over the competitive price. Dou, Goldstein,

and Ji (2023) introduce Q-learning agents in a multi-trader Kyle (1985)-setting and show

how such agents can learn to use collusive trading strategies autonomously, by optimally

choosing to dampen the sensitivity of their trades to their private information. The latter

paper is more broadly related to models of algorithmic collusion in IO settings, including

models that focus on Q-learning (e.g., Calvano, Calzolari, Denicoló, and Pastorello (2021),

Calvano, Calzolari, Denicolò, and Pastorello (2020), Klein (2021), Banchio and Skrzypacz

(2022), Johnson, Rhodes, and Wildenbeest (2023), Xu, Zhang, and Zhao (2024)), richer

reinforcement learning algorithms (e.g., Cho and Williams (2024)) and large language models

(e.g., Fish, Gonczarowski, and Shorrer (2024)).8

Relative to this literature, our work differs in two important ways. First, most of the

existing analysis is based on simulations of economies with algorithmic agents. In contrast,

we provide an explicit characterization of the financial market equilibrium with Q-learning

traders, by establishing convergence properties of the Q-learning algorithm in our setting.9

We view our approach as complementary, as it makes modeling the market participation

by Q-learners amenable to conventional asset pricing tools. This allows us to transparently

describe the key pricing dynamics that result from trading by Q-learners along the entire

equilibrium path, and compare our results to the existing theoretical asset pricing literature.

Second, while existing work has largely focused on the interaction among multiple rein-

forcement learning agents, our analysis focuses on the interaction between Q-learners and

rational investors. As such, our analysis provides a useful benchmark model of human-AI

interaction in financial markets. Specifically, our model provides a basic framework to evalu-

8There is an earlier literature in finance that uses Q-learning algorithms to numerically solve for equilibria
where analytical solutions are infeasible e.g., Goettler, Parlour, and Rajan (2005, 2009).

9Banchio and Mantegazza (2023) use a similar approach to study the emergence of collusive equilibria in
a prisoner’s dilemma setting. They characterize a continuous-time limit of the Q-learning process in which
the evolution of Q-values is deterministic. In our continuous-time limit, by contrast, the Q-values follow
a stochastic differential equation and are adapted to the filtration generated by prices. This allows us to
capture the inherently stochastic nature of Q-learning while preserving tractability.
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ate the impact of algorithmic trading on investor utility and the efficacy of regulatory policy.

For instance, we show that the presence of Q-learners in the market can improve average

investor utility, even though it leads to higher return volatility and induces non-fundamental

dynamics in prices.

More generally, our paper is related to two other areas in the literature. First, it pro-

vides a theoretical complement to the empirical literature that has focused on the impact of

algorithmic trading in financial markets (e.g., Brogaard et al. (2014), Chaboud et al. (2014),

Weller (2018)). Our model is broadly consistent with the empirical evidence that implies

algorithmic traders provide liquidity in markets. Second, it adds to the theoretical literature

that focuses on trading settings with non-rational traders. These include models in which

rational investors trade against noise traders whose demands are exogenous and uninformed

(e.g., Campbell and Kyle (1993), Wang (1993), Wang (1994)) or investors with behavioral

biases (e.g., overconfidence, dismissiveness).

We show that trading by Q-learners induces a novel source of state-dependent dynamics,

because they systematically and endogenously update their strategies based on past return

realizations.10 As such, our model is closely related to models of extrapolative investors.

For instance, Barberis, Greenwood, Jin, and Shleifer (2015) consider a related setting where

rational investors trade a risky security with extrapolative investors, who incorrectly believe

that the drift in the price process is driven by sentiment, which is a weighted average of

past price changes. Because sentiment affects the demand of extrapolative investors linearly,

prices exhibit excess but constant volatility and negative correlation which is monotonic in

horizon. In contrast, the non-linear dependence of the Q-learner’s demand on Qt in our

model implies that prices exhibit stochastic volatility, expected returns are state-dependent

and can be non-monotonic in Q-learner demand, and serial correlation in returns exhibits

non-monotonicity across horizons. As we discuss further in Section 5, these distinctive

predictions are consistent with existing empirical evidence.

3 Model

In Section 3.1, we present the key assumptions of the model, Section 3.2 provides a discussion

of the important assumptions, and Section 3.3 provides intuition for the process we assume

for the Q-learner’s trading strategy.

10For instance, traditional models of noise trading assume their security demands are uncorrelated with
fundamentals and insensitive to prices, while behavioral investors are usually assumed to maximize subjective
utility under biased beliefs or non-standard preferences.
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3.1 Setup

Payoffs. There are two securities: a risk free security in perfectly elastic supply with a

constant interest rate r, and a risky security which pays a dividend stream:

dDt = µdt+ σdBt.

The supply of the risky asset is S shares per capita, and the price at date t is given by Pt.

Denote the instantaneous return process by

dRt = Dtdt+ dPt − rPtdt.

Investors. There are two types of infinitely lived investors. There is a mass 1−θ of identical,
rational traders with discount factor δ and CARA utility with risk aversion ϕ. Each investor

takes prices as given and chooses consumption Ct and risky security demand NR
t to maximize

max
{Ct,NR

t }t≥0

−E
[
1

ϕ

∫ ∞

0

e−δte−ϕCtdt

]

subject to the wealth constraint

dWt =
(
rWt − Ct +NR

t (Dt − rPt)
)
dt+NR

t dPt.

There is also a large Q-learner, with mass θ, with demand NQ
t for the risky asset, where

NQ
t = NQ (Qt) =

1− exp
(
− 1

β
Qt

)
1 + exp

(
− 1

β
Qt

) ∈ (−1, 1) , (2)

and Qt ≡ QB
t −QS

t , where QB
t and QS

t denote the time t Q-values from buying and selling,

respectively. As we shall argue below, the evolution of the Q-value, Qt, can be expressed as

dQt = −αQtdt+ 2α dRt. (3)

Here, the parameter α ∈ [0, 1] is the learning rate of the Q-learning algorithm and controls

how quickly the Q-learner updates Qt, and the parameter β ≥ 0 captures how responsive

her demand is to Qt. Specifically, as β increases the Q-learner’s demand NQ
t responds more

to changes in Qt.

Market clearing and equilibrium. The market clearing condition implies that the ag-
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gregate demand for the risky asset equals its supply, i.e.,

(1− θ)NR
t + θNQ

t = S.

The following defines the notion of equilibrium in our setting.

Definition 1. A Rational Expectations Equilibrium with Q-Learning (Q-REE) is given by

a risk premium Π (Q), demands for the risky asset NR
t = NR (Wt, Pt, Dt, Qt) (for the trader)

and NQ
t = NQ (Qt) (for the Q-learner), and consumption Ct = C (Wt, Pt, Dt, Qt), such that

1. Prices: For any (Dt, Qt) and time t ≥ 0, the price is given by

Pt = P (Dt, Qt) =
1

r

(
Dt +

µ

r

)
+Π(Qt) , (4)

2. Q-value evolution: Q-values follow Equation (3) given P (D,Q),

3. Utility Maximization:
(
NR (.) , C (.)

)
maximizes a rational trader’s expected utility

V (W0, Q0) = sup
{Ct,NR

t }t≥0

−Et

[∫ ∞

0

e−δte−ϕCtdt

]
(5)

subject to the dynamic budget constraint in Equation (1) and the transversality con-

dition limτ→∞Et [V (W (t+ τ) , Q (t+ τ))] = 0,

4. Q-learner demand: NQ
t = NQ (Qt) is given by the expression in Equation (2),

5. Market Clearing: For any (Dt, Qt) and Wt, P (D,Q) is such that for all t ≥ 0,

(1− θ)NR (Wt, P (Dt, Qt) , Dt, Qt) + θNQ (Qt) = S, (6)

6. Rational expectations: Rational traders have correct beliefs about the evolution of

{Dt, Pt, Qt}.

As we shall establish in Section 4.1, the risk premium component of the price Π is constant in

the absence of Q-learners, and pinned down by the aggregate supply, S, of the asset, the risk

aversion of the rational traders ϕ, and their perceived risk σ from holding the asset. In the

presence of Q-learners, however, we will show that it depends non-linearly on the evolution of

the Q-value process, Qt, which itself endogenously depends on the risk premium component

Π (Q). Moreover, in equilibrium, while the Q-learner is not an optimizing agent, the rational

traders have correct beliefs about the joint distribution of {Dt, Pt, Qt} and optimize their

trading behavior accordingly.
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3.2 Discussion of assumptions

Our model is stylized for analytical tractability and ease of exposition. Below we discuss the

relevance of some of the important simplifying assumptions.

Hyperparameters of the Q-learning algorithm. We assume for simplicity that the Q-

learner’s hyperparameters α and β as well as the starting Q-value Q0 are common knowledge.

In Section 4.3, we prove that this common knowledge assumption is without loss of general-

ity. That is, if rational traders do not know (α, β,Q0), they can infer them from observing

dividends, prices, and their own demands for an arbitrarily short amount of time in equi-

librium. In this sense, equilibrium prices reveal the Q-learner’s hyperparameters (almost)

instantaneously.

Trading motives of rational investors. We assume that rational investors speculate

against the Q-learner but have no additional motives. This simplifies the analysis and helps

us isolate the impact of Q-learners on price dynamics. However, it implies that rational

investors are always better off in the presence of Q-learners, since they are more sophisticated

and can make additional trading gains. In Section 6, we extend the model to endow the

rational investors with a hedging motive for trade: we assume that they are subject to

endowment shocks that are correlated with the dividend process. In this case, we show that

the trading by Q-learners can improve or worsen outcomes for rational investors.

Participation by Q-learners. Relatedly, in our main model, Q-learners are assumed to

participate in the market even though they make negative expected trading profits. In prac-

tice, algorithmic trading often offers a lower cost alternative to more sophisticated trading

strategies. For instance, it might be cheaper to implement active trading strategies for an

ETF or mutual fund using an algorithm than hiring skilled and experienced money man-

agers. We do not model this explicitly, since we expect the first-order implications to be quite

straightforward.11 A more interesting extension would be if Q-learners served an additional

role in markets, e.g. liquidity provision or superior information. We consider a version of

the former in Section 6 and leave the latter for future work.

Sophistication of algorithmic traders. In practice, investors employing algorithmic

trading use proprietary algorithms to guide their trading strategies. Since we do not know

specifically which algorithms are used in practice, we assume that the algorithmic trader uses

Q-learning as a simple and transparent stand in. Q-learning is a foundational reinforcement

learning algorithm which is known for its tractability and performance.12 Q-learning has

11For instance, an increase in the cost advantage of algorithmic trading should imply that a larger fraction
of capital is allocated through such strategies. This would translate to an increase in θ in our model.

12For textbook treatments of Q-learning, see Wiering and Otterlo (2012), Ch. 1.7.1 or Sutton and Barto
(2018), Ch. 6.5. In single-agent dynamic decision problems, Q-learning has been proven to converge to the
optimal policy under mild regularity assumptions, see Watkins and Dayan (1992).
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the additional advantage of being analytically tractable: the updating equation resembles

a Bellman equation and we can interpret the Q-value as an estimate for the actual value

function. More generally, however, we expect that many of our results will be qualitatively

similar for different reinforcement learning algorithms. Used in a live (or “online”) context,

such algorithms rely on backward looking data to update a decision rule at each time period.

As a result, different algorithms will give rise to a similar feedback loop as in our model:

an increase in prices leads the algorithm to buy more, which can then lead to further price

increases. We expect that such trading will amplify volatility and generate predictability in

equity returns in a similar manner to Q-learning.13

3.3 Specification of Q-learning demand

In this subsection, we provide an intuitive argument for why the demand from the Q-learning

trader takes the form specified in Equations (2)-(3). We begin with a quick overview of Q-

learning in discrete time — Sutton and Barto (2018), Ch. 6.5 provides a more detailed

discussion.

Suppose t = 0, 1, 2, . . . and consider the problem of choosing a policy {at}t≥0 given a

stochastically evolving state {st}t≥0, where at ∈ A and st ∈ S for some finite sets A and S:

V (s0) = max
{at}t≥1

E

[
∞∑
t=1

γt−1r (st, at)

]
.

Here, r (st, at) is the current payoff given (st, at), γ is the discount factor and V (s) is the

value function. The optimal policy and value function can be characterized using the Q-

matrix Q (s, a), which is the expected value of choosing action a at state s, assuming optimal

play in all future periods, i.e.

Q (s, a) = r (s, a) + γE [V (s′) |s, a] .

We then have V (s) = maxa∈AQ (s, a) and we can exploit this fact to write the Q-matrix

recursively as

Q (s, a) = r (s, a) + γE

[
max
a∈A

Q (s′, a) |s, a
]
.

A Q-learner has no information about the payoff function r (s, a) or the evolution of the

state, but instead estimates the Q-matrix recursively: starting with an initial guess for the

13For example, a gradient ascent algorithm will increase the probability of buying following positive returns,
which in equilibrium further drives up returns. Temporal-Difference (e.g. Sutton and Barto (2018), Ch. 6)
or Actor-Critic (e.g. Sutton and Barto (2018), p. 322) algorithms will act similarly.
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Q-matrix Q̂0, she updates the Q-matrix via

Q̂t+1 (st, at)← (1− α) Q̂t (st, at) + α

(
rt + γmax

a′∈A
Q̂t (st+1, a

′)

)
whenever action at is chosen given state st. Here, rt is the realized payoff at time t, and

α ∈ [0, 1] is the learning rate of the Q-learning algorithm, which is set exogenously. It

governs how “quickly” the Q-matrix is updated from period to period. In each iteration, the

Q-learner takes action a with probability p (s, a).14

Now consider a discretization of the model in Section 3.1 in which the risky security pays

dividends Dt at time t, where

Dt+1 −Dt = µ+ σεt+1,

and εt+1 ∼ N (0, 1) is independent over time. Suppose the Q-learner is updating on the

Q-values from buying and selling one share (i.e., NQ
t ∈ {1,−1}), which we denote as QB

t and

QS
t , respectively, and does not treat the dividend as a state.15 The per period return on the

risky security is given by

Rt+1 = Pt+1 − Pt +Dt − rPt,

and so conditional on buying, she updates the Q-value QB
t as follows:

QB
t+1 = QB

t + α

(
Rt+1 + γ max

a∈{B,S}
Qa

t −QB
t

)
, (7)

and conditional on selling, she updates QS
t as:

QS
t+1 = QS

t + α

(
−Rt+1 + γ max

a∈{B,S}
Qa

t −QS
t

)
. (8)

We make two assumptions the behavior of the Q-learner. First, we assume that the

Q-learner uses Boltzmann exploration (e.g. Sutton and Barto (2018), p. 37) when choosing

her demand, i.e., she sets

NQ
t =

1 with probability p
(
QB

t , Q
S
t

)
−1 with probability 1− p

(
QB

t , Q
S
t

)
14If a particular value a ∈ A is not chosen in period t at state st, then the Q-matrix is not updated for

that value, i.e. Q̂t+1 (s, a) = Q̂t (s, a) whenever (s, a) ̸= (st, at).
15This is natural, since in CARA-Brownian models, the dividend is priced in and returns are independent

of realized dividends. Hence, treating the dividend as a state will not improve the Q-learner’s payoff. As we
show in Proposition 2, the return is indeed independent of the dividend Dt in equilibrium.
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where the probability of buying a share p
(
QB

t , Q
S
t

)
is given by

p
(
QB

t , Q
S
t

)
=

exp
(

1
β
QB

t

)
exp

(
1
β
QB

t

)
+ exp

(
1
β
QS

t

) ,
and where β ≥ 0 is the temperature parameter. Intuitively, the Q-learner is more likely

to buy (sell) a share of the risky security when QB
t > QS

t (QB
t < QS

t , respectively). The

temperature parameter β controls the tradeoff between exploitation and exploration. Specif-

ically, when β → 0, the demand function is “greedy” since p→ 1
{
QB

t > QS
t

}
. On the other

hand, when β → ∞, the Q-learner randomizes uniformly between buying and selling since

p→ 1/2.

Second, we assume that the Q-learner engages in counterfactual learning. If she buys a

share today and gets a payoff Rt+1, she not only updates QB
t as in Equation (7), but also

recognizes that selling would have yielded −Rt+1 and so simultaneously updates QS
t as in

Equation (8). This allows us to gain tractability when solving the model.16 We can then

summarize the Q-learner’s behavior via a single Q-value Qt ≡ QB
t − QS

t , and characterize

the evolution of Qt as:

Qt+1 = Qt + α

(
Rt+1 + γ max

a∈{B,S}
Qa

t −QB
t

)
− α

(
−Rt+1 + γ max

a∈{B,S}
Qa

t −QS
t

)
= Qt (1− α) + 2αRt+1,

or equivalently, as17

Qt+1 −Qt = 2αRt+1 − αQt. (9)

Moreover, with some abuse of notation, we can express the probability of buying a share

as:18

p (Qt) =
exp

(
1
β
Qt

)
1 + exp

(
1
β
Qt

) .
16For seminal work on the use of counterfactuals in reinforcement learning see Wachter, Mittelstadt, and

Russell (2017) and Foerster, Farquhar, Afouras, Nardelli, andWhiteson (2018). Our notion of counterfactuals
is particularly simple. We only require that the algorithm recognizes that in each period buying and selling
yield opposite returns, and that this information is incorporated into Q-values no matter if the algorithm
currently buys or sells.

17Note that Equation (9) is equivalent to the law of motion for QB
t − QS

t under an expected SARSA
algorithm (e.g. Sutton and Barto (2018), Ch. 6.6). Hence, we can alternatively interpret our setting as the
algorithmic trader using expected SARSA instead of Q-learning with counterfactual updating.

18Since the Q-learning algorithm uses counterfactual updating, the evolution equation (9) is unchanged if
we change the algorithm’s decision rule, e.g. if we use an ε-greedy rule (e.g. Sutton and Barto (2018), p.
27f) instead of Boltzmann exploration.
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Figure 1: Q-learner demand NQ (Qt)

The figure plots NQ (Q) for different values of β: β = 0.5 (dashed), β = 1 (solid) and β = 2
(dotted).

7.5 5.0 2.5 0.0 2.5 5.0 7.5
Q

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
N

Q
(Q

)
= 0.5
= 1.0
= 2

To avoid technical issues with the continuous-time limit, we further assume that the Q-

learner’s demand is a deterministic function of the current Q-value, and that

NQ
t = NQ (Qt) =

1− exp
(
− 1

β
Qt

)
1 + exp

(
− 1

β
Qt

) ∈ (−1, 1) . (10)

Essentially, we have replaced the Q-learners’ actual demand with the expected demand

under Boltzmann exploration, while keeping the evolution of Q-values unchanged.19 Figure

1 provides an illustration of the Q-learners’ demand as a function of their Q-value, for

different levels of β.

Note that the specification for the Q-learner’s demand in Equations (2)-(3) is just the

continuous time analogue of the discrete-time specification in Equations (9) and (10). In

Appendix (B), we establish this convergence formally under the conjectured equilibrium

price function,

P (Dt, Qt) =
1

r

(
Dt +

µ

r

)
+Π(Qt) .

19One could view this as the average demand from a continuum of identical Q-learners who update their Q-
values using realized returns symmetrically and start with the same initial conditions. If we instead assume
that the Q-learner uses an ε-greedy policy, then the continuous-time limit exhibits an arbitrage. Hence,
under ε-greedy Q-learning, the market is not well defined in the continuous-time limit.
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4 Analysis

In this section, we characterize the equilibrium in our model. We begin with the special case

in which there are no Q-learners in the economy in Section 4.1. This provides a natural and

intuitive benchmark, which will allow us to clarify the key distinguishing features that arise

once we introduce Q-learners in Section 4.2.

4.1 Benchmark: No Q-learners

The following result characterizes the equilibrium when there are no Q-learners in the econ-

omy i.e., θ = 0.20

Proposition 1. If θ = 0 (i.e. there is no Q-learner), there exists an equilibrium such that:

(i) The equilibrium price function is given by

P (Dt) =
1

r

(
Dt +

µ

r

)
− ϕσ2

P0S, (11)

(ii) the trader’s value function is given by

V (Wt) = −
1

rϕ
exp

(
−rϕWt −

δ − r

r
− 1

2r
ϕ2σ2S2

)
,

(iii) the equilibrium consumption and investment in the risky asset are

Ct = rWt +
δ − r

rϕ
+

1

2r
ϕσ2S2 and NR

t =
Dt + µ/r − rPt

rϕσ2
P0

,

and where the price volatility is σP0 = σ/r.

The above equilibrium is intuitive. The equilibrium price reflects the present value of

the future stream of dividends, 1
r

(
Dt +

µ
r

)
, adjusted for a risk premium term −ϕσ2

P0S which

accounts for the discount that investors require for holding S shares of the risky asset in

equilibrium. Moreover, the assumption of CARA utility implies that the optimal demand,

NR
t , has the traditional “mean-variance” form and is independent of the agents wealth.

Similarly, the each trader optimally chooses to consume the interest on her wealth, adjusted

for her relative impatience (as reflected by the δ−r
rϕ

term).

Note that in the absence of Q-learners, the price is (weakly) lower than the present value

of future dividends, i.e., the risk premium component is always negative. Moreover, price

20In Appendix C.1, we consider the alternative benchmark in which the Q-learner is replaced with a
risk-neutral trader who, just as the Q-learner, is restricted to buying or selling at most one share.
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volatility is constant and expected returns do not exhibit predictability since

σP0 =
σ

r
, and E [dR] = rϕσ2

P0S.

As we shall see in the next section, in the presence of Q-learners, price volatility is state

dependent. This implies that the risk premium is state-dependent and expected returns are

predictable.

4.2 Equilibrium

We provide a heuristic argument for characterizing the equilibrium — the formal proofs are

in the Appendix. Conjecture that the price can be characterized as in Equation (4) and let

dPt ≡ µP (Qt) dt+ σP (Qt) dBt. (12)

Since the flow reward for the Q-learner is dRt = (Dt − rPt) dt + dPt, this implies we can

express the evolution of Q as

dQt ≡ µQ (Qt) dt+ σQ (Qt) dBt, (13)

where the price conjecture above implies:

µQ (Qt) = 2α

(
µP (Qt)−

µ

r
− rΠ(Qt)−

1

2
Qt

)
, and σQ (Qt) = 2ασP (Qt) . (14)

Using Ito’s lemma, we can express

µP (Qt) =
µ

r
+Π′ (Qt) +

1

2
Π′′ (Qt)σ

2
Q (Qt) , and σP (Qt) =

σ

r
+Π′ (Qt)σQ (Qt) . (15)

Next, conjecture that the value function for the rational trader is of the form:

V (Wt, Qt) = −
1

rϕ
exp

(
−ϕrWt −

δ − r

r
−G (Qt)

)
. (16)

We refer to G (Qt) as the utility gain, because it captures the incremental value that ac-

crues to rational traders because they can predict the demand from Q-learners based on the

evolution of Qt.
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The HJB equation for the trader implies that

δV = max
C,N

− 1
ϕ
e−ϕC + VW × (rW − C +N (D + µP − rP )) + VQµQ

+1
2

(
VWWσ2

PN
2 + 2VWQNσQσP + VQQσ

2
Q

) ,

where we have suppressed the arguments for expositional clarity. Given the conjecture for

the value function, one can show that the first order condition for Ct implies

Ct = rWt +
δ − r

rϕ
+

1

ϕ
G (Qt) . (18)

Since the traders have CARA utility, their optimal demand for the risky asset does not

depend on the additional wealth generated by trading against the Q-learners. Instead,

this additional value (reflected in G (Qt)) increases consumption, relative to the benchmark

without Q-learners.

Similarly, one can show that the first order condition for Nt implies:

NR
t =

Dt + µP − rPt

ϕrσ2
P (Qt)

− 2α
G′ (Qt)

ϕr
. (19)

Intuitively, the optimal demand from rational traders has two components. The first term
1
rϕ

Dt+µP−rPt

σ2
P

is of the the standard “mean-variance” form and is analogous to the demand in

the benchmark with no Q-learners. The second term reflects a hedging demand that reflects

how the demand from Q learners affects the utility gain for rational investors.21

One can then calculate the equilibrium price by imposing the market clearing condition,

which implies:

Pt =
1

r

(
Dt + µP − σ2

P

(
rϕ

1− θ

(
S − θNQ (Qt)

)
+ 2αG′ (Qt)

))
. (20)

The following result characterizes the existence of a Q-REE in our setting.

Proposition 2. There exists a Q-REE where the rational trader’s value function is given

by (16), optimal consumption is given by (18), optimal demand is given by (19), and the

equilibrium price is given by

Pt =
1

r

(
Dt +

µ

r

)
+Π(Qt) ,

21It is worth noting that the optimal demand of rational investors depends non-linearly on the state-
variable Qt. This distinguishes our model from most standard models with CARA investors (e.g., Wang
(1993), Barberis et al. (2015)), where demand is linear in the relevant state variables. As a result, our model
gives rise to stochastic volatility in returns, while existing models exhibit constant or deterministic volatility.
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where the risk premium Π(Q) satisfies the nonlinear22 second-order ODE

rΠ(Q) = Π′ (Q)µQ (Q) +
1

2
Π′′ (Q)σ2

Q (Q)

−G′ (Q)σQ (Q)σP (Q)− rϕσ2
P (Q)

1− θ

(
S − θNQ (Q)

)
on R with boundary conditions Π′ (−∞) = Π′ (∞) = 0, and for all Q, Π′ (Q) < 1

2α
. The

utility gain G (Q) satisfies the nonlinear second-order ODE

rG (Q) =
1

2
σ2
P (Q)

(
rϕ

1− θ

(
S − θNQ (Q)

))2

+G′ (Q)µQ (Q)

+
(
G′′ (Q)−G′ (Q)2

) 1
2
σ2
Q (Q)

on R with boundary conditions G′ (−∞) = G′ (∞) = 0. The evolution of Q is driven by the

drift and diffusion terms:

µQ (Q) =
2α

1− 2αΠ′ (Q)

(
1

2
σ2
Q (Q)Π′′ (Q)− rΠ(Q)− 1

2
Q

)
and

σQ (Q) =
σ

r

2α

1− 2αΠ′ (Q)
.

The expressions in (21) and (22) can be derived by (i) plugging in the expressions for

µP and σP from (15) into (20), and (ii) plugging in the optimal consumption and demand

expressions and the market clearing condition into the trader’s HJB equation (17) and sim-

plifying. The key challenge in the proof is to establish existence of the ODE system (21)

and (22). One cannot rely on standard Lipschitz conditions, since the volatility σQ (Q) may

potentially explode as Π′ (Q)→ 1/2α. Instead, we use sub- and supersolutions to construct

bounded solutions on arbitrary finite domains, and then extend these solutions to infinity

via the Arzela-Ascoli theorem. The details are in Appendix A.1.2.

The boundary conditions at infinity are the standard conditions for non-explosion. We

can translate these conditions into economically meaningful ones as follows. When Q =∞,

the Q-learner always buys, i.e. NQ (∞) = 1, and when Q = −∞ the Q-learner always sells,

i.e. NQ (−∞) = −1. Then, the risk premium Π equals

Π (−∞) = −σ2

r2
ϕ

1− θ
(S + θ) and Π (∞) = −σ2

r2
ϕ

1− θ
(S − θ) . (23)

22The coefficients µP (·), µQ (·), σP (·), and σQ (·) depend on the function Π (·), see Equations (15) and
(14).
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Figure 2: Risk premium Π (Q) and utility gains G (Q)

The figure plots the risk-premium Π (Qt) and utility gains G (Qt) for different values of the
learning rate α. Other parameters are set to: ϕ = 10, σ = 0.075, r = 0.05, β = 1, µ = 0.05,
θ = 0.30 and S = 0.
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Intuitively, this is the risk premium in the benchmark model without a Q-learner, where the

asset supply is adjusted for the Q-learner’s constant demand (see Equation (11)). Similarly,

the gain equals

G (−∞) =
1

2

ϕ2σ2

r

(
1

1− θ
(S + θ)

)2

and G (∞) =
1

2

ϕ2σ2

r

(
1

1− θ
(S − θ)

)2

. (24)

The boundary conditions in Proposition 2 are equivalent to the ones in Equations (23) and

(24).

4.2.1 The impact of Q-learning on the risk premium and utility gain

Figure 2 provides a numerical illustration of Π (Q) and G (Q) for different learning rates α.

To gain some intuition for the equilibrium, first note that when α → 0, then the demand

from the Q-learners is constant at N (Q0). In this case, the price volatility is again constant

and given by σP = σ/r as in the benchmark from Section 4.1, and the risk premium term

collapses to

Π (Q) = − ϕσ2
P

1− θ

(
S − θNQ (Q)

)
.

This is the natural analogue to the benchmark model in Section 4.1, after accounting for the

fact that now, the Q-learners demand NQ (Q0) shares and the rational traders have a mass

of 1 − θ in equilibrium. Note that the risk premium Π (Q0) is negative (positive) when the

rational traders have to bear a net positive (negative) supply of shares in equilibrium i.e.,
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when NR
t = 1

1−θ

(
S − θNQ (Qt)

)
is positive (negative). As a result, the risk premium Π (Q)

is increasing in the net Q-value from buying Q.

Moreover, note that the utility gain for rational traders is given by

G (Q) =
1

2

σ2
P

r

(
rϕ

1− θ

(
S − θNQ (Q)

))2

,

which reflects the incremental benefit that rational traders gain from the presence of Q-

learners. Note that the utility gain is quadratic in NR
t . Intuitively, this reflects the fact

that when rational traders are net buyers (i.e., NR
t > 0), the risk-premium implies that the

price is lower than expected (discounted) cash flows, while when they are net sellers (i.e.,

NR
t < 0), the price is higher. As a result, G (Q0) is U-shaped in Q.

When α > 0, the Q-learners update their Q-value Qt and, consequently, their demand

NQ (Qt) for the risky asset, based on realized returns. This induces a feedback channel to

prices, analogous to those in models of positive-feedback or extrapolative investors (e.g.,

De Long, Shleifer, Summers, and Waldmann (1990), Barberis et al. (2015)), where by larger

return realizations lead Q-learners to increase their estimate of the net benefit from buying

(versus selling), Qt, which leads to higher demand NQ (Qt), which then leads to higher

expected returns. Moreover, this feedback effect cannot be too large — a necessary condition

for the existence of an equilibrium is that the rate of learning by the Q-learners is bounded

above i.e., α < 1
2Π′(Qt)

. To see why, note that we can express price volatility as

σP (Qt) =
σ

r
+

σ

r

2αΠ′ (Qt)

1− 2αΠ′ (Qt)
=

σ

r

1

1− 2αΠ′ (Qt)
.

This implies that, as α → 1
2Π′(Qt)

, σP (Qt) → ∞, and consequently, the rational traders’

demand is insensitive to price (see 19). As a result, there is no finite price Pt which clears

the market.23 We establish that α < 1
2Π′(Qt)

as part of the proof of Proposition 2.

4.2.2 The equilibrium evolution of Qt

The evolution of Qt is characterized by its drift µQ (Q) and volatility σQ (Q). Figure 3

provides an illustration of how these vary with the rate of learning, α, and the mass of

Q-learners, θ. As panels (a) and (b) suggest, the drift µQ (Q) is decreasing in Q, and is

positive when Qt is negative and vice versa, which implies Qt is a mean-reverting process.

To see why this is intuitive, suppose Qt is positive and large. This implies Q-learners are

more likely to buy shares of the risky security, which pushes up its price. But this makes

23Moreover, when α > 1
2Π′(Qt)

, price volatility is negative.
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it less profitable to buy the risky asset going forward, which decreases the net value from

buying shares Qt. Moreover, consistent with this intuition, the response is larger when either

the rate of learning α is higher or the mass of Q-learners θ is larger. A higher α implies

that Q-learners update Qt more quickly in response to price changes induced by their past

behavior, while a larger θ implies that changes in Qt have a larger impact on prices, which

in turn, leads to more mean-reversion.

Panels (c) and (d) illustrate that σQ (Q) is hump-shaped in Qt and highest when Qt = 0.

Intuitively, when Qt is zero, the Q-traders are indifferent between buying and selling, and so

their beliefs are maximally sensitive to realized returns. In contrast, when Qt is extremely

positive (negative), Q-traders perceive the net benefit from buying (selling, respectively)

to be extremely high and so Qt is not very sensitive to realized returns, and consequently,

σQ (Q) is very low. Moreover, all else equal, σQ (Q) increases as the rate of learning αor

the mass of Q-traders θ increases, since either of these changes make Qt more sensitive to

realized returns.

The feedback effect induced by Q-traders implies that their demand for the risky security

evolves in a stochastic but persistent manner. As we shall describe in the Section 5, this has

novel implications for return dynamics in our setting.

4.3 Hyperparameter uncertainty

In baseline model, we assume that rational traders know the hyperparameters the Q-learner

is using. Specifically, traders know (1) that the algorithmic trader uses Q-learning with

counterfactual updating, (2) the learning rate α, (3) the initial Q-value Q0, and (4) the

parameter β in the specification for demand NQ (Q).

However, the equilibrium in Proposition 2 survives even if traders do not know the hy-

perparameters (α, β,Q0).
24 Intuitively, traders can infer all these parameters from observing

price volatility, demand volatility, and realized returns over an arbitrarily small horizon, and

from calculating excess volatility.

Proposition 3. If traders do not know (α, β,Q0), then the Q-REE of Proposition 2 remains

an equilibrium.

24That is, traders know that there is a Q-learner using a Boltzman rule with some parameter β and know
that the Q-learner uses counterfactual updating, but they do not know the actual values (α, β,Q0).
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Figure 3: Drift and volatility of the Qt process

The figure plots the drift µQ (Q) and volatility σQ (Q) for the Qt process, for different
values of learning rate α and mass of Q-learners, θ. Other parameters are set to: ϕ = 10,
σ = 0.075, r = 0.05, β = 1, µ = 0.05, θ = 0.30, α = 0.10 and S = 0.
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5 Return dynamics

The Q-learner’s demand depends non-linearly on their net benefit Qt from buying the se-

curity. As the previous section demonstrates, this implies that the presence of Q-learners

induces stochastic volatility and predictability in expected returns. We explore how these

depend on the parameters of Q-learning in this section. Recall that dollar returns evolve

according to

dRt = (Dt − rPt) dt+ dPt,

where Pt satisfies Equation (4).25 This implies that returns can be characterized as follows.

25It is worth emphasizing that this is the return that investors receive for holding one share of the risky
asset, and therefore distinct from the rate of return one would receive from investing one dollar in the risky
asset.
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Corollary 1. In equilibrium, returns evolve according to:

dRt = σ2
P (Qt)

(
rϕ

1− θ

(
S − θNQ (Qt)

)
+ 2αG′ (Qt)

)
dt+ σP (Qt) dBt.

where

σP (Qt) =
σ

r

1

1− 2αΠ′ (Qt)
.

As we discuss below, the above implies that prices exhibit excess, stochastic volatility,

expected returns are predictable and can depend non-monotonically in Qt, and serial corre-

lation in return is non-monotonic in horizon.

5.1 Stochastic volatility

Figure 4 provides an illustration of how stochastic volatility depends on parameters that

capture the impact of Q-learners. In the absence of Q-learners, return volatility is constant

and given by σ/r. However, in the presence of Q-learners, return volatility depends on the

current state of Qt, and is highest when Qt is at zero. This captures the fact that, when

Qt = 0, the Q-learner is indifferent between buying and selling, which introduces maximal

uncertainty and volatility in prices going forward. Moreover, the plots illustrate that return

volatility is increasing in both the mass of Q-learners, θ, and their learning rate, α. These

results are also intuitive and follow because trading by Q-learners induces an amplification

effect. For instance, a positive innovation in dividends leads to higher prices directly, but

also increases the net benefit Qt of being long. This leads to a higher demand N (Qt) from

Q-learners, which in turn, pushes the price up further. When the mass of Q-learners is

larger, the variation in their trading behavior (as driven by the evolution of Qt) has a larger

impact on prices, and so increases volatility more. Similarly, when the learning rate α is

higher, the net Q-value from buying is more volatile. This leads to more volatility in trading

by Q-learners, and consequently, higher return volatility.

The model’s prediction of stochastic volatility is consistent with empirical evidence on

algorithmic trading. Using the introduction of co-location services as an exogenous instru-

ment for algorithmic trading intensity, Boehmer et al. (2021) show that higher intensity of

such trading causally increases short-term volatility across a number of empirical proxies

and across 42 equity exchanges in 37 countries. Moreover, the prediction also distinguishes

our setting from standard models of CARA investors with noise traders (e.g., Wang (1993))

or behavioral investors (e.g., Barberis et al. (2015)), which exhibit constant or deterministic

return volatility.
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Figure 4: Return volatility with Q-learning

The figure plots return volatility σP (Q) as a function of Q, for different values of learning
rate α and mass of Q-learners, θ. Other parameters are set to: ϕ = 10, σ = 0.075, r = 0.05,
β = 1, µ = 0.05, θ = 0.30, α = 0.10 and S = 0.
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5.2 Expected returns

Figure 5 illustrates the impact of Q-learning on the instantaneous expected return. Recall

that in the absence of Q-learners, the instantaneous return is given by E [dR] = rϕσ2
PS. For

the numerical illustration, we set the aggregate supply of the asset S to zero, which implies

that in the absence of Q-learners, the expected return and Sharpe ratio are zero. In contrast,

the expected return and Sharpe ratio vary with Qt in the presence of Q-learners. It is worth

noting that expected returns, and consequently, sharpe ratios can be non-monotonic in Q.

To see why, note that the impact of Q on the expected return can be decomposed as follows:

E [dRt] = σ2
P (Qt)︸ ︷︷ ︸

scale effect

×

 rϕ

1− θ

(
S − θNQ (Qt)

)
+ 2αG′ (Qt)︸ ︷︷ ︸

level effect

 .

To gain some intuition, note that changes in Qt affect expected returns through two

channels. First, an increase in Qt implies that Q-learners demand more of the asset. This

implies that rational investors have to hold less of the asset in equilibrium, which leads to

a decrease in the risk-premium they require, and consequently, lower expected returns. We

refer to this as the level effect. As panels (c) and (d) of Figure 5 illustrate, the level

effect implies that expected returns are positive when Qt is negative and negative when Qt

is positive. Intuitively, when Qt is negative, the Q-learners are net sellers (recall S = 0) and

so rational investors require a positive expected return for being long. In contrast, when Qt
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is positive, the Q-learners are net buyers and so rational investors earn a negative expected

return since they are short in equilibrium.

Second, as panels (e) and (f) of Figure 5 illustrate, when Qt becomes closer to zero,

stochastic volatility increases. This serves to amplify the impact of the level effect on ex-

pected returns by increasing the per-share risk of holding the asset — as such, we refer to

this as the scale effect. This tends to make expected returns more positive (negative) when

Qt is negative (positive) as Qt gets closer to zero.

The overall impact of Qt on expected returns depends on the interaction of the level and

scale effects, as panels (a) and (b) of Figure 5 illustrate. When the scale effect is muted (e.g.,

when the rate of learning α or the mass of Q-learners θ is low), the level effect dominates

and to expected returns decrease with Qt. However, when the scale effect is sufficiently

large (e.g., for the dotted lines in either panel), the interaction with the scale effect implies

that expected returns can be increasing in Qt when Qt is sufficiently away from zero in

either direction. In other words, higher demand from Q-learners can lead to higher expected

returns. This is because variation in demand from Q-learners affects not only the net supply

of shares that the rational investors have to hold in equilibrium, but also affects the risk per

share (through its effect on stochastic volatility).

This non-monotonicity distinguishes our predictions from traditional models in which

variation in demand from non-rational participants (e.g., noise traders) affects the net supply

of shares that rational investors have to bear, but does not generate stochastic variation in

the volatility of returns (e.g., Wang (1993), Wang (1994), Barberis et al. (2015)). Moreover,

it is broadly consistent with the evidence in Brogaard et al. (2014) about the impact of

algorithmic trading on future returns. Brogaard et al. (2014) find that liquidity demanding

(marketable) trades by high-frequency traders are positively correlated with future returns,

while liquidity supplying (non-marketable) trades are negatively correlated with such returns.

While our model does not distinguish between marketable and non-marketable orders, one

could interpret the Q-learner’s demand for extreme Qt as marketable, since they are less

sensitive to Qt, and consequently the price. In contrast, the demand for Qt near zero are

very sensitive to Qt, and thus the price, and could be classified as non-marketable. Under

this interpretation, the model predicts that an increase in the marketable demand (driven by

an increase in Qt in the extremes) is associated with an increase in expected returns, while

an increase in non-marketable demand (driven by an increase in Qt near zero) is associated

with a decrease in expected returns.
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Figure 5: Expected return with Q-learning

The figure plots the instantaneous expected return E [dRt] and the corresponding level and
scale effects as a function of Q, for different values of learning rate α and mass of Q-learners,
θ. Other parameters are set to: ϕ = 10, σ = 0.075, r = 0.05, β = 1, µ = 0.05, θ = 0.30,
α = 0.10 and S = 0.
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Figure 6: Autocorrelation in returns

The figure plots the autocorrelation in dollar returns AC (τ) at different lags τ for different
values of learning rate α and mass of Q-learners, θ. Other parameters are set to: ϕ = 10,
σ = 0.075, r = 0.05, β = 1, µ = 0.05, θ = 0.30, and S = 0.
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5.3 Autocorrelation in returns

As Figure 6 illustrates, the mean-reverting properties of trading by Q-learners induces serial

correlation in returns. Specifically, following Wang (1993), we plot the autocorrelation in

returns at lag τ as:

AC (τ) ≡ C (Rt+τ −Rt, Rt −Rt−τ )√
V (Rt+τ −Rt)V (Rt −Rt−τ )

.

The feedback into prices induced by Q-learners amplifies the negative correlation in the

short-term, but mitigates it in the long-term. To gain some intuition, consider a period

in which the dividend shock Dt is higher than expected and there is a contemporaneous

increase in the price, Pt. This leads to a decrease net benefit from buying, Qt+dt, over the

next instant, which leads Q-learners to sell and prices to decrease going forward. Since Qt is

a persistent process, Q-learners continue to sell for a period, until the current price decreases

sufficiently and Qt starts increasing again.

All else equal, a higher learning rate α implies that Q-learners trading is more sensitive

to the realized return process. As panel (a) illustrates, this implies that the short-term

serial correlation in returns is more negative, but also that it mean-reverts more quickly. In

contrast, a larger mass θ of Q-learners leads to a larger negative impact in the short-term

since the price impact of a unit change in Qt is larger. However, the autocorrelation at longer

lags are approximately the same for different levels of θ.

The patterns in autocorrelation are broadly consistent with empirical evidence about

variation in serial correlation across different horizons (e.g., Heston, Korajczyk, and Sadka
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(2010), Bogousslavsky (2016), Baule, Schlie, and Zhou (2025)). Using high-frequency data

on US stocks, Baule et al. (2025) document a term-structure of return autocorrelation that

is qualitatively similar to our model predictions. They show that average intraday return

autocorrelations are negative across most horizons, are close to zero for sub-minute returns,

decline to a minimum for intermediate horizons (e.g., around 15 minutes) and then gradually

revert to zero for longer horizons.

Our model generates novel testable predictions that relate the term structure of return

autocorrelation to the intensity and speed of algorithmic trading. To the extent that such

traders have a larger impact (higher θ) and learn more slowly (lower α) for small stocks, our

model predictions are consistent with the additional evidence from Baule et al. (2025) that

suggests small stocks exhibit a sharper drop and slower reversion in return autocorrelation.

6 Risk sharing and investor utility

Policymakers are concerned about the growing importance of algorithmic trading because

such behavior may increase price volatility, amplify shocks, and potentially destabilize mar-

kets. Our model provides a natural benchmark in which to evaluate such concerns.

As the results from the earlier sections show, the presence of Q-learners leads to higher

volatility, amplification of shocks, and non-fundamental dynamics in prices. However, ratio-

nal investors are always better off (in expectation) in the presence of Q-learners — as panel

(b) of Figure 2 illustrates, the additional utility gain (due to the presence of Q-learners)

is always positive. This is because rational investors are both better informed about the

equilibrium and have no intrinsic need to trade, and so are able to exploit the relative lack

of sophistication of Q-learners.

To consider a more realistic benchmark, in this section we extend the model to introduce

an additional motive for trade for rational investors. Specifically, we assume that rational

traders are exposed to background risks that are correlated with the dividend process of the

risky asset. In this case, the presence of Q-learners can have more nuanced effects on the

welfare of rational investors.

In equilibrium, Q-learners learn to provide liquidity to the short side of the market, which

allows them to realize profits. These profits, however, do not necessarily come at the expense

of investors. While investors on the same side as the Q-learner lose, since they now have to

compete with the Q-learner, investors on the opposite side gain as they benefit from more

favorable prices. In aggregate, the presence of Q-learners can improve the average utility

across rational investors, even though it leads to higher volatility and decreases utility for

some fraction of the investors.
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6.1 Setup

We consider an extension of our benchmark model in which Q-learners serve the role of

liquidity provision. Recall that the mass of rational traders in the economy is 1−θ. Further,

assume that there are two types of rational traders, indexed by i ∈ {L, S}, where fraction

m ∈ (0, 1) are of type i = S. Suppose that investor i has endowment shocks that are

correlated with the dividend process of the risky asset – specifically, suppose

dWit = (rWit − Cit +Nit (Dt − rPt)) dt+NitdPt + YidBt,

where YS = Y > 0 and YL = −Y . Moreover, the market clearing condition is now given by:

θNQ
t + (1− θ) (mNSt + (1−m)NLt) = S.

A non-zero Yi generates a risk-sharing or liquidity motive for trading.26 Intuitively, L in-

vestors are endowed with an exposure that is negatively correlated with the dividend shocks,

and so have a motive to be long the risky asset, while S investors have a positive exposure

and so have a motive to short the asset. Note, however, that whether these groups are long

or short in equilibrium will depend on the equilibrium price and the demand from Q-learners.

Finally, let Ȳ = mY − (1−m)Y denote the average exposure to endowment shocks across

rational traders.

The following result characterizes the equilibrium in this setting.

Proposition 4. There exists a Q-REE in which the equilibrium price is given by

Pt =
1

r

(
Dt +

µ

r

)
+Π(Qt) .

The gains from trade for types i = L, S are given by the ODEs

rGi (Q) =
1
2
(ϕr)2N2

i (Q)σ2
P (Q)− 1

2
(ϕrY )2 −G′

i (Q)ϕrσQ (Q)Yi

+G′
i (Q)µQ (Q) +

(
G′′

i (Q)−G′
i (Q)2

)
1
2
σ2
Q (Q)

with boundary conditions G′
i (−∞) = G′

i (∞) = 0. The risk premium satisfies the ODE

rΠ(Q) =
Π′ (Q)µQ (Q) + 1

2
Π′′ (Q)σ2

Q (Q)

−ϕrσ2
P (Q)

1−θ

(
S − θNQ (Q)

)
− Ḡ′ (Q)σP (Q)σQ (Q)− ϕrȲ σP (Q)

on R with boundary conditions Π′ (−∞) = Π′ (∞) = 0, and where Ḡ′ (Q) = mG′
S (Q) +

26We do not explicitly model the source of Yi, but it could capture the net risk-exposure from the rest of
investor i’s (non-tradable) portfolio, including due to shocks to income or liquidity.
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(1−m)G′
L (Q). The evolution of Q is driven by the drift and diffusion terms:

µQ (Q) =
2α

1− 2αΠ′ (Q)

(
1

2
σ2
Q (Q)Π′′ (Q)− rΠ(Q)− 1

2
Q

)
and

σQ (Q) =
σ

r

2α

1− 2αΠ′ (Q)
.

The above proposition is analogous to the one for the benchmark analysis, but accounts

for the fact that rational investors have endowments which are correlated with the dividend

process. Specifically, as the proof of the above proposition shows, the optimal demand for a

rational investor i can be expressed as:

Ni (Qt) =
Dt + µP − rPt

ϕrσ2
P (Qt)

− 2α
G′

i (Qt)

ϕr
− Yi

σP (Qt)
, (27)

which extends the optimal demand expression in the main model (see equation (19)) with a

term − Yi

σP (Q)
that captures the impact of the endowment. Specifically, since YL = −Y < 0

and YS = Y > 0, L investors buy more of the risky security relative to the no-endowment

benchmark, while S investors sell more. Market clearing then implies that the risk premium

Π (Q) depends on the average risk exposure Ȳ (as captured by ϕrȲ σP (Q) term in equation

(26)). Since exposures for L and S investors are symmetric, the risk premium (and conse-

quently, the price of the risky asset) is higher when the mass of S investors is less than half

(i.e., m < 1/2, and consequently, Ȳ < 0), and lower when the mass of S investors is more

than half.

6.2 Intuition

To gain some intuition, consider a case where m > 1/2. In this case, the average exposure is

Ȳ > 0, and so the price of the risky asset is lower than under the no-endowment case. In the

absence of Q-learners, this makes L traders better off and S traders worse off. A positive

average exposure (i.e., Ȳ > 0) implies that the hedging demand to short the risky security

from S traders is larger than the demand from L traders, and the price drop compensates

L traders for providing “risk-sharing” or “liquidity” to S traders.

The presence of Q-learners interacts with this risk-sharing. On the one hand, since

rational traders are better informed than Q-learners, the presence of the latter group tends

to improve utility gains for both L and S traders (as in the no-endowment benchmark).

However, the asymmetry in hedging demands across the two groups provides an opportunity

for Q-learners to make profits. When the average risk exposure is positive (i.e., Ȳ > 0),
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Figure 7: Q-learner profits and rational investor utility gains

The figure plots the expected discounted profits for a Q-learner, U (Qt), and the utility
gains for L and S investors, as functions of Q, for different values of learning rate α. Other
parameters are set to: ϕ = 10, σ = 0.075, r = 0.05, β = 1, µ = 0.05, θ = 0.30, α = 0.10,
S = 0, m = 0.75 and Y = 2.
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Q-learners can earn positive profits by buying shares at a low price. Intuitively, they learn

that, just like L traders, they can earn rents for providing risk-sharing or liquidity to S

traders. This improves payoffs for S investors, but reduces payoffs for the L investors.

Figure 7 provides an illustration. Specifically, the figure plots the expected discounted

profits U (Qt) for a Q-learner, where

U (Qt) = E

[∫ ∞

t

e−r(s−t)NQ (Qs) dRs

]
,

and the utility gains GS (Qt) and GL (Qt) for S and L investors. The illustration sets

m = 0.75 and Y = 2, which implies that the average exposure Ȳ > 0, and so the price of the

risky asset is lower than under the no-endowment case. As a result, as panel (a) illustrates,
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the expected profit for a Q-learner can be positive when she is sufficiently long (i.e., when Qt

is sufficiently above zero), since she is more likely to buy the security when its price is low.

In contrast, when Qt is negative, the Q-learner is short the security and, consequently, her

expected profit is negative. Moreover, the presence of Q-learners affects the utility gains for

the rational traders. As Qt increases, Q-learners are more likely to be long (or less likely to

be short). This reduces the utility gains that L investors can generate from providing risk-

sharing to S investors, making them worse off (see panel (b)). On the other hand, increased

buying demand from Q-learners makes S investors better off (see panel (c)). Essentially,

the Q-learner learns that in equilibrium, it is profitable to “compete” with L investors to

provide risk-sharing to S investors.

6.3 Comparative statics

Figure 8 characterizes how expected Q-learner profits and rational traders’ utility gains de-

pend on model parameters. Specifically, the figure plots expected discounted profits (i.e.,

U), utility gains for L and S traders (i.e., GL ≡ E [GL (Qt)] and GS ≡ E [GS (Qt)], respec-

tively) and the average utility gain (i.e., Ḡ = mGS + (1−m)GL), where the expectations

are computed using the steady state distribution of Qt.
27 Utility gains for rational investors

depend on (i) profits generated by trading against Q-learners (as in the main model) and (ii)

hedging needs due to risky endowments. As panel (a) illustrates, when Y is small, trading

profits dominate and so average GL, GS and Ḡ are positive while average U is negative.

However, as Y increases, hedging demands begin to dominate. As a result, Q-learner profits

are increasing in Y (all else equal) and become positive for sufficiently high Y . Moreover,

since m = 0.75 > 1/2, aggregate hedging demand from S investors are larger, and so GS

decreases with Y while GL increases with Y .

Panel (b) illustrates the impact of varying the mass m of S investors on trading profits

and utility gains. When m is low, hedging demand from rational traders is dominated by

L investors (i.e., Ȳ < 0), and consequently, trading gains for S investors and Q-learners is

high. Similarly, when m is sufficiently high, hedging demand from S investors dominates

and so trading gains for L investors and Q-learners is high. For intermediate m, the demand

from S and L investors offset each other, so the net demand from rational investors is not

very large. In this case, Q-learners do not earn large profits from providing risk-sharing, but

27It is worth nothing that Ḡ does not correspond to the utility gain of rational investors on average
because of Jensen’s inequality. In Figure 10 of Appendix C, we present the corresponding plots for the
expected value function for L and S traders (i.e., E[VL(Qt)] and E[VS(Qt)]) and the weighted average
mE[VS(Qt)] + (1−m)E[VL(Qt)], where the expectations are taken under the steady state distribution.
While the comparative statics are qualitatively similar, it is clearer to see the impact of parameters when
we plot expected utility gains G·, and so we do so in the main text.
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Figure 8: Expected trading profits and utility gains

The figure plots the expected discounted profits for a Q-learner, U (Qt) (dot-dashed), and
the utility gains for L and S investors, GL (dashed) and GS (dotted), and the average
gain Ḡ = mGS + (1−m)GL (solid), versus various model parameters. Unless specified,
parameters are set to: ϕ = 10, σ = 0.075, r = 0.05, β = 1, µ = 0.05, θ = 0.30, α = 0.10,
S = 0, m = 0.75 and Y = 2.

0.0 0.5 1.0 1.5 2.0 2.5
Y

10

5

0

5

10

15 Q-profit
L-trader gain
S-trader gain
Avg gain

0.2 0.3 0.4 0.5 0.6 0.7 0.8
m(S)

5

0

5

10
Q-profit
L-trader gain
S-trader gain
Avg gain

(a) Average Profits / utility gains versus Y (b) Average Profits / utility gains versus m

0.05 0.10 0.15 0.20 0.25 0.30 0.35

5

0

5

10

Q-profit
L-trader gain
S-trader gain
Avg gain

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

5

0

5

10
Q-profit
L-trader gain
S-trader gain
Avg gain

(c) Average Profits / utility gains versus θ (d) Average Profits / utility gains versus σ

instead are a source of trading profits for rational investors. As a result, Q-learner profits

are negative, while average utility gains for rational investors are higher than for extreme m.

Intuitively, as the mass of Q-learners increases, average utility gains for rational investors

increases while trading profits for Q-learners decrease — panel (c) provides an illustration of

this. Recall that in this illustration, m > 1/2 and rational hedging demand is dominated by

S investors. An increase in θ implies there are more Q-learners to provide risk-sharing, which

improves GS but reduces GL. Moreover, an increase in θ leads to higher trading profits for

rational investors, which tends to increase the average utility gain.

In contrast, panel (d) shows that an increase in fundamental volatility σ can have a

non-monotonic impact on Q-learner profits. This is because an increase volatility has two
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Figure 9: Expected returns and average return volatility

The figure plots the expected return and average return volatility versus various model
parameters. Unless specified, parameters are set to: ϕ = 10, σ = 0.075, r = 0.05, β = 1,
µ = 0.05, θ = 0.30, α = 0.10, S = 0, m = 0.75 and Y = 2.
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effects: (i) it increases the benefit from providing risk-sharing to rational investors, and (ii)

it leads to larger expected losses from trading against better informed investors. When σ is

low, the first effect dominates and Q-learner profits increase with volatility. However, when

σ is sufficiently large, the second effect dominates and profits can decrease with volatility.

Moreover, in this case, average utility gains for rational investors also increases.

6.4 Policy implications

A standard argument for regulating algorithmic trading is that they increase volatility and

fragility in markets because the feedback induced by their trading behavior. The common

wisdom suggests that increased market volatility should reduce welfare for risk averse market

participants and that higher trading profits by Q-learners necessarily lead to lower gains for

others.

Our results suggests that this intuition may not hold generally. Instead, investors’ average

utility may improve, because the Q-learner learns to act as a liquidity provider. When

risk sharing is an important motivation for trading, the above results suggest that (i) Q-

learners may be able to make positive trading profits and (ii) their presence may lead to

improved average utility of other participants, although it may make some investors worse off.

Interestingly, this improvement in average utility gains may happen even though observables

like return volatility may suggest otherwise.

For instance, consider the numerical illustrations in Figure 9. For the same parameters

considered in Figure 8, panel (a) implies that an increase in the fraction of Q-learners leads
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to higher return volatility due to the feedback in trading they generate. Similarly, panel

(b) suggests that in the presence of Q-learners leads to a sharp amplification effect: return

volatility increases non-linearly in cash-flow volatility. However, panels (c) and (d) of Figure

8 imply that average trading gains for rational investors increase with θ and σ, respectively,

for these parameter values. Intuitively, since rational investors are risk averse and have

hedging needs, while Q-learners are risk-neutral, there are gains from trade. Moreover, since

rational investors have an informational advantage relative to Q-learners, an increase in the

presence of Q-learners can lead to higher welfare due to more trading profits, despite the

increase in return volatility.

7 Conclusions

We develop of a model in which rational investors trade a risky security with a Q-learner.

The trading behavior of the Q-learner is driven by their perceived net benefit from buying a

share, Qt, which we show can be approximated in continuous-time by an endogenous SDE.

This allows us to analytically characterize equilibrium prices and trading. The Q-learner’s

trading generates a feedback loop in equilibrium prices, which leads to stochastic volatility,

state-dependence in expected returns, and novel patterns in return autocorrelation which

depend on the mass and learning rate of Q-learners. Our model also allows us to characterize

the impact of Q-learners on investor utility. We show that when risk-sharing is an important

trading motive for investors, we show that Q-learners can earn positive profits and improve

average investor utility, even though they increase the volatility of prices.

Our model is stylized for analytical tractability and expositional clarity. There are a num-

ber of natural directions for future work. First, it would be interesting to explore human-AI

interactions in other market environments e.g., in a strategic trading setting like Kyle (1985).

Second, we have assumed that the Q-learner does not have an informational advantage over

the rational investors. However, in practice, one argument in favor of algorithmic trading is

that such approaches allow the use of better information (e.g., in the form of big data). In-

corporating both superior information and a lack of sophistication (e.g., about the structure

of the economy) in Q-learning traders would be another interesting avenue.
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A Proofs

A.1 Proof of Proposition 2

A.1.1 Traders’ HJB Equation

Given the SDEs (13), (12), and (1), standard verification arguments imply that the solu-

tion to the trader’s optimization problem V (W,Q) in Equation (5) is characterized by the

following Hamilton-Jacobi-Bellman (HJB) equation:

δV = max
C,N
−1

ϕ
e−ϕC + VW (rW − C +N (µP (Q)− rP (D,Q) +D))

+
1

2
VWWσ2

P (Q)N2

+VQµQ (Q) + VQQ
1

2
σ2
Q (Q)

+VWQNσP (Q)σQ (Q) ,

where we omit the dependence of V on (W,Q) to keep the notation simple. Conjecture that

V (W,Q) = − exp (−ϕrW −G (Q)−K), where

K =
δ − r

r
+ log (ϕr) . (29)

The first-order condition for N is given by

N = − VW

VWW

µP (Q)− µ
r
− rΠ(Q)

σ2
P (Q)

− VWQ

VWW

σQ (Q)

σP (Q)
. (30)

The conjecture implies that VWQ = ϕrG′ (Q)V , VW = −ϕrV , and VWW = (ϕr)2 V , so that

we can simplify this expression to

N =
1

ϕr

µP (Q)− µ
r
− rΠ(Q)

σ2
P (Q)

− G′ (Q)

ϕr

σQ (Q)

σP (Q)
.

Plugging in σQ (Q) = 2ασP (Q) yields Equation (19).

The market clearing condition (6) implies that

N =
1

1− θ

(
S − θNQ (Q)

)
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or equivalently

1

ϕr

µP (Q)− µ
r
− rΠ(Q)

σ2
P (Q)

− 2α
G′ (Q)

ϕr
=

1

1− θ

(
S − θNQ (Q)

)
.

After some algebra, this implies

rΠ(Q) = Π′ (Q)µQ (Q) +
1

2
Π′′ (Q)σ2

Q (Q)

−G′ (Q)σQ (Q)σP (Q)− rϕσ2
P (Q)

1− θ

(
S − θNQ (Q)

)
,

which is Equation (21).

The FOC for consumption is given by

C = −1

ϕ
log (VW ) ,

which yields Equation (18). To derive G (Q), plug in the FOC for N in Equation (30) and

the FOC for C into the HJB Equation (28) and use VQQ =
(
G′ (Q)2 −G′′ (Q)

)
V , which

yields

δV = rV − ϕrV

(
1

ϕ
log (ϕr)− 1

ϕ
G (Q)− 1

ϕ
K

)
+
1

2
(ϕr)2 V σ2

P (Q)N2

−G′ (Q)V µQ (Q) +
(
G′′ (Q)−G′ (Q)2

)
V
1

2
σ2
Q (Q) .

Canceling V and plugging in the market clearing Condition (6) for N yields

δ = r − r log (ϕr) + rG (Q) + rK

−1

2
(ϕr)2 σ2

P (Q)

(
1

1− θ

(
S − θNQ (Q)

))2

−G′ (Q)µQ (Q) +
(
G′ (Q)2 −G′′ (Q)

) 1
2
σ2
Q (Q) .

rG (Q) =
1

2
σ2
P (Q)

(
rϕ

1− θ

(
S − θNQ (Q)

))2

+G′ (Q)µQ (Q)

+
(
G′′ (Q)−G′ (Q)2

) 1
2
σ2
Q (Q)
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Plugging in the expression for K in Equation (29) and rearranging the expressions involving

G (Q) yields Equation (22).

A.1.2 Existence of Solutions for Equations (21) and (22)

The proof proceeds as follows. We first fix G′ (Q) to be an arbitrary continuous func-

tion which is bounded on R and we show that, taking G′ (Q) as given, Equation (21) has

a twice continuously differentiable and bounded solution on R, which satisfies Π′ (Q) ∈
(−R, 1/(2α)) for some R > 0. Then, we show that for any continuous Π′ (Q) such that

Π′ (Q) ∈ (−R, 1/(2α)), Equation (22) has a twice continuously differentiable and bounded

solution on R.
Taken together, these two results imply that we can define a modification of the ODE

system (21) and (22), which is bounded in both the function values Π (Q) and G (Q) and

the derivatives Π′ (Q) and G′ (Q). Any solution of that ODE system is also a solution of the

original system (21) and (22). We then prove that the modified system has a solution on

any bounded interval of Q, and then use the Arzela-Ascoli theorem to extend the solutions

to the entire real line.

Proposition 5. Fix G′ (Q) to be an arbitrary continuous function, which satisfies supQ∈R |G′ (Q)| <
∞ and supQ∈R |G′′ (Q)| <∞. Then, Equation (21) has at least one solution Π(Q) ∈ C2 (R).28

Any solution satisfies supQ∈R |Π(Q)| <∞ and Π′ (Q) ∈ (−R, 1/(2α)) for all Q ∈ R for some

R > 0.

Proof. Rewrite Equation (21) as

Π′′ (Q) = FΠ (Q,Π(Q) ,Π′ (Q) , G′ (Q)) (32)

where

FΠ (Q, u, v,G′ (Q)) = (ru+ αQv) 2
(1− 2αv)2

4α2
(
σ
r

)2 +
1

2α2
(1− 2αv)

(
2αG′ (Q) +

rϕ

1− θ

(
S − θNQ (Q)

))
.

Pick M > 0 sufficiently large and define for (Q, u, v) ∈ R3

F̄Π (Q, u, v,G′ (Q)) = FΠ (Q, u,max {min {v,M} ,−M} , G′ (Q)) .

Consider the ODE

Π̄′′ (Q) = F̄Π

(
Q, Π̄ (Q) , Π̄′ (Q) , G′ (Q)

)
. (33)

28Here, C2 (R) is the space of twice continuously differentiable functions on R.
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We now apply De Coster and Habets (2006), Th. 5.6, p. 122, to Equation (33), which is

restated below for the convenience of the reader.

Theorem 1 (De Coster and Habets (2006), Th. 5.6). Let A (Q) , B (Q) ∈ C2 (R) such that

A (Q) ≤ B (Q) for all Q ∈ R, E = {(Q, u, v) ∈ R3|A (Q) ≤ u ≤ B (Q)} and let f : E → R
be continuous.

Assume that A (Q) and B (Q) are such that for all Q ∈ R,

A′′ (Q) ≥ f (Q,A (Q) , A′ (Q)) and B′′ (Q) ≤ f (Q,B (Q) , B′ (Q)) .

Also, assume that for any bounded interval I, there exists a positive continuous function

φI : R+ → R that satisfies ∫ ∞

0

sds

φI (s)
=∞ (34)

and for all Q ∈ I, (u, v) ∈ R2 with A (Q) ≤ u ≤ B (Q),

|f (Q, u, v)| ≤ φI (|v|) .

Then, the ODE

u′′ (Q) = f (Q, u (Q) , u′ (Q))

has at least one solution u ∈ C2 (R) such that for all Q ∈ R

A (Q) ≤ u (Q) ≤ B (Q) .

In particular, we show that there exist numbers A < B such that the constant func-

tions A (Q) = A and B (Q) = B are sub-solutions and super-solutions to Equation (33),

respectively, on R and that F̄Π (Q, u, v,G′ (Q)) satisfies all conditions of the theorem.

We have

FΠ (Q,A, 0, G′ (Q)) =
rA

2α2
(
σ
r

)2 +
1

2α2

(
2αG′ (Q) +

rϕ

1− θ

(
S − θNQ (Q)

))
.

Since G′ (Q) and NQ (Q) are bounded on R, we have FΠ (Q,A, 0, G′ (Q)) < 0 all Q ∈ R when-

everA is sufficiently small. In particular, it holds thatA′′ (Q) = 0 ≥ FΠ (Q,A (Q) , A′ (Q) , G′ (Q)) =

FΠ (Q,A, 0, G′ (Q)), so that A (Q) = A is indeed a subsolution to Equation (32). Since

A′ (Q) = 0 ∈ (−R, 1/(2α)), it is also a subsolution to Equation (33). Similarly, for B suffi-

ciently large, FΠ (Q,B, 0, G′ (Q)) > 0 for all Q ∈ R and by the same argument, B (Q) = B

is a supersolution to Equations (32) and (33). Since FΠ (Q, u, 0, G′ (Q)) is strictly increasing
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in Q, and FΠ (Q,A, 0, G′ (Q)) < FΠ (Q,B, 0, G′ (Q)), it must be the case that B > A.

For any bounded interval I ⊂ R, define φI (v) = max(Q,u,v)∈I×[A,B]×R
∣∣F̄Π (Q, u, v,G′ (Q))

∣∣
and note that φI (v) satisfies the Nagumo condition in Equation (34). By construction of

φI (v), we have
∣∣F̄Π (Q, u, v,G′ (Q))

∣∣ ≤ φI (|v|) for any (Q, u, v) ∈ I × [A,B]× R.
Hence, the theorem implies that Equation (33) has at least one solution Π̄ (Q), which is

twice continuously differentiable on R and which satisfies Π̄ (Q) ∈ [A,B] for all Q ∈ R.

We next show that any solution of Equation (33) has a bounded derivative. This implies

that for M sufficiently large, any solution to Equation (33) is also a solution to Equation

(32).

Lemma 1. Any solution Π̄ (Q) to Equation (33) satisfies Π̄′ (Q) ∈ (−R, 1/(2α)) for some

R > 0 sufficiently large.

Proof. We first show that Π̄′ (Q) < 1/(2α). Pick M > 1/(2α). By way of contradiction,

suppose that there exists a solution Π̄ (Q) to Equation (33) such that Π̄′ (Q) = 1/(2α) for

some Q. Then, since Π̄ (Q) is bounded, Equation (33) implies that Π̄′′ (Q) = 0. Hence,

Π̄′ (Q′) = 1/(2α) for Q′ > Q. But this implies that Π̄ (Q) > B for Q sufficiently large, which

is a contradiction. Similarly, if there exists a Q such that Π̄′ (Q) > 1/(2α), it must be the

case that for some Q′ > Q, Π̄′ (Q′) = 1/(2α), otherwise Π̄ (Q) → ∞ as Q → ∞, which

contradicts the fact that Π̄ (Q) ∈ [A,B]. But then, the same contradiction hols at Q′. Thus,

any solution to Equation (33) must satisfy Π̄′ (Q) < 1/(2α) for all Q ∈ R.
Next, we show that Π̄′ (Q) > −R for some R > 0 sufficiently large. Wlog pick R so that

(1 + 2αR) (r + α)R
1

2α2
(
σ
r

)2 >
1

2α2

(
2αG′′ (Q) +

rϕ

1− θ

(
S − θNQ′ (Q)

))
(35)

for all Q, which is possible because G′′ (Q) and NQ′ (Q) are bounded, and pick M > R. Sup-

pose by way of contradiction that for some Q, Π̄′ (Q) ≤ −R. Then, since Π̄ (Q) is bounded,

it must hold that lim|Q|→∞ Π̄′(Q) = 0 and there exists a Q̂ = inf
{
Q : Π̄′ (Q) ≤ −R

}
for

which

Π̄′′
(
Q̂
)
= FΠ

(
Q̂, Π̄

(
Q̂
)
, R,G′

(
Q̂
))

= (1 + 2αR)

((
rΠ̄
(
Q̂
)
− αQ̂R

) 1

2α2
(
σ
r

)2 (1 + αR)

+
1

2α2

(
2αG′

(
Q̂
)
+

rϕ

1− θ

(
S − θNQ

(
Q̂
))))

< 0.

That is, Q̂ is the first time Π̄′ (Q) crosses −R from above. Since we picked R sufficiently

large, Equation (35) implies that the RHS is strictly decreasing in Q whenever Π̄′ (Q) ≤ −R
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. But this implies that Π̄′′ (Q′) < 0 for all Q′ > Q if Π̄′ (Q′) = −R. Therefore Π̄′ (Q′) ≤ −R
for all Q′ > Q, which contradicts the fact that Π̄′ (∞) = 0. Hence, Π̄′ (Q) > −R for all

Q.

Lemma 1 immediately implies the following.

Corollary 2. For R sufficiently large, any solution of Equation (33) also satisfies Equation

(32).

The corollary implies that Equation (32) has at least one solution Π (Q) such that Π (Q) ∈
[A,B] and Π′ (Q) ∈ (−R, 1/(2α)), which is what we set out to prove.

Next, we show that for any function Π (Q) such that Π′ (Q) is continuous and Π′ (Q) ∈
(−R, 1/(2α)) for all Q ∈ R, Equation (22) has a solution, such that G′ (Q) is continuous and

bounded on R.

Proposition 6. Fix Π′ (Q) to be an arbitrary continuous function such that for some R > 0,

Π′ (Q) ∈ (−R, 1/(2α)) for all Q ∈ R. Then Equation (22) has a bounded solution G (Q) ∈
C2 (R) and G′ (Q) is bounded on any finite interval I ⊂ R.

Proof. For a given Π′ (Q), define

σP (Q) =
σ

r

1

1− 2αΠ′ (Q)

and notice that σP (Q) continuous and uniformly bounded on R,29 and satisfies infQ∈RσP (Q) ≥
σ > 0 for some σ > 0.30 Proceeding similarly as for Equation (21), write Equation (22) as

G′′ (Q) = FG (Q,G (Q) , G′ (Q) , σP (Q)) (36)

where

FG (Q, u, v, σP (Q)) = (ru+ αQv)
1

2α2σ2
P (Q)

− 1

4α2

(
rϕ

1− θ

(
S − θNQ (Q)

)
+ 2αv

)2

.

We now apply the same theorem as above, De Coster and Habets (2006), Th. 5.7, p. 122,

to Equation (36). Since Π′ (Q) and NQ (Q) are bounded and since FG (Q, u, v, σP (Q)) is

29This follows because for any Q, Π′ (Q) < 1/(2α) and Π′ (Q)→ 0 as |Q| → ∞, so Π′ (Q) cannot approach
1/(2α) as |Q| approaches infinity.

30This is because we proved that for all Q, Π′ (Q) > −R for some R > 0.
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increasing in u, there exist A < B such that the constant functions A (Q) and B (Q) are

sub-solutions and super-solutions to Equation (36). For any bounded interval I ⊂ R, pick

φI (v) = KI

(
1 + v2

)
for some KI > 0. Then, φI (v) satisfies Equation (34) and

|FG (Q, u, v, σP (Q))| ≤ φI (|v|) (37)

whenever KI is sufficiently large. Hence, Equation (36) has at least one solution G (Q) ∈
C2 (R) which satisfies G (Q) ∈ [A,B] for all Q ∈ R.

It remains to show that any solution of Equation (36) has a derivative G′ (Q) which is

bounded on finite intervals. This follows from Hartman (2002), Lemma 5.1, p. 428. The

lemma states that if G is bounded on R and G′′ (Q) ≤ φ (|G′ (Q)|) on any finite interval I

of length at least l0 > 0, then |G′ (Q)| ≤M . Picking φ (v) = φI (v) = KI (1 + v2) and using

Equation (37) then yields the result.

Propositions 5 and 6 establish that we can pick constants A,B,RP , RG and Rα and wlog

consider the system of ODEs

Π̂′′ (Q) = F̂Π

(
Q, Π̂ (Q) , Π̂′ (Q) , Ĝ′ (Q)

)
and Ĝ′′ (Q) = F̂G

(
Q, Ĝ (Q) , Ĝ′ (Q) , Π̂′ (Q)

)
(38)

on finite intervals of R where

F̂Π (Q, u, v, x) = FΠ (Q,min {A,max {B, u}} ,min {−RP ,max {v, 1/(2α)−Rα}} ,min {−RG,max {x,RG}})

and

F̂G (Q, u, v, x) = FΠ (Q,min {A,max {B, u}} ,min {−RG,max {v,RG}} ,min {−RP ,max {x, 1/(2α)−Rα}}) .

Proposition 7. For any finite interval [Q, Q̄] ⊂ R, the BVP (38) with boundary conditions

Π̂(Q) = Π, Π̂(Q̄) = Π̄, Ĝ(Q) = G, and Ĝ(Q̄) = Ḡ

has a solution.

Proof. The proof is an adaptation of the proof of Hartman (2002), Th. 4.2, p. 424. The

proof relies on constructing an operator on the space of continuously differentiable functions

on finite intervals and applying Schauder’s Theorem (e.g. Hartman (2002), Th. 0.2, p. 405).
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We can write the ODE system in vector form as

X ′′ (Q) = F̂ (Q,X (Q) , X ′ (Q))

where X (Q) = (Π (Q) , G (Q)) and F̂ =
(
F̂Π, F̂G

)
. We now establish that this system has a

solution on any finite interval I ≡ [Q, Q̄] ⊂ R with the above boundary conditions.

Let lI = Q̄ − Q and denote with DI the Banach space of continuously differentiable

vector-valued functions d (Q) : I → R2. Endow DI with the norm

|d| = max

(
max
Q∈I
∥d (Q)∥ , lI

4
max
Q∈I
∥d′ (Q)∥

)
where ∥.∥ is the Euclidean norm. Consider the subset DR

I = {d (Q) : maxQ∈I |d (Q)| ≤ R}
for some R > 0. Hartman (2002), Th. 3.1, p. 419 implies that the ODE system

X ′′ (Q) = F̂ (Q, d (Q) , d′ (Q))

with boundary conditions X(Q) = X and X(Q̄) = X̄, where X = (Π, G) and X̄ = (Π̄, Ḡ),

has a unique solution for any d ∈ DR
I , which is given by

X (Q) = −
∫ Q̄

Q

G (Q, s) F̂ (s, d (s) , d′ (s)) ds+
(
Q−Q

) 1

lI

(
X̄ −X

)
+X (39)

where

G (Q, s) =
1

lI

((
Q̄−Q

) (
s−Q

)
1{s≤Q} +

(
Q̄− s

) (
Q−Q

)
1{s>Q}

)
Now, define the operator T : DI → DI such that T (d (Q)) = X (Q). To apply Schauder’s

fixed point theorem, we must establish that T is a continuous and compact operator which

maps DR
I onto itself.

To establish that T maps DR
I onto itself, note that it holds that∫ Q̄

Q

G (Q, s) ds ≤ l2I
8

and

∫ Q̄

Q

∂G (Q, s)

∂Q
≤ lI

2
.

Therefore,

∥X (Q)∥ ≤ l2I
8

max
Q∈[Q,Q̄]

∥∥∥F̂ (Q, d (Q) , d′ (Q))
∥∥∥+ ∥∥X̄ −X

∥∥
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and, by differentiating Equation (39) with respect to Q,

∥X ′ (Q)∥ ≤ lI
2

max
Q∈[Q,Q̄]

∥∥∥F̂ (Q, d (Q) , d′ (Q))
∥∥∥+ 1

lI

∥∥X̄ −X
∥∥ .

By construction of F̂ , it holds that

max
Q∈[Q,Q̄]

∥∥∥F̂ (Q, d (Q) , d′ (Q))
∥∥∥ ≤ KI

and therefore

∥X (Q)∥ ≤ l2I
8
KI +

∥∥X̄ −X
∥∥ and ∥X ′ (Q)∥ ≤ lI

2
KI +

∥∥X̄ −X
∥∥

so that |X (Q) | ≤ l2I
8
KI +

∥∥X̄ −X
∥∥. Picking R >

l2I
8
KI +

∥∥X̄ −X
∥∥ ensures that T maps DR

I

into itself.

To establish continuity, pick d1, d2 ∈ DR
I and let X1 = T (d1) and X2 = T (d2). Then,

|X1 −X2| ≤
lI
4

∫ Q̄

Q

∥∥∥F̂ (Q, d1 (Q) , d′1 (Q))− F̂ (Q, d2 (Q) , d′2 (Q))
∥∥∥ dQ,

so that |d1 − d2| → 0 implies |X1 −X2| → 0. Thus, T is continuous.

We finally establish that T is a compact operator, i.e. the range of T has a compact

closure. Equation (39) implies that

∥X (Q1)−X (Q2)∥ ≤ KI lI |Q1 −Q2|

and

∥X ′ (Q1)−X ′ (Q2)∥ ≤ 2KI |Q1 −Q2| ,

which follows after some algebra. Hence, functions in the range of T are equicontinuous and

the Arzela-Ascoli theorem implies that the range of T has a compact closure.

We can hence apply Schauder’s theorem to T , which concludes the proof.

It remains to extend the existence result in Proposition (7) to the entire real line. To this

end, consider a sequence of intervals In = [Q
n
, Q̄n] for n ∈ N with In ⊂ In+1 and Q

n
→ −∞

and Q̄n →∞ as n→∞. Consider the sequence of BVPs (38) on In with boundary conditions

Π̂(Q) = Πn, Π̂(Q̄) = Π̄n, Ĝ(Q) = Gn, and Ĝ(Q̄) = Ḡn, such that as n→∞,

Πn → Π(−∞) = −σ2

r2
ϕ

1− θ
(S + θ) and Π̄n → Π(∞) = −σ2

r2
ϕ

1− θ
(S − θ) ,
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and

Gn → G (−∞) =
1

2

ϕ2σ2

r

(
1

1− θ
(S + θ)

)2

and Ḡn → G (∞) =
1

2

ϕ2σ2

r

(
1

1− θ
(S − θ)

)2

.

On any interval In, Proposition (7) implies that there exists a solution (Πn (Q) , Gn (Q)). We

will use the Arzela-Ascoli theorem to construct a solution on R as a limit of (Πn (Q) , Gn (Q)).

To this end, we use Hartman (2002), Corollary 5.1, p. 431, which we reproduce below.

Corollary 3. [Hartman (2002), Cor. 5.1] Suppose that a (vector-valued) function X (Q) is

twice continuously differentiable on the interval [Q, Q̄] with [Q, Q̃] ⊂ [Q, Q̄] for some Q̃ and

∥X∥ ≤ R and ∥X ′′∥ ≤ K1 +K2 ∥X ′∥2 (40)

for some denote strictly positive constants R, K1, and K2. Then, there exists a constant M

such that ∥X ′∥ ≤ M for all Q ∈ p = [Q, Q̄]. The constant M depends only on R, K1, K2,

and Q̃.

From our construction of F̂ in Equation (38), it follows that the conditions in Equation

(40) hold on any finite interval [Q, Q̄]. Fix the interval [Q
1
, Q̄1]. Propositions 5 and 6 imply

that any solution (Πn (Q) , Gn (Q)) satisfies Πn (Q) , Gn (Q) ∈ [A,B] for Q ∈ [Q
1
, Q̄1], and

Corollary 3 implies that |Π′
n (Q)| , |G′

n (Q)| ≤ M for Q ∈ [Q
1
, Q̄1]. Notably, M depends

on [Q
1
, Q̄1] but not on n. Then, given Πn (Q) , Gn (Q) ,Π′

n (Q), and G′
n (Q) are bounded

on [Q
1
, Q̄1], Equation (38) implies that Π′′

n (Q) and G′′
n (Q) are bounded on [Q

1
, Q̄1] as well.

Since the bounds do not depend on n, the sequence of functions (Πn (Q) , Gn (Q)) is bounded

(uniformly in n) and equicontinuous. Hence, the Arzela-Ascoli theorem implies that there is

a subsequence which converges uniformly to a continuously differentiable function
(
Π̃1, G̃1

)
on [Q

1
, Q̄1]. Since the second derivatives are also bounded on [Q

1
, Q̄1], uniformly in n,

(Π′
n (Q) , G′

n (Q)) are also equicontinuous, so that
(
Π̃, G̃

)
is twice continuously differentiable

wlog and satisfies Equation (38).

Now, pick [Q
2
, Q̄2]. Repeating the argument above, the original subsequence has another

subsequence that converges uniformly to a limit
(
Π̃2, G̃2

)
on [Q

2
, Q̄2], and the limit function

satisfies Equation (38) on [Q
2
, Q̄2]. Proceeding iteratively, we can cover the entire real line

R, which concludes our proof.

A.2 Proof of Proposition 3

We break the argument down into multiple steps.
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1. Inferring Π(Qt) and αΠ′ (Qt) from dividends and prices. Traders observe the dividend

process Dt, and, therefore, the path of the Brownian Motion Bt, since Dt = µt+ σBt.

Since traders also observe the price path, they infer the price markup Π (Qt) (see

Equation (4)). From observing the price path, traders also infer the price volatility

σP (Qt),
31 which implies that they infer αΠ′ (Qt).

2. Inferring Q-learner demand NQ (Qt), Qt/β, and the ratio α/β from asset demands.

Since asset supply S is fixed and traders know their own demand NR
t , they know

NQ (Qt) at each time t, i.e. they know the path of the Q-learner’s demand up to any

time t. Equation (10) implies that this is equivalent to knowing Qt/β for all t. From

knowing the path of NQ (Qt), they similarly infer the volatility of NQ (Qt), which is

given by
α

2β

(
1 +NQ (Qt)

) (
1−NQ (Qt)

)
σP (Qt) .

Since both NQ (Qt) and σP (Qt) are known, traders infer the ratio α/β.

3. Inferring αG′ (Qt) and α2Π′′ (Qt) from realized returns. Knowing both σP (Qt) and

the path of Bt, traders can infer αG′ (Qt) from observing the path of realized returns

Rt. Since traders know the price volatility, they can also infer excess volatility. Excess

volatility itself is follows a diffusion process, which is given by

dσP (Qt) =

(
2ασΠ′′(Qt)

r(1−2αΠ′(Qt))
2µQ (Q) + 1

2

2ασ
(
4αΠ′′(Qt)2+Π

′′′
(Qt)(1−2αΠ′(Qt))

)
r(1−2αΠ′(Qt))

3 σ2
Q (Qt)

)
dt

+ 2ασΠ′′(Qt)

r(1−2αΠ′(Qt))
2σQ (Qt) dBt.

From this process, traders can infer the “volatility of excess volatility,”

ασ′
∆P (Qt)σP (Qt) =

σ

r

4α2Π′′ (Qt)

(1− 2αΠ′ (Qt))
2σP (Qt) .

Hence, traders can infer α2Π′′ (Qt).

4. Inferring αQt from the first-order constraint. Traders know their own demand NR
t and

understand that it must satisfy the first-order constraint (19), which implies that they

know
µP (Qt)− µ

r
− rΠ(Qt)− αG′ (Qt)σ

2
P (Qt)

ϕrσ2
P (Qt)

.

Using Equation (15), and their knowledge of αΠ′ (Qt), α
2Π′′ (Qt), and αG′ (Qt), traders

31Intuitively, observing path of Pt is equivalent to observing the path of P 2
t , and Ito’s Lemma implies that

dP 2
t − 2PtdPt = σ2

P (Qt) dt, so traders can infer σP (Qt).
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can then back out the value of αQt.

5. Inferring (α, β,Q0). We have now established that traders know α/β and the paths of

Qt/β and αQt. Hence, they can infer α, β, and Qt for all t. Thus, the hyperparameters

(α, β,Q0) are common knowledge without loss of generality.

A.3 Proof of Proposition 4

Given the price conjecture in Equation (43), the Q-value and risk premium evolve according

to Equations (13) and (12). The HJB equation of trader type i is given by

δV i = max
Ci,Ni

−1

ϕ
e−ϕCi + V i

W (rW − C +Ni (µP (Q)− rP (D,Q) +D))

+
1

2
V i
WW (NiσP (Q) + Yi)

2

+V i
QµQ (Q) + VQQ

1

2
σ2
Q (Q)

+V i
WQ (NiσP (Q) + Yi)σQ (Q) .

Using the conjecture V i (W,Q) = − 1
ϕr

exp
(
−ϕrW −Gi (Q)− δ−r

r

)
, the FOC for Ni is given

by

Ni (Q) =
1

ϕrσ2
P (Q)

(µP (Q)− rP (D,Q) +D)− 2α

ϕr
G′

i (Q)− Yi

σP (Q)
.

Plugging the FOC for Ni and the FOC for C into the HJB equation, using Y 2
i = Y 2, and

simplifying yields

rGi (Q) =
1

2
(ϕr)2N2

i (Q)σ2
P (Q)− 1

2
(ϕrY )2

+G′
i (Q)µQ (Q) +

(
G′′

i (Q)−G′
i (Q)2

) 1
2
α2σ2

P (Q)

−G′
i (Q)ϕrσQ (Q)Yi.

The market clearing condition is given by

mN1 (Q) + (1−m)N2 (Q) =
1

1− θ

(
S − θNQ (Q)

)
.
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Plugging in the optimal demands and rearranging then yields Equation (26). We can rewrite

that equation as

µP (Q)− rP (D,Q) +D = Π′ (Q)µQ (Q) +
1

2
Π′′ (Q)σ2

Q (Q)− rΠ(Q)

=
ϕrσ2

P (Q)

1− θ

(
S − θNQ (Q)

)
+ Ḡ′ (Q)σP (Q)σQ (Q) + ϕrȲ σP (Q)

and then substitute into Ni (Q), which yields Equation (27). Plugging that equation into

Equation (42) then yields Equation (25).

Inspecting Equations (25) and (26), the only difference to Equations (21) and (22) are

the terms G′
i (Q)ϕrσQ (Q)Yi− 1

2
(ϕrY )2 and Ḡ′ (Q)σP (Q)σQ (Q)+ϕrȲ σP (Q), respectively.

The existence proof of Proposition 2 then carries through with only minor modifications. In

particular, fixing two functions (G1 (Q) , G2 (Q)) with uniformly bounded derivatives implies

that Ḡ′ (Q) is uniformly bounded, so that we can apply Proposition 5 to Equation (26)

replacing G′ (Q) with Ḡ′ (Q). The argument in Lemma 1 applies with minor modifications,

which establishes that σP (Q) ≥ σ > 0 for all Q and that σP (Q) is uniformly bounded. Then,

we can apply the argument in Proposition 6 separately to the functions G1 (Q) and G2 (Q).

Thus, Propositions 5 and 6 imply that we can a priori assume bounded and continuous

solutions to the ODEs (25) and (26). This is the main part of the existence argument in

Proposition 7. The remainder of the proof of Proposition 7 holds for an arbitrary dimensional

ODE system, and thus continues to go apply.

B Convergence of discrete time Q-learner demand

In single-agent environments, the Q-learning algorithm is guaranteed to converge to the true

Q-matrix Q (s, a) under mild conditions, which among others guarantee that each action

is sampled infinitely many times in each state over an infinite horizon. However, in more

general settings, such convergence is not guaranteed.

In this Appendix, we show that the Q-learner demand from the discrete time specification

converges to the continuous time specification that we assume in Section (3.1). In what

follows, we conjecture that the equilibrium price can be expressed as

Pt =
1

r

(
Dt +

µ

r

)
+Π(Qt) , (43)

where Π (Q) is a twice continuously differentiable function. Then, the Q-learner’s realized
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return is given by

Rt+1 = Pt+1 − Pt +Dt − rPt =
σ

r
εt+1 +Π(Qt+1)− (1 + r)Π (Qt)

and the evolution of the Q-value is given by

Qt+1 −Qt = 2α

(
σ

r
εt+1 +Π(Qt+1)− (1 + r)Π (Qt)−

1

2
Qt

)
.

Note that the evolution of Q-values exhibits a dynamic feedback effect. Specifically, next

period’s Q-value Qt+1 is determined by future price markup Π (Qt+1), as the price markup

affects the realized return. However, the future markup is determined by the future Q-value

Qt+1,and so on. As a result, the continuous-time limit is well defined only if Π′ (Q) < 1
2α

for

all Q. To see why heuristically, take a small change in Qt, which implies that

Qt+1 − 2αΠ(Qt+1)− (Qt − 2αΠ(Qt))

Qt+1 −Qt

≈ 1− 2αΠ′ (Qt) ,

and so we can express Equation (44) as

Qt+1 −Qt ≈
2α

1− 2αΠ′ (Qt)

(
σ

r
εt+1 − rΠ(Qt)−

1

2
Qt

)
.

This implies that as Π′ (Qt) → 1
2α
, the RHS explodes because the noise in the dividend

process is amplified infinitely.

As such, in the following result, we impose Π′ (Q) < 1
2α

as a condition. However, we

verify this condition holds in equilibrium in Proposition 2.

Proposition 8. Suppose that Π(Q) is twice continuously differentiable and that supQ∈R Π
′ (Q) <

1
2α
. Then, as h→ 0, the approximation

Q∗
h (t) =

√
h

(
Q⌊t/h⌋ +

(
t− h

⌊
t

h

⌋)(
Q⌊t/h⌋+1 −Q⌊t/h⌋

))
(45)

converges in distribution to the unique weak solution of the stochastic differential equation

(SDE)

Qt = Q0 +

∫ t

0

µQ (Qs) ds+

∫ t

0

σQ (Qs) dBs,

where

µQ (Qt) =
2α

1− 2αΠ′ (Qt)

(
1

2
σQ (Qt)

2Π′′ (Qt)− rΠ(Qt)−
1

2
Qt

)
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and

σQ (Qt) =
σ

r

2α

1− 2αΠ′ (Qt)
.

Similarly, the approximation of the price Pt converges to Equation (12).

Corollary 4. Under Conjecture (43), as h→ 0 the approximation

P ∗
h (t) =

√
h

(
P⌊t/h⌋ +

(
t− h

⌊
t

h

⌋)(
P⌊t/h⌋+1 − P⌊t/h⌋

))
converges in distribution to the unique weak solution of the SDE

Pt =
µ

r2
+

∫ t

0

µP (Qs) ds+

∫ t

0

σP (Qs) dB (s)

where

µP (Qt) =
µ

r
+Π′ (Qt)µQ (Qt) +

1

2
Π′′ (Qt)σ

2
Q (Qt)

and

σP (Qt) =
σ

r

1

1− 2αΠ′ (Qt)
.

In particular, for all t ≥ 0,

Pt =
µ

r2
+

1

r
Dt +Π(Qt) .

Proof. This follows from applying Ito’s Lemma to Conjecture (43).

B.1 Proof of Proposition 8

Rewrite Equation (44) as

Qt+1 − 2αΠ(Qt+1) = Qt − 2αΠ(Qt) +
ασ

r
εt+1 + µ (Qt) ,

where µ (Q) = −αQ− 2αrΠ(Q). Define

Q̃t = H (Qt) = Qt − αΠ(Qt) .

Given the assumption supQ∈R Π
′ (Q) < 1/(2α) , H (Q) is invertible. Then, we can write

Q̃t+1 = Q̃t +
2ασ

r
εt+1 + µ̃

(
Q̃t

)
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where µ̃
(
Q̃t

)
= µ

(
H−1

(
Q̃t

))
. Define a grid with step size h between any points t and t′.

Indexing points on the grid with k, define the approximation

Q̃k+1,h = Q̃k,h + hµ̃
(
Q̃k,h

)
+
√
h
2ασ

r
εk+1,h,

where εk,h ∼ N (0, 1) for all k and h. Finally, define the linear interpolation as Q̃∗
h (t), where

Q̃∗
h (t) =

√
h

(
Q̃⌊t/h⌋,h +

(
t− h

⌊
t

h

⌋)(
Q̃⌊t/h⌋+1,h − Q̃⌊t/h⌋,h

))
.

The function Q̃∗
h (t) defines a Markov process which is deterministic at all points t ∈

(kh, (k + 1)h) and for which the transition probabilities times t ∈ {kh}i∈N are defined by

Pr
(
Q̃∗

h ((k + 1)h) ∈ Γ|Q̃∗
h (kh) = x

)
= Πh (x,Γ)

for any Γ ∈ B (R). Since εk,h is normally distributed, Q̃∗
h (t) admits a transition density,

which is given by

Πh (x, y) =
1√
2πhσ̃

exp

(
−1

2

(y − x− hµ̃ (x))2

hσ̃2

)
,

where we wrote σ̃ = 2ασ/r to save notation.

Let C∞
0 (R) denote the space of infinitely continuously differentiable functions f : R→ R

with compact support. For any f ∈ C∞
0 (R),define

Ahf =
1

h

∫
(f (y)− f (x))Πh (x, y) dy.

Lemma 2. For any f ∈ C∞
0 (R)

Ahf → Lf

uniformly on compact subsets of R as h→ 0, where

Lf (x) = µ̃ (x) f ′ (x) +
1

2
σ̃f ′′ (x) .

Proof. Since R is locally compact, to establish uniform convergence on compact subsets, it

is sufficient to establish locally uniform convergence, i.e. for all x ∈ R, there exists an ε > 0

such that

lim
h→0

sup
x′∈B(x,ε)

|Ahf (x′)− Lf (x′)| = 0
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for any f ∈ C∞
0 (R), where B (x, ε) is the ε-ball around x.

Since we assumed that Π (.) is continuously differentiable, µ̃ (.) is locally Lipschitz con-

tinuous, i.e. there exists a K > 0 such that |µ̃ (x′)− µ̃ (x)| ≤ K |x′ − x| for all x′ ∈ B (x, ε),

and in particular, |µ̃ (x′)− µ̃ (x)| ≤ Kε.

Since f is infinitely differentiable, Taylor’s theorem implies that

f (y) =
∞∑
l=0

1

l!
f (l) (x) (y − x)l .

Thus,

Ahf =
1

h

(
f ′ (x)Eh [y − x] +

1

2
f ′′ (x)Eh

[
(y − x)2

]
+

∞∑
l=3

1

l!
f (l) (x)Eh

[
(y − x)l

])

where Eh [.] is the expectations operator under Πh. We have Eh [y − x] = hµ̃ (x) for all x,

which in particular implies that

lim
h→0

sup
x′∈B(x,ε)

∣∣∣∣1hEh [y − x′]− µ̃ (x′)

∣∣∣∣ = 0.

Similarly,

Eh

[
(y − x)2

]
= Eh

[
(y − x− hµ̃ (x) + hµ̃ (x))2

]
= Eh

[
(y − x− hµ̃ (x))2

]
+ 2Eh [(y − x− hµ̃ (x))]hµ̃ (x)

+h2µ̃ (x)2

and

lim
h→0

sup
x′∈B(x,ε)

∣∣∣∣1hEh [y − x′]
2 − σ̃

∣∣∣∣ = lim
h→0

sup
x′∈B(x,ε)

∣∣h2µ̃2 (x′)
∣∣

≤ lim
h→0

h2K2ε2

= 0.

Proceeding similarly for the higher order terms, we have

Eh

[
(y − x)3

]
= Eh

[
(y − x− hµ̃ (x) + hµ̃ (x))3

]
= Eh

[
(y − x− hµ̃ (x))3

]
+ 3h2µ̃ (x) σ̃2

= +3h2µ̃ (x)2Eh [(y − x− hµ̃ (x))] + h3µ̃ (x)3 .
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Stein’s Lemma32 implies that

Eh

[
(y − x− hµ̃ (x))3

]
= 2hσ̃2Eh [y − x− hµ̃ (x)] = 0

and thus

Eh

[
(y − x)3

]
= 3h2µ̃ (x) σ̃2 + h3µ̃ (x)3

which implies that

lim
h→0

sup
x′∈B(x,ε)

∣∣∣∣1hEh

[
(y − x)3

]∣∣∣∣ ≤ lim
h→0

3h2σ̃2Kε+ h3K3ε3

= 0

as h→ 0. Similarly,

Eh

[
(y − x)4

]
= Eh

[
(y − x− hµ̃ (x) + hµ̃ (x))4

]
= Eh

[
(y − x− hµ̃ (x))4

]
+ 4hµ̃ (x)Eh

[
(y − x− hµ̃ (x))3

]
+6h4µ̃ (x)2 σ̃2 + 4h3µ̃ (x)3Eh [(y − x− hµ̃ (x))]

+h4µ̃ (x)4 .

Using Stein’s Lemma again implies that

Eh

[
(y − x− hµ̃ (x))4

]
= 3hσ̃2Eh

[
(y − x− hµ̃ (x))2

]
= 3h2σ̃4,

so that

lim
h→0

sup
x′∈B(x,ε)

∣∣∣∣1hEh

[
(y − x)4

]∣∣∣∣ ≤ lim
h→0

3h2σ̃4 + 6h4K2ε2σ̃2 + h4K4ε4

= 0.

Proceeding inductively, it follows that

lim
h→0

sup
x′∈B(x,ε)

1

h

∞∑
l=3

1

l!
f (l) (x)Eh

[
(y − x)l

]
= 0

32For any differentiable function g (X) and X ∼ N
(
µ, σ2

)
, E [g (X) (X − µ)] = σ2E [g′ (X)].
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as h→ 0 and therefore

Ahf (x)→ f ′ (x) µ̃ (x) +
1

2
f ′′ (x) σ̃2 = Lf

uniformly on compact subsets.

We now apply Stroock and Varadhan (1997), Th. 11.2.3. Define with Ph the probability

measure induced by Q̃∗
h (t) on C ([0,∞),R), the space of continuous trajectories from [0,∞)

into R. Similarly, define with P the probability measure on C ([0,∞),R) which solves the

martingale problem for L.33 The theorem states that if the martingale problem for L has

a unique solution, and for all f ∈ C∞
0 (R), Ahf → Lf uniformly on compact subsets of R,

then Ph → P uniformly on compact subsets of R.
The previous lemma establishes the necessary convergence. It only remains to show that

the martingale problem for L has a unique solution. Kurtz (2010), Th. 1, states that the

martingale problem for L has a unique solution if and only if the SDE associated with L has

a unique weak solution. The SDE

Q̃t =

∫ t

0

µ̃
(
Q̃s

)
ds+ σ̃Bt (46)

has a constant and positive volatility σ̃, and µ̃ (·) is continuous and therefore bounded on

compact subsets of R. Yong and Zhou (1999), Th. 6.1.2 then establishes that Equation (46)

has a unique weak solution. Hence, Stroock and Varadhan (1997), Th. 11.2.3 implies that

Ph → P , or equivalently

Q̃∗
h (t)→d Q̃t

on compact subsets of R.
It remains to transform Q̃t back to Qt. By the continuous mapping theorem, Q∗

h (t), the

linear interpolation of Qt in Equation (45), converges in distribution to

Qt = H−1
(
Q̃t

)
.

Since Q̃t is a diffusion process, we can use Ito’s Lemma and the implicit function rule to

33See Stroock and Varadhan (1997), p. 138 for a definition of martingale problems.
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obtain

dQt =

(
H−1′

(
Q̃t

)
µ̃
(
Q̃t

)
+H−1′′

(
Q̃t

) 1

2

(
2ασ

r

)2
)
dt+H−1′

(
Q̃t

)
2α

σ

r
dBt

=
2α

1− 2αΠ′ (Qt)

(
−rΠ(Qt)−

1

2
Qt +

Π′′ (Qt)

(1− 2αΠ′ (Qt))
2

1
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(
2ασ
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)2
)
dt

+
1

1− 2αΠ′ (Qt)

2ασ

r
dBt

= µQ (Qt) dt+ σQ (Qt) dBt.

Given our assumption supQ∈R Π
′ (Q) < 1/(2α), it holds that σQ (Q) ≥ σQ > 0 for all Q ∈ R

and |µQ (Q)| < ∞ for all Q ∈ R, i.e. the SDE for Qt is uniformly elliptic and has locally

bounded drift. It is hence well-posed.

C Supplementary Figures and Analysis

C.1 Replacing the Q-learner with a risk-neutral trader

We now consider a benchmark in which the Q-learner is replaced with a risk-neutral trader

who chooses trades optimally and is a price taker.34 All other assumptions in the model are

unchanged, and, in particular, the risk-neutral trader is subject to choosing NN
t ∈ [−1, 1].

This model variant features multiple equilibria and is prone to sunspots. For example,

depending on S and θ, there may be an equilibrium where the risk-neutral trader always

buys a share, but also another equilibrium where the risk-neutral trader sells a share.

Ignoring sunspots, however, any equilibrium is simple and resembles the equilibrium in

Proposition 1. It features a constant risk premium Π, so that

P (Dt) =
1

r
Dt +

µ

r2
+Π.

Either Dt+µ/r−rPt > 0 and the risk-neutral trader buys one unit, i.e. NN
t = 1, Dt+µ/r−

rPt < 0, and the risk-neutral trader sells one unit, i.e. NN
t = −1, or Dt +µ/r− rPt = 0 and

the risk-neutral trader is indifferent.

Proposition 9. If S < θ, there exists an REE in which Π < 0 and NN
t = 1 for all t. If

S > −θ, there exists an REE in which Π > 0 and NN
t = −1 for all t. If S ∈ [−θ, θ], there

exists an REE in which Π = 0 for all t.

34Equivalently, there exists a continuum of rational traders of mass θ.
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Proof. Conjecture that Π < 0. Then, NN
t = 1 and the market clearing condition becomes

(1− θ)NR
t + θ = S. Together with the FOC of the traders with CARA utility, this implies

that

Π =
ϕσ2

P0

1− θ
(S − θ) .

Thus, Π < 0 whenever S < θ, otherwise, this cannot be an equilibrium. Next, conjecture

that Π > 0. Then, NN
t = −1 and the market clearing condition is (1− θ)NR

t −θ = S, which

implies that

Π =
ϕσ2

P0

1− θ
(S + θ) .

Thus, Π > 0 whenever S > −θ. Finally, conjecture that Π = 0. Then, it must be the case

that

Π =
ϕσ2

P0

1− θ

(
S − θNN

)
so that NN = S/θ.

In particular for |S| > θ, there exists a unique REE in which the risk premium is constant,

in line with Proposition 1. For |S| < θ, there may be sunspots. With a Q-learner, any

variation in risk premia is driven by changes in the Q-value, whereas here, any potential

change in the risk premium is due to sunspots. Thus, the two models generate price changes

for fundamentally different reasons.

C.2 Endowment risk: Expected value for rational investors
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Figure 10: Expected Value for rational investors

The figure plots the expected utility for L and S investors, VL (dashed) and VS (dotted),
and the average gain V = mVS + (1−m)VL (solid), versus various model parameters.
Unless specified, parameters are set to: ϕ = 10, σ = 0.075, r = 0.05, β = 1, µ = 0.05,
θ = 0.30, α = 0.10, S = 0, m = 0.75 and Y = 2.
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