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ABSTRACT

We model the “feedback effect” of a firm’s stock price on investment in projects

exposed to a systematic risk factor, like climate risk. The stock price reflects

information about both the project’s cash flows and its discount rate. A cash-

flow maximizing manager treats discount rate fluctuations as “noise,” but a price

maximizing manager interprets such variation as information about the project’s

NPV. This difference qualitatively changes how investment behavior depends on

the project’s risk exposure. Moreover, traditional objectives (e.g., cash-flow or price

maximization) need not maximize welfare because they do not correctly account

for hedging and risk-sharing benefits of investment.
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Since Hayek (1945), it has been recognized that prices aggregate information that is dis-

persed across the economy and convey it to real decision makers. The “feedback effects”

literature studies this mechanism in the context of corporate investment, emphasizing

how asset prices reflect information about future investment opportunities, and how this

information affects the production and investment decisions of firms (see Bond, Edmans,

and Goldstein (2012) and Goldstein (2023) for insightful surveys). The existing analysis

focuses on the extent to which prices reflect information about future cash flows, and

interprets non-cash-flow variation in prices as “noise” that needs to be filtered out by

decision makers.

Yet, a fundamental tenet of capital budgeting is that firms’ optimal investment deci-

sions should depend not only on projects’ expected cash flows, but also on their discount

rates. Moreover, a project’s discount rate is driven by its loadings on systematic sources of

risk, and investors’ aggregate preferences over, and exposures to, these risks. While these

preferences and exposures are privately known by investors, and so cannot be directly

observed by managers, they impact investors’ demands and equilibrium asset prices. This

suggests that managers must rely primarily on prices to learn about discount rates when

making investment decisions.

To study feedback effects when managers learn about discount rates from prices, we

develop a model in which a firm’s stock price conveys information about future cash

flows and about investors’ risk exposures. When the manager chooses investment to

maximize expected cash flows, she interprets non-cash-flow variation in prices as noise.

In contrast, when the manager chooses investment to maximize the future share price,

non-cash-flow variation in prices conveys useful information about the project’s discount

rate.1 Consequently, she no longer explicitly seeks to filter out such information and

instead incorporates the information in prices on both cash flows and discount rates when

making her investment decisions.

This difference has important implications for how investment in a project depends

1As we discuss below, the project’s risk exposure is known to the manager and to investors, but the

stock price conveys information about the associated factor risk premium to the manager.
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on its risk exposure. For a cash-flow maximizing manager, an increase in a project’s risk

exposure makes the stock price a noisier signal. This makes the manager’s investment

decision less sensitive to the information in the price. In contrast, for a price maximizing

manager, an increase in the project’s risk exposure makes the price a more informative

signal about the project’s discount rate, and so has an opposite effect on the investment

decision.

Finally, we show that traditional managerial objectives, like cash-flow or price max-

imization, do not generally lead to investment decisions that maximize investor wel-

fare. For instance, since the cash-flow maximization objective ignores the impact of the

project’s systematic risk exposure on welfare, it leads to under-investment in projects

that reduce investors’ aggregate exposure to, or “hedge,” the systematic risk factor.2

Similarly, price maximization leads to inefficient investment decisions because, while the

share price does reflect information about risk exposures through the discount rate, (i)

the risk premium in price reflects the disutility that the risk of a marginal share of the

stock imposes on an investor, while welfare depends on the disutility from bearing the

risk of their entire share holdings, and (ii) the price does not reflect that investing in a

risk-exposed project makes the stock a better instrument for risk-sharing across investors

and, thus, increases welfare.

Model and Intuition. Our analysis applies quite broadly to investment in risky

projects when market feedback plays an important role. However, a particularly salient

application is to climate-sensitive investment, and so we use it to describe our model’s

economic forces and predictions. A firm’s manager decides whether to invest in a project

that is exposed to a systematic, climate-risk factor. The firm’s stock is traded by risk-

averse investors who are informed about the project’s expected cash flows and have

heterogeneous exposures to climate risk. The price aggregates not only investors’ infor-

2In what follows, our terminology explicitly distinguishes between hedging and risk-sharing. The

former refers to investors’ desire to buy more (less) of assets that pay out more (less) during adverse

systematic factor outcomes. The latter refers to investors’ ability to share and reallocate differential

exposures to systematic risk by trading a risk-exposed security.
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mation about cash flows, but also their dispersed exposures towards the project’s climate

risk exposure, or “greenness.” A “green” (“brown”) project is defined as one that pays

higher (lower) cash flows when climate outcomes are worse, while a “neutral” project’s

cash flows are uncorrelated with climate outcomes. As such, green projects are negatively

exposed to the climate risk factor, while brown projects are positively exposed.3

For example, consider a consumer electronics firm deciding whether to invest in electric

vehicle (EV) technology, such as batteries or semiconductors. Such a green investment

is negatively exposed to climate risk: for instance, shifts in regulatory policy in response

to climate change may lead to more favorable treatment of electric vehicles relative to

traditional vehicles.4 Thus, the firm’s price and the information it provides to the manager

depend, in part, on the fact that such investments are likely to perform better when

aggregate climate outcomes are worse.5

We compare two objectives for the manager. First, in line with the existing feedback

literature, we consider the case in which the manager chooses investment to maximize

3Our definitions of “green” versus “brown” projects are consistent with the labels in the empirical

literature (e.g., Engle et al. (2020), Bolton and Kacperczyk (2021)), as we discuss in Section II.A.

4Panasonic, historically associated with consumer electronics, is now also a leading manufacturer of

rechargeable batteries for electric vehicle companies (e.g., Tesla supplier Panasonic plans additional $4

bln U.S. EV battery plant, Reuters, Aug 26, 2022). Such investments are likely to benefit from regulatory

changes that provide tax subsidies to encourage the purchase of electric vehicles, which is an example of

climate transition risk. Giglio, Kelly, and Stroebel (2021) distinguish two types of climate risk: transition

risk (i.e., “risks to cash flows arising from a possible transition to a low- carbon economy”) versus physical

risks (i.e., “direct impairment of productive assets resulting from climate change”).

5More generally, consistent with our model’s key assumptions, there is substantial evidence that

investors have time-varying exposures to climate risk that affect their demands for green and brown

stocks and alter these stocks’ discount rates (e.g., Choi, Gao, and Jiang (2020), Bolton and Kacperczyk

(2023), Pástor, Stambaugh, and Taylor (2022)). Moreover, consistent with managers responding to the

information that prices contain about cash flows and discount rates, empirical evidence shows that firms’

investment in climate-exposed projects often responds to changes in their stock prices, even when driven

by shocks to investor demand for green exposure rather than cash flow news (e.g., Li et al. (2020), Bai

et al. (2021), Briere and Ramelli (2021)).
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expected cash flows.6 In this case, we show that a higher (absolute) exposure to climate

risk shocks makes the price a noisier signal about cash flows, which, in turn, makes

the manager’s investment decision less sensitive to the price. As a result, for ex-ante

unattractive projects (i.e., projects with negative ex-ante, net expected cash flows), the

manager is less likely to invest in green (or brown) projects than in climate-neutral ones.

Second, we consider the case where the manager’s objective is to maximize the firm’s

expected stock price. In this case, she only invests when the stock price is sufficiently

high, because this implies that the project’s net present value (NPV), conditional on the

price information, is positive. In effect, when conditioning on the price, she learns about

both investors’ cash flow information and their aggregate risk exposure, which drives

the project’s discount rate. In fact, we show that price aggregates these two types of

information in an efficient manner from the manager’s perspective, in that she makes the

same investment decision that she would if she observed them separately.7

Once again, when the project has a greater absolute exposure to climate risk, the firm’s

price is a noisier signal of cash flows. Yet, in stark contrast to cash-flow maximization,

this causes her investment decision to become more sensitive to the price. This is because

the NPV of projects with larger absolute climate exposures are driven to a greater extent

by investors’ aggregate demand for climate hedges. Hence, prices of more highly climate-

exposed projects convey more information to the manager about the discount rate. For

an ex-ante unattractive project, this increased sensitivity to discount rate information

increases the likelihood that the project will have a positive conditional NPV, and so

increases the likelihood of investment.

An increase in the project’s climate exposure also affects its expected NPV: greener

projects provide a hedge against bad climate outcomes and so, all else equal, carry lower

6Such objectives are relevant in practice, since the majority of executive compensation plans include

bonuses based on earnings or other accounting measures (e.g., Guay, Kepler, and Tsui (2019)).

7This establishes an equivalence between our setting, where the manager infers their project’s dis-

count rate and cash-flow information from prices, and traditional production-based asset pricing models,

where the manager is assumed to exogenously know these two types of information (e.g., Cochrane

(1991)).
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discount rates. The overall effect of a project’s climate exposure on the likelihood of

investment trades off the impact of these channels. In fact, when the ex-ante uncertainty

over the aggregate demand for a climate hedge is sufficiently high, the effect of climate

exposure on the volatility of a project’s NPV dominates its effect on its expected NPV.

This implies, for example, that the manager may be more likely to invest in brown projects

that are ex-ante unattractive than in comparable neutral projects.

Welfare. Differences in managerial objectives also have important implications for

investor welfare. We first consider a benchmark in which all investors have identical

exposures to the climate risk factor. In this case, maximizing cash flows clearly does not

align with maximizing shareholder welfare, because it ignores the impact of investment

on investors’ aggregate climate exposure – for example, it leads to under-investment in

green projects. More surprisingly, we show that the price-maximizing investment rule

also does not align with the welfare-maximizing price-contingent investment rule as long

as the firm is not arbitrarily small (that is, as long as the investment decision has an

effect on aggregate exposures). Intuitively, this is because the price reflects the marginal

disutility from bearing the risk of the last outstanding share, but welfare depends on the

average disutility from bearing the risk of all outstanding shares. Because the marginal

disutility of the last share is higher than the average disutility of all shares, the price-

maximizing rule tends to under-invest. Finally, we show that for brown projects, price

and cash-flow incentives can be balanced through appropriate weighting to induce the

manager to maximize investor welfare, while for green projects, this may not be possible.

We then consider the general setting in which investors have heterogeneous exposures

to climate risk. This is a realistic feature: investors’ climate exposures differ with age,

geography, and adaptability (Giglio, Kelly, and Stroebel (2021)), and, as evidenced by the

swath of actively-traded climate-based ETFs, investors appear to use financial markets

as a means to hedge and share such risk exposures.8 For example, an investor who lives

8There is ample evidence that investors use financial assets to attempt to hedge and share climate

risks – for example, see Ilhan (2020), Krueger, Sautner, and Starks (2020), Ilhan et al. (2023), Giglio,

Kelly, and Stroebel (2021) and our discussion in Section II.A. Moreover, total assets under management

in sustainability-focused funds roughly doubled from Q4 2019 to Q3 2022, concurrent with over 200
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in coastal California is more exposed to climate risk due to rising sea levels, and so has a

different demand for green stocks, than an investor who lives in central Kansas.9 In such

settings, a firm’s investment in a climate-sensitive project has an additional impact on

welfare because it allows investors to use the firm’s stock to help share risk: all else equal,

both investors are better off when the Kansas investor sells some shares of a firm that

invests in green EV projects to the California investor. However, the welfare improvement

as a result of this “risk-sharing” channel is not captured by the stock price, which reflects

investors’ disutility of risk of a marginal share of the stock, and not the heterogeneity in

their exposures.

This implies that, even when the per-capita endowment of shares is negligible (so

that the investment decision does not affect aggregate risk), both price maximization

and cash-flow maximization lead to under-investment relative to welfare maximization.

Moreover, while feedback necessarily increases the firm’s expected cash flows or share price

(depending on the manager’s objective), we show that it can decrease investor welfare.10

Intuitively, without feedback, the manager would always invest in an ex-ante attractive

project, but with feedback, she would not invest in such a project if the equilibrium price

was sufficiently low. This lower investment increases welfare due to higher valuations, but

decreases welfare due to the risk-sharing channel. When investors’ exposures to climate

risk are sufficiently diverse or per-capita ownership of the firm is sufficiently small, the

latter effect dominates and welfare is higher without feedback than with. In such settings,

our analysis suggests that providing additional incentives for managers to invest in green

projects (e.g., by linking their compensation to climate scores) can increase investor

welfare, even though it may lead to lower valuations and lower future profitability.

sustainability fund launches per year (Morningstar (2022)).

9Consistent with this, Ilhan (2020) documents that households with differential exposures to sea level

rise have different participation in equity markets, and consequently, different portfolios.

10For simplicity, we assume investors do not have any access to other securities that let them share

climate risks. However, we expect similar results would arise if the market for trading climate risk shocks

is imperfect. As we discuss in Section II.A, this is consistent with the empirical evidence that suggests

investors have different exposures to climate risk and find this risk difficult to hedge.
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Overview. The rest of the paper is organized as follows. The next section discusses

related literature. Section II presents the model and discusses key assumptions. Section

III characterizes the equilibrium under cash-flow maximization and price maximization.

Section IV presents our results on investor welfare. Section V concludes. Proofs of our

results are in Appendix A, and additional analysis is presented in the Internet Appendix.

I. Related Literature

Our paper adds to the literature on feedback effects (see Bond, Edmans, and Gold-

stein (2012) and Goldstein (2023) for recent surveys and early work by Khanna, Slezak,

and Bradley (1994), Subrahmanyam and Titman (2001), and others). In contrast to our

setting, much of this literature focuses on economies in which (i) investors are either

risk-neutral or the stock price is set by a risk-neutral market maker, (ii) the noise in

prices arises due to noise traders with unmodeled utility functions, and (iii) the man-

ager’s investment choice maximizes the firm’s expected terminal cash flow. As a result,

such models are not well suited to study how discount rate variation affects investment

decisions or how feedback affects investor welfare.11 To our knowledge, our paper is the

first model of feedback effects in which managers learn not only about cash flows but

also about discount rates from prices, even though prior work has alluded to this channel

(Diamond (1967)).

Bond, Edmans, and Goldstein (2012) highlight the important distinction between

forecasting price efficiency (FPE), which measures how well prices predict future cash-

flows, and revelatory price efficiency (RPE), which reflects how useful prices are for real

investment decisions. While in many settings, more informative prices lead to better

investment decisions, a key takeaway of their analysis is that, in some cases, RPE may

be low even when FPE is high. Our analysis provides an instance where the opposite is

11See Diamond and Verrecchia (1981), Wang (1994), Schneider (2009), Ganguli and Yang (2009),

Manzano and Vives (2011), and Bond and Garcia (2022) for models in which noise is driven by hedging

needs as in our model. Existing feedback models with risk-neutral pricing include Dow, Goldstein, and

Guembel (2017), Davis and Gondhi (2019), and Goldstein, Schneemeier, and Yang (2020).
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true: with price maximization, we show that feedback raises investment efficiency and so

RPE is high even through FPE may be low since prices are noisy signals of cash-flows.

The most closely related papers in this literature are Dow and Rahi (2003), Hapnes

(2020), and Gervais and Strobl (2021). Dow and Rahi (2003) explore how increases in

informed trading affect investment efficiency and risk sharing in a setting where investors

are risk averse but prices are set by a risk-neutral market maker. They argue that in-

vestment efficiency always improves with more informed trading, but risk sharing may

either worsen due to the Hirshleifer (1971) effect, or improve when information decreases

uncertainty over the component of the asset’s payoffs that are unrelated to the component

that investors wish to hedge. Hapnes (2020) characterizes managerial investment behav-

ior and investor information acquisition in a Grossman and Stiglitz (1980)-type model

with feedback; however, the analysis does not study the effect of feedback on welfare.

Gervais and Strobl (2021) consider the impact of informed, active money management

on investment decisions in a setting with feedback. They study how the gross and net

performance of the actively managed fund compares with the market portfolio and study

how the presence of an informed money manager affects welfare.

We view our analysis as complementary. We focus on how investment in a project

affects the risk exposure of a firm’s cash flows, which in turn, affects how useful the

stock is for hedging. This highlights a novel channel through which feedback affects

welfare: intuitively, firms’ investment decisions endogenously affect the degree of market

completeness in the economy.12 Also, since investors are identically informed in our

analysis, the traditional Hirshleifer (1971) effect is turned off, which allows us to clearly

distinguish our novel channel from earlier work.13

12This also distinguishes our analysis from Maŕın and Rahi (1999), Maŕın and Rahi (2000), and

Eckwert and Zilcha (2003), who consider how exogenous differences in market completeness influence

investor welfare.

13While the Hirshleifer (1971) effect and our risk-sharing channel both affect the ability of investors to

share risk, the two mechanisms are distinct. The Hirshleifer (1971) effect refers to the phenomenon where

the introduction of public information destroys risk-sharing opportunities. In contrast, our risk-sharing

channel captures the fact that endogenous investment decisions can affect the effective completeness of

8



Our focus on welfare is also complementary to recent work by Bond and Garcia (2022),

who show that while indexing may reduce price efficiency, it improves retail investor wel-

fare due to improvements in risk sharing. Bond and Garcia (2022) also make substantial

progress on characterizing welfare in CARA-Normal settings, which we leverage in our

derivations. Tension between notions of firm profitability and welfare also appears in

Goldstein and Yang (2022), who show that improvements in price informativeness in-

crease producer profits due to better-informed real investment, but may harm welfare

by destroying risk-sharing opportunities, similar to the Hirshleifer (1971) effect. Similar

to our findings, other papers studying discrete investment choice also emphasize the im-

portance of the firm’s “default” investment decision in the absence of feedback.14 Our

analysis complements this earlier work by identifying a novel tension between managerial

investment choices and welfare that is driven by how investment affects the ability of

investors to use the stock to hedge risk.

Our paper is also related to the growing theoretical literature on ESG investing and

climate risk.15 Our work is most closely related to Pástor, Stambaugh, and Taylor (2021)

and Goldstein et al. (2021). Pástor, Stambaugh, and Taylor (2021) show that green assets

have lower costs of capital because investors enjoy holding them and they hedge climate

risk. Goldstein et al. (2021) consider a model where traditional and green investors are

informed about a firm’s financial and ESG output, and demonstrate that this can lead to

multiple equilibria. Our setting generates distinct predictions for green investment deci-

the market by directly changing the risk exposures of traded securities.

14For instance, Dow, Goldstein, and Guembel (2017) show that investors’ equilibrium information

acquisition hinges on whether the firm defaults to a risky or a riskless project. Davis and Gondhi

(2019) show that complementarity in learning depends on both the default investment decision and on

the correlation between the investment and assets in place. Goldstein, Schneemeier, and Yang (2020)

study information acquisition in a feedback model with multiple sources of uncertainty. They show that

investors seek to acquire the same information as management for positive NPV projects, but different

information for negative NPV projects.

15Additional studies include Heinkel, Kraus, and Zechner (2001), Friedman and Heinle (2016),

Chowdhry, Davies, and Waters (2019), Oehmke and Opp (2020), Pedersen, Fitzgibbons, and Pomorski

(2021), and Jagannathan, Kim, McDonald, and Xia (2023).
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sions and welfare by incorporating the feedback effect and considering green investment’s

impact on risk-sharing efficiency.

The production-based asset pricing literature beginning with Cochrane (1991) also

considers how variation in firms’ discount rates affects the relationship between invest-

ment, expected cash flows, and expected returns. This work assumes that a manager

knows not only her project’s risk factor loadings, but also the conditional risk-premia

associated with these factors. However, in practice, factor risk-premia depend on dis-

persed information (e.g., investors’ risk exposures and preferences), and so are difficult

for managers to observe directly. Instead, prices are a crucial source of information about

discount rates. Our analysis explores the implications of such managerial learning on

investment decisions and investor welfare.

II. Model

We consider a model of feedback effects where the investment is exposed to a system-

atic risk. We present the model in the context of climate risk as it is a significant and

direct application, but, as we discuss in the conclusion, our analysis has other applica-

tions.

Payoffs. There are four dates t ∈ {1, 2, 3, 4} and two securities. The risk-free

security is normalized to the numeraire. A share of the risky security is a claim to

terminal per-share cash flows V generated by the firm at date four, and trades on dates

one and three at prices P1 and P3, respectively.

Investors. There is a continuum of investors, indexed by i ∈ [0, 1], with CARA utility

over terminal wealth with risk aversion γ. Investor i has initial endowment of n shares

of the risky asset and zi = Z + ζi units of exposure to a non-tradeable source of income

that has payoff of −ηC , where Z ∼ N
(
µZ , τ

−1
Z

)
, ζi ∼ N

(
0, τ−1

ζ

)
and ηC ∼ N

(
0, τ−1

η

)
are independent of each other and all other random variables.16 Investor i chooses trades

16We let τ(·) denote the unconditional precision and σ2
(·) the unconditional variance of all random

variables.
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Xit, t ∈ {1, 3} to maximize her expected utility over terminal wealth, which is given by

Wi = (n+Xi1 +Xi3)V −Xi3P3 −Xi1P1 − ziηC . (1)

We interpret ηC as climate risk shocks, which reduce investor wealth and, consequently,

utility.17 Furthermore, Z captures investors’ aggregate exposure to climate risk shocks,

and µZ is the average exposure to climate risk. The natural restriction for this interpre-

tation is µZ > 0, which implies that shocks to the climate (i.e., positive innovations to

ηC) have, in expectation, a negative impact on the average investor. In our analysis, we

will focus on this restriction to clearly distinguish between projects that are positively

vs. negatively exposed to the climate.

We further require the parameter restriction 1 > γ2 1
τη

(
1
τZ

+ 1
τζ

)
in order to ensure

that the unconditional expected utility is finite. Intuitively, if this condition is vio-

lated, the climate payoffs ziηC are sufficiently uncertain ex-ante that the expected utility

diverges to −∞. This is a natural condition that arises when characterizing ex-ante ex-

pected utility in any CARA-Normal model in which traders have random endowments

and therefore the unconditional distribution of wealth involves a product of normally

distributed random variables.18 We summarize these restrictions in the following as-

sumption, which is maintained throughout our analysis.

ASSUMPTION 1: (i) The average exposure to climate risk µZ is positive, that is, µZ > 0.

(ii) Uncertainty about overall climate payoffs is sufficiently small that is, 1 >

γ2 1
τη

(
1
τZ

+ 1
τζ

)
.

The firm. The firm generates cash flows per share A ∼ N
(
µA, τ

−1
A

)
from assets in

place. In addition, the firm’s manager decides whether to invest in a new project. The

17While, for concreteness, we refer to ηC as a non-tradeable payoff, it is equivalent to interpret it as

a non-monetary climate shock to which investors are differentially exposed and that affects their utility

directly.

18See, for instance, Assumption 1.1 in Rahi (1996), Assumption 1 in Maŕın and Rahi (1999), eq. (1.2)

in Vayanos and Wang (2012), and eq. (8) in Bond and Garcia (2022), among others.
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investment decision is binary and denoted by k ∈ {0, 1}. The firm’s cash flow per share,

given an investment choice k, equals

V (k) = A+ k
(
θ + αηC +

√
1− α2ηI − c

)
, (2)

where θ ∼ N
(
µθ, τ

−1
θ

)
and ηC , ηI ∼ N

(
0, τ−1

η

)
are independent of each other and other

random variables, α ∈ [−1, 1], and c ≥ 0. The component θ reflects the learnable com-

ponent of cash flows for the investment opportunity, ηC reflects shocks to the “climate”

component of cash flows, and ηI reflects shocks to the “idiosyncratic” component of cash

flows. The cost of investment is c, which is assumed to be non-negative.

The parameter α captures the extent to which the project’s cash flows are correlated

with climate risk shocks. When α = 0, the new project’s cash flows are uncorrelated with

climate risk and so are not useful for hedging – we refer to such projects as “neutral”

projects. When α > 0, the project’s cash flows are higher when climate outcomes are

worse (ηC is higher), and so we refer to these projects as “green” projects. This increase

in cash flows may be due to higher demand for the product (e.g., electric vehicles) or

regulatory changes (e.g., higher taxes on greenhouse gas emissions) driven by adverse

changes in the climate. Analogously, when α < 0, the project’s cash flows are lower when

climate outcomes are worse, and so we refer to these projects as “brown” projects.19

Information and timing of events. Figure 1 summarizes the timing of events.

At date one, all investors observe θ perfectly. Let Fi1 = σ (θ, zi, P1) and Fi3 =

σ (θ, zi, P1, P3, k) denote investor i’s information set at the trading stages, with associ-

ated expectation, covariance, and variance operators, Eit [·], Cit [·] and Vit [·], respectively.

Then, investor i chooses trade Xi to maximize her expected utility:

Wi ≡ sup
x∈R

Ei1

[
−e−γWi

]
. (3)

19Note that since positive realizations of ηC shocks increase marginal utility, green projects are nega-

tively exposed to climate risk, while brown projects are positively exposed.
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t = 1

Investor observes θ, zi

and submits trade Xi1

Asset price is P1

t = 2

Manager chooses k(P1)

t = 3

Investor submits

trade Xi3

Asset price is P3

t = 4

The firm pays

V (k) per share

Figure 1. Timeline of events

The date one price is determined by the market clearing condition

∫
i

Xi1di = 0. (4)

At date two, the manager chooses investment k given her information. Importantly, the

manager does not observe θ directly, but can condition on the information in the stock

price P1. Hence, her information set is Fm = σ (P1). We consider two natural objectives

for the manager. A cash-flow maximizing manager chooses investment to maximize

her conditional expectation of the terminal cash-flow:

k(P1) = argmax
k

E[V |Fm], (5)

while a price-maximizing manager chooses investment to maximize her conditional

expectation of the date three price:

k(P1) = argmax
k

E[P3|Fm]. (6)

As we discuss below, these objectives lead to different investment rules and differ in their

effect on investor welfare.

The date three price is again determined by the market clearing condition (4), eval-

uated at the t = 3 trades Xi3 that maximize investor expected utilities at that date.

Note, however, that since the manager’s investment decision is perfectly anticipated by

investors at date one, and there are no additional shocks or information, we show that in

equilibrium the date three price is equal to the date one price. At date four, the firm’s

terminal cash flows per share V are realized and paid to the investors.
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Equilibrium. An equilibrium consists of trades {Xi1, Xi3}, prices {P1, P3}, and an

investment rule k(P1) such that (i) the trades Xit maximize investor i’s expected utility,

given her information Fit and the investment rule k (P1), (ii) the investment rule k(P1)

satisfies (5) or (6), and (iii) the equilibrium prices {P1, P3} are determined by market

clearing at dates one and three, respectively.

A. Discussion of Assumptions

The manager’s objective. We consider two possible objectives for the manager:

cash-flow maximization and price maximization. The former corresponds to the bench-

mark in the existing feedback effects literature and speaks to the incentives created by

compensation linked to earnings and other accounting-based performance metrics. Such

incentives are important in practice. As Guay, Kepler, and Tsui (2019) argue, the ma-

jority of CEO compensation plans include cash-based bonuses with such features.20

We contrast this objective with the case where the manager maximizes the expected

share price, which in our setting is equivalent to maximizing the project’s risk-adjusted

net present value (NPV). This benchmark is consistent with prior work that builds upon

the investment CAPM and q-theory of investment, which typically assumes that the firm

invests to maximize its market capitalization (e.g., Cochrane (1991), Liu, Whited, and

Zhang (2009)). This case speaks to the incentives created by equity compensation.

Considering the benchmarks separately allows us to provide a sharp comparison of the

impact of feedback on investment decisions under these different objectives. Moreover,

as we discuss further in Section IV, we show that neither objective alone necessarily

maximizes welfare, even though in some settings, a combination of the two can be used

to do so.

Two trading dates. The manager in our model both learns from the stock price

20Li and Wang (2016) and Bettis et al. (2018) provide evidence that the use of accounting performance

based compensation has increased in recent years. Also, see De Angelis and Grinstein (2015), Bennett

et al. (2017) and the survey by Edmans, Gabaix, and Jenter (2017) for evidence of the prevalence and

importance of such incentives more generally.
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and may seek to maximize the stock price. This requires a well-defined market price prior

to the investment decision, from which the manager can learn, and a well-defined market

price after the investment decision, over which we can specify the manager’s maximization

problem. However, our results are not an artifact of the two-date setting. As will be seen,

because the trading dates are otherwise identical, in equilibrium the price is identical at

both dates. In particular, one may be able to capture similar forces with a single trading

date if the manager could simultaneously commit to a real investment schedule k(P )

at the same time that investors trade. In this case, one would need to appropriately

generalize the noisy RE approach to formalize the notion of an investment schedule k(P )

that simultaneously maximizes P while also conditioning on P , and ensures that investors

correctly anticipate this when making their trading decisions.

Green and brown projects. There is some disagreement in the literature regarding

how different types of stocks’ returns correlate with climate outcomes (e.g., see Giglio,

Kelly, and Stroebel (2021)). In our model, we simply define green and brown projects as

those which perform better and worse when given adverse climate shocks, respectively.

As we shall see, green stocks carry a price premium, while brown stocks carry a discount,

as a result of their exposure to climate risk. Thus, given the evidence in Bolton and

Kacperczyk (2021) and Hsu, Li, and Tsou (2023), green (brown) firms can, for instance,

be thought of as those with low (high) emissions. For tractability, we abstract from

other sources of systematic risk and only focus on exposure to climate risk. However,

we expect our results will be qualitatively similar in a multi-factor model in which the

project’s discount rate depends on its exposure to the relevant risk factors.

Homogeneous investor information. Since our primary focus is on managerial

learning from prices, we shut down investor learning from prices by assuming that all

investors share a common signal about fundamentals. The assumption simplifies the

analysis and ensures that the financial market equilibrium does not exhibit multiplicity

of the type studied by Ganguli and Yang (2009). Moreover, this assumption ensures that

the traditional Hirshleifer (1971) effect does not arise in our setting, in contrast to results

from the existing literature (e.g., Maŕın and Rahi (2000), Dow and Rahi (2003)). Finally,
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we have confirmed that our main results are qualitatively similar when investors have

private signals and learn from the price.

Binary investment decision. The manager’s investment decision in our model

is binary and thus resembles exercising a real option. This discreteness implies that

the firm is only useful for hedging when the manager invests, which makes our results

stark. However, the economic forces underlying our results, including the nature of the

equilibrium and our welfare analysis, carry over to more general investment decisions

(subject to k ≥ 0). For example, under a continuous investment choice, as the firm

invests more, its cash flows are increasingly driven by the risk investors seek to hedge,

as opposed to the firm’s assets in place, which generates similar results to the ones we

study.21

Divestment decisions. Since the investment decision is binary, one can equivalently

apply our analysis to study divestment decisions. For instance, a firm with k = 1 and

α < 0 is a firm with an existing negative climate exposure (e.g., a traditional car man-

ufacturer). In this case, a decision of k = 0 corresponds to divesting brown technology,

or equivalently, investing in green technology that mitigates the firm’s existing exposure

(e.g., by transitioning to electric vehicle technology). However, the leading application

we have in mind is a neutral firm (i.e., a firm with status quo k = 0) deciding whether

to invest in a climate-exposed project.

Assets in place. The presence of assets in place is not qualitatively important for

our results, but aids tractability by ensuring the firm’s cash flows remain uncertain in

the absence of investment. However, the assumption that assets in place are uncorrelated

with climate risk is made for expositional clarity and can be relaxed.22

Aggregate demand for hedging. In our model, the average investor’s exposure

21An earlier version of the paper considered more general investment decisions and found that the

key economic forces that drive our results obtain in this more general setting.

22For instance, if A is positively correlated with ηC , one can decompose A as A = ληC + εA for λ > 0

and C (εA, ηC) = 0. In this case, the investment decision still changes the overall exposure of the firm to

climate risk (i.e., λ with no investment vs. λ+ α with investment), and the economic forces underlying

our analysis continue to operate.
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to climate shocks, and, consequently, their desire for hedging (as captured by Z) is

stochastic. This can be interpreted as any feature that causes investors’ concern for and

desire to hedge climate change to vary over time. For instance, one can capture news that

suggests climate change is accelerating as an increase in Z. It is further consistent with the

empirical evidence that aggregate demand for climate hedges varies across time and with

economic conditions. For instance, Bolton and Kacperczyk (2021) shows that the pricing

of carbon-transition risk varies across countries and has risen over time. Moreover, Choi,

Gao, and Jiang (2020) show that the price premium applied to green vs. brown stocks

varies with weather patterns, and Alekseev et al. (2021) shows that weather patterns

influence mutual-fund demand for climate-exposed stocks. As we discuss below, this

variation generates changes in the discount rate that the manager applies to the project

when making her investment decision.

Market incompleteness and hedging ability. Our model is one of incomplete

markets. The firm’s investment decision endogenously changes the completeness of the

market by allowing investors to trade the climate risk factor (we refer to this as the

“risk-sharing” channel; see Section IV). The starkness of this result is a consequence of

discrete investment choice, but the economic mechanism arises more generally. Under a

continuous investment choice, as the firm invests more, its cash flows are more sensitive

to the risk investors seek to hedge vs. the assets in place. All else equal, this makes it

less costly for investors to hedge their exposures using the stock, in the sense that they

are exposed to less extraneous risk.23

A potential concern is that this channel would disappear if markets were complete and

investors could trade ηC directly. In practice, markets appear to be far from complete:

investors have different exposures to climate risk due to differences in their demographic

characteristics and risk preferences (e.g., Ilhan et al. (2023)), and find this risk difficult

to hedge (e.g., Pástor, Stambaugh, and Taylor (2021), Giglio, Kelly, and Stroebel (2021),

23An earlier version of the paper considered more general investment decisions and found that the

key economic forces that drive our results obtain in this more general setting.
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Krueger, Sautner, and Starks (2020)).24 Indeed, Engle et al. (2020) find that a dynamic

equity portfolio optimized to hedge climate risk is at most 30% correlated with news on

such risk.25

Another potential concern is that the investment decision of a single firm will not

have a meaningful impact on market completeness. A multi-firm model with discount

rate variation and feedback effects is not analytically tractable. However, we expect that

the impact of climate investment on market completeness would aggregate across firms

and thus continue to be relevant in such a setting. That is, one can interpret our model as

that of a representative firm in an industry or sector with correlated shocks to profitability

and climate exposures. In practice, we expect that correlated investment choices (e.g.,

several automakers investing in EV technology) should affect investors’ ability to hedge

climate risk. Moreover, since stock prices do not fully reflect the risk-sharing benefit of

climate-sensitive investment, our observation that managers fail to internalize this welfare

externality would continue to hold in a multi-firm economy.

III. Equilibrium

In general, solving for an equilibrium with feedback effects is complicated by the fact

that the asset price must simultaneously clear the market, be consistent with manager

24As Pástor, Stambaugh, and Taylor (2021) point out “[u]nanticipated climate changes present in-

vestors with an additional source of risk, which is non-traded and only partially insurable.” Similarly,

Giglio, Kelly, and Stroebel (2021) state “... many of the effects of climate change are sufficiently far in the

future that neither financial derivatives nor specialized insurance markets are available to directly hedge

those long-horizon risks. Instead, investors are largely forced to insure against realizations of climate risk

by building hedging portfolios on their own.” Finally, based on their survey evidence, Krueger, Sautner,

and Starks (2020) state that “... many market participants, including institutional investors, find cli-

mate risks difficult to price and hedge, possibly because of their systematic nature, [...] and challenges

in finding suitable hedging instruments.”

25The multidimensional nature of climate risk may also contribute to market incompleteness. Different

types of investments may be necessary to hedge the various dimensions of climate risk. For instance,

green energy may serve as a hedge of carbon-transition risk, while green real estate may better hedge

the potential for sea-level rise.
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and investor beliefs, and be consistent with the anticipated real investment decision. We

focus on equilibria of the following form. A threshold equilibrium is one in which:

(i) the price at both dates depends on the underlying random variables through a linear

statistic, sp = θ + 1
β
Z, where β is an endogenous constant,

(ii) the price takes an identical piecewise linear form at both dates

P3 = P1 =


A1 +B1sp when sp > s

A0 when sp ≤ s

, (7)

where the price coefficients A0, A1, and B1, and the threshold s̄ are endogenous, and

(iii) the manager invests in the project if and only if P1(sp) ̸= P1(s̄), that is, the share

price is not equal to the constant no-investment price.

This type of equilibrium has an intuitive structure and several desirable properties.

First, the equilibrium price is a generalized linear function of fundamentals: it depends

on θ and Z only through a linear statistic sp = θ + 1
β
Z. Second, there is a price level

P1(s̄) that reveals to the manager that the market anticipates she will not invest, and,

consistent with this, she indeed finds it optimal not to invest. Thus, the price naturally

is piecewise linear in sp, increasing in sp when the manager invests, and constant when

she does not. These properties ensure the analysis is tractable and facilitate comparison

to existing work.

As is common in feedback effects models, in general, there can exist multiple equilib-

ria, each one characterized by a different investment policy. For instance, if the project is

ex-ante sufficiently unprofitable, there is an equilibrium in which investors do not trade

on their information and the manager relies on her ex-ante optimal choice, which is not

to invest. These equilibria are sustained only because the price does not reveal any infor-

mation when the market expects the manager not to invest. We focus on the equilibrium

with the lowest threshold s̄, that is, with the most investment. This equilibrium is the

natural one as it would be the unique equilibrium if the price always revealed sp, which

would arise, for instance, if the firm’s assets in place were correlated with the payoff on
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the project. This is a common feature of feedback effects models; Dow, Goldstein, and

Guembel (2017) follows a similar approach to ours in choosing among equilibria, selecting

the most informative equilibrium (see, for example, the discussion immediately following

their Lemma 1). See also Dow and Gorton (1997), another feedback setting that generally

features multiple equilibria.26

In the appendix, we formally solve the model by working backwards. We sketch the

approach here. Given an investment decision k ∈ {0, 1} at date 2, investor i’s beliefs

about the asset payoff at t = 3 are conditionally normal, with

Ei3 [V (k)] = µA + k (θ − c) , Ci3 (V (k) , ηC) =
kα

τη
, and Vi3 (V (k)) =

1

τA
+

k2

τη
, (8)

and hence her optimal trade is

Xi3 =
Ei3 [V (k)] + γCi3 (V (k) , ηC) zi − P3

γVi3 (V (k))
− (n+Xi1). (9)

In turn, market clearing implies:

P3 = µA − γ

τA
n+ k

(
θ − c− γ

τη
(n− αZ)

)
. (10)

This immediately implies that, in any equilibrium, regardless of the manager’s objective

function, we must have sp = θ + γ
τη
αZ, or equivalently, β = τη

γα
.

At date two, the manager chooses whether to invest to maximize her objective, given

her information set Fm = σ(P1). Below, we characterize the equilibrium under cash-flow

maximization and price maximization separately. As we will see, these equilibria differ

26Note that if investors in our model also learned noisy information from the equilibrium price (e.g.,

if they received heterogeneous private signals) then there would be a further potential source of non-

uniqueness, even holding fixed the manager’s investment policy. As shown by Pálvölgyi and Venter

(2015), in standard static noisy rational expectations models investor learning from prices generally

leads to a continuum of discontinuous equilibria in the financial market. Characterizing such equilibria

in a version of our model with heterogeneous information would be an interesting problem for future

work but is beyond the scope of the current paper.
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only in the threshold price P1(s̄) above which the manager chooses to invest.

A. Cash-Flow Maximization

The manager’s conditional expectation of cash flows, given sp, is

E [V (k) |sp] = µA + k (E [θ|sp]− c) , where (11)

E [θ|sp] =
τθµθ + τp

(
sp − γ

τη
αµZ

)
τθ + τp

, and τp = τZ

(
τη
γα

)2

. (12)

This implies that, if the manager were directly able to observe the signal sp in all states

of the world, her optimal investment rule would be:

k =


1 when E[θ|sp] > c

0 when E[θ|sp] ≤ c.

(13)

The manager cannot always observe sp because the price does not vary with sp when

the market expects her not to invest. However, in the threshold equilibrium with the

most investment, this creates no additional difficulty for the manager, because the price

is a sufficient statistic for sp in making her investment decision. In this equilibrium,

the investment threshold, which we refer to as s̄C , satisfies E[θ|sp = s̄C ] = c, so that

the manager is precisely indifferent between investing and not investing when sp = s̄C .

Applying (11), we obtain

s̄C = c− τθ (µθ − c)

τp
+

γ

τη
αµZ . (14)

Given the conjectured price function, if the manager observes P1 = A0, she infers that,

with probability 1, sp ≤ s̄C , and chooses not to invest. If she observes any P1 ̸= A0, she

infers the realized value of sp, necessarily strictly greater than s̄C , and so she chooses to

invest. Thus, in equilibrium, she is able to implement the same investment rule almost

everywhere that she would if she directly observed sp.

Finally, stepping back to t = 1, note that the manager’s investment decision is a
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deterministic function of P1. Thus, investors can anticipate the manager’s investment

decision by observing the date one price. In turn, in equilibrium investors can perfectly

anticipate P3 and therefore the equilibrium price at t = 1 must satisfy P1 = P3 in order

for the market to clear. Following this reasoning, the next proposition characterizes the

threshold equilibrium with maximum investment.

PROPOSITION 1: Suppose the manager maximizes expected cash flows. In the

investment-maximizing threshold equilibrium, equilibrium prices are

P1 = P3 = µA − γn

τA
+ k

(
sp − c− γ

τη
n

)
, (15)

and the manager’s investment decision is

k = 1
{
P1 ̸= µA − γ

τA
n
}
, (16)

where sp ≡ θ + γα
τη
Z, τp ≡

(
τη
γα

)2
τZ, and s̄C ≡ c− τθ(µθ−c)

τp
+ γ

τη
αµZ.

It is worth noting that investors’ beliefs about the asset payoff remain normal given

their information set in all states of the world, since the manager’s investment decision

is determined by the date one price P1. This ensures that the equilibrium is tractable.

For a cash-flow maximizing manager, discount rate variation (i.e., shocks to Z) adds

noise to the information about θ that is relevant for her investment decision. The above

proposition clarifies how the project’s greenness affects the manager’s inference about cash

flows from the price. First, an increase in the project’s sensitivity to climate risk (i.e.,

higher |α|) makes the price less informative about cash flows (i.e., it decreases forecasting

price efficiency) – this is apparent from the expression for τp. Second, since µZ > 0, an

increase in greenness α leads to a higher threshold s̄C . Intuitively, the manager corrects

for the fact that a green project provides a hedge to investors and so, fixing investors’

cash flow information θ, tends to have a higher price.

Together, these effects reflect that for a cash-flow maximizing manager, an increase

in climate sensitivity makes the price a noisier and more biased signal. As we show in
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the next subsection, this is no longer the case when the manager chooses investment to

maximize the expected price.

B. Price Maximization

We can follow similar steps to derive the equilibrium when the manager maximizes

the firm’s stock price. Recall that the date three market clearing price can be expressed

as

P3 =


µA − γ

τA
n when k = 0

µA − γ
τA
n+ k

(
sp − c− γ

τη
n
)

when k = 1

. (17)

This implies that, if the manager observed sp in all states, she would invest when sp >

c+ γ
τη
n. Similarly to the cash-flow maximization case, in the equilibrium with maximum

investment, the price reveals sp whenever knowing the value of sp would lead the manager

to invest. Thus, she is able to implement the same investment rule that she would if she

could directly observe sp, and so the investment threshold satisfies:

s̄ = s̄P = c+
γ

τη
n. (18)

Finally, the manager’s investment decision is again known given the price at date one,

so that no new information arrives between dates one and three, and P1 and P3 must be

equal. The following proposition formally establishes these results.

PROPOSITION 2: Suppose the manager maximizes the expected date three price. In the

investment maximizing threshold equilibrium, equilibrium prices are

P1 = P3 = µA − γ

τA
n+ k

(
sp − c− γ

τη
n

)
, (19)

and the manager’s investment decision is

k = 1
{
P1 ̸= µA − γ

τA
n
}
= 1 {sp > s̄P} , (20)
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where sp = θ + γ
τη
αZ, and s̄P ≡ c+ γ

τη
n.

The manager’s optimal investment takes the form of a NPV rule, whereby she invests

if and only the statistic

NPV ≡ sp − s̄ = θ − c︸ ︷︷ ︸
cash flows

− γ
τη
(n− αZ)︸ ︷︷ ︸

discount rate

(21)

is greater than zero. The first term, θ−c, reflects the expected cash flows from the project,

net of investment costs – this captures the “cash-flow news” contained in the price. The

second term, − γ
τη
(n− αZ), reflects a discount due to the risk premium investors demand

for holding shares of the stock. We refer to this as “discount rate news” because it reflects

variation in the project’s impact on price that is driven by factors other than its expected

cash flows. Consistent with intuition, the discount is higher (the NPV is lower) when

the firm is larger (i.e., n is higher) because investors have to bear more aggregate risk.

Moreover, the discount is lower (higher) for green (brown, respectively) projects when

Z > 0.27 This is because green projects reduce investors’ exposure to (negative) climate

shocks, while brown projects exacerbate it.

While the cash-flow and discount rate news in prices are not separately observable to

the manager, they both factor into her decision of whether to invest because they both

influence how the project will impact the date three price. In principle, this implies that

the manager must learn about both from the date one price, that is, she must separately

compute E[θ|P1] and E[Z|P1]. However, her inference problem takes a transparent form

in our setting because the price signal she conditions on and the objective she intends to

maximize put the same (relative) weights on θ and Z. In particular, the equilibrium date

one and date three prices put the same weights on θ and Z. This implies that the manager

does not need to separately update on θ and Z to determine whether investment will lead

to a higher price. Instead, she can directly infer the relevant combination θ+ γ
τη
αZ from

27It is possible that Z < 0 in our model so that brown projects are priced at a premium. However,

the probability of this outcome can be made arbitrarily small by setting µZ and τZ appropriately.
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the date one price.28

Note that this simplification of the manager’s learning problem in the case of price

maximization is a derived result, not an assumption. We show in Internet Appendix

C that this result extends to the case in which investors are endowed with dispersed,

private noisy signals about θ and learn about θ from prices, similar to Hellwig (1980).

The reason is that, in this setting, date one and three prices continue to place the same

weights on cash flow and discount rate news. However, it need not arise when the date

one price puts different relative weights on θ and Z than the manager’s objective does.

For instance, the simplification does not obtain if the manager maximizes a combination

of expected cash flows (or earnings) and expected price.

Similarly, if a public signal about ηC becomes available before trade at date three, but

after the date two investment decision, then the relative weights on θ and Z will differ

across the two dates. We focus on the simpler specification without a public signal in our

model because it is a natural benchmark that transparently illustrates the main economic

mechanisms that result from the manager learning about discount rates from the price.

In richer settings, we expect similar forces to apply, although the analysis would be less

transparent.

The above also clarifies that while feedback plays an important role in the equilibrium,

the equilibrium of our specific setting turns out to be identical to one in which the manager

directly observes θ and Z. As such, our analysis highlights an important equivalence

between a class of feedback-effects model where the manager maximizes the expected

price of the firm, and traditional, production-based asset pricing models in which the

manager is assumed to exogenously know the profitability and discount rate of the project

she is considering. To the extent that, in practice, managers rely on prices to learn about

discount rate information, our analysis of the price maximization benchmark provides a

micro-foundation for the latter class of models. It is worth noting that since the project’s

28One may be able to capture similar forces with a single trading date if the manager could simul-

taneously commit to a real investment schedule k(P ) to maximize the equilibrium price P at the same

time that investors trade.
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discount rate depends on investors’ exposures to climate risk, which are privately known

and dispersed across investors, it is not clear how the manager could observe this directly

without conditioning on prices.

C. Probability of Investment

In this section, we compare how feedback from prices affects investment decisions

under the two managerial objectives. We begin by characterizing the likelihood of invest-

ment with cash-flow maximization.

PROPOSITION 3: Suppose the manager maximizes E [V |Fm]. In equilibrium, the un-

conditional probability of investment is given by

Pr (sp > s̄C) = Φ

(
E [sp]− s̄C√

V [sp]

)
, (22)

where E [sp] = µθ +
γα
τη
µZ, V [sp] =

1
τθ
+ 1

τp
, τp =

(
τη
γα

)2
τZ, and Φ (·) denotes the CDF of

a standard normal random variable. The probability of investment:

(i) increases with ex-ante profitability µθ − c;

(ii) does not depend on firm size n or the average climate risk exposure µZ;

(iii) increases with τθ and |α| and decreases with τZ if the project is ex-ante profitable

(i.e., µθ − c > 0); and

(iv) decreases with τθ and |α| and increases with τZ if the project is ex-ante unprofitable

(i.e., µθ − c < 0).

Consistent with intuition, the probability of investment increases with the ex-ante

profitability µθ−c of the project. Moreover, since the manager’s objective is to maximize

expected cash flows, the firm’s systematic risk (e.g., n) and investors’ aggregate exposure

to climate risk (i.e., µZ) do not affect the likelihood of investment.

The above also clarifies for a cash-flow maximizing manager, variation in the project’s

risk premium, as captured by γα
τη
Z, generates noise in her price signal. In fact, a higher

exposure to climate risk (i.e., higher |α|) serves to make the price a noisier signal about

cash flows, and so the manager is more likely to invest in line with her prior beliefs. This
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implies that for ex-ante profitable projects (i.e., if µθ− c > 0), the manager is more likely

to invest in climate-exposed projects than in climate-neutral ones. On the other hand, for

unprofitable projects, an increase in climate exposure leads to a decrease in the likelihood

of investment.

The above results are largely consistent with traditional feedback effects models in

which the manager maximizes expected cash flows, and so treats non-cash-flow variation

in prices as noise. As we show next, this is no longer the case when the manager maximizes

the share price.

PROPOSITION 4: Suppose the manager maximizes E [P3|Fm]. In equilibrium, the un-

conditional probability of investment is given by

Pr (sp > s̄P ) = Φ

(
E [sp]− s̄P√

V [sp]

)
. (23)

The probability of investment:

(i) increases with ex-ante profitability µθ − c;

(ii) decreases with firm size n;

(iii) increases with µZ for green firms (i.e., α > 0), but decreases with µZ for brown firms

(i.e., α < 0);

(iv) increases with τθ and τZ if and only if E[sp]− s̄P = µθ − c− γn
τη

+ αγµZ

τη
> 0; and

(v) decreases with greenness α if and only if
(
µθ − c− γn

τη
− τητZ

γα
1
τθ
µZ

)
sgn(α) > 0.

Consistent with intuition, the proposition establishes that the probability of invest-

ment increases in the expected NPV of the project E[sp] − s̄P and decreases (increases)

with the variance of the price signal V[sp] when E[sp] − s̄P > 0 (E[sp] − s̄P < 0, respec-

tively). This directly implies parts (i)-(iv) of the proposition. From equation (21), we

know that the expected NPV increases with expected profitability µθ − c, decreases with

firm size n, and increases with µZ if and only if α > 0, which implies (i)-(iii). Similarly,

part (iv) follows because an increase in τθ or τZ leads to a reduction in the variance of

the price signal V[sp], which leads to more investment when the expected NPV is positive

(i.e., E[sp]− s̄P > 0), but less investment when it is negative.
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Part (v) of the proposition shows that the project’s sensitivity to the risk factor,

α, has a nuanced impact on the likelihood that the manager invests. An increase in

α has two, potentially-offsetting, effects. First, an increase in α increases the expected

NPV E[sp] − s̄P because it reduces the on-average discount due to climate risk. Since

the manager’s objective is to maximize the share price, this implies that all else equal,

investment is likelier in green projects than brown projects. We refer to this as the

“expected NPV” channel.

Second, an increase in the magnitude of the project’s climate exposure |α| increases

the variance of the price signal V[sp], which in turn makes the conditional NPV of the

project more variable. All else equal, this makes it more likely that a project with negative

expected NPV will be desirable ex-post (i.e., increases the likelihood that the investment

option will be “in the money”), and so increases the likelihood of investment of such a

project. Similarly, it reduces the likelihood that a project with positive expected NPV

will be ex-post desirable, and so decreases the likelihood of investment in such a project.

We refer to this as the “variance of NPV” channel. The overall effect of α depends on

the relative magnitude of these two channels.

Panel A. Prob(Invest) vs. α when µθ > c Panel B. Prob(Invest) vs. α when µθ < c
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Figure 2. Probability of Investment. This figure compares the probability that
the firm invests investment as a function of α and µZ under the cash-flow and price-
maximization benchmarks. Unless otherwise mentioned, the parameters employed are:
τθ = τη = τA = γ = 1; τZ = µZ = 0.5; n = 0.1. The left-hand plot depicts results for
both projects that have positive and negative ex-ante NPV. In the solid (dashed) lines,
we consider price maximization (cash-flow maximization). In the left-hand (right-hand)
plots, we set µθ − c = 1 (µθ − c = −1), which implies that the project is ex-ante desirable
(undesirable) in both the cash-flow and price-maximization cases, that is, ∀α ∈ [−1, 1],
E [sp] > s̄P and E [sp] > s̄C (E [sp] < s̄P and E [sp] < s̄C).
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As Figure 2 illustrates, this is in sharp contrast to the case where the manager max-

imizes cash flows. The figure compares the probability of investment as a function of

climate exposure α for the two managerial objectives. Consistent with the above results,

for ex-ante profitable projects (i.e., µθ > c) an increase in |α| leads to more investment

under cash-flow maximization but can lead to less investment under price maximization –

see panel A. In contrast, for ex-ante unprofitable projects (i.e., µθ < c), panel B illustrates

that the opposite results hold.

The characterization of the equilibrium thresholds under the two managerial objec-

tives immediately gives us the following result.

COROLLARY 1: Cash-flow maximization leads to more investment than price maximiza-

tion (i.e., s̄P > s̄C) if and only if:

γ

τη
(n− αµZ) > −τθ

τp
(µθ − c) . (24)

In particular, cash-flow maximization leads to “over-investment” relative to price

maximization when the project is expected to be highly profitable ex-ante (i.e., µθ − c is

sufficiently high), investors’ expected climate exposures are small (i.e., µZ is low), or the

project is sufficiently brown (i.e., α is small or negative).29

More generally, the price and cash-flow maximization benchmarks can be thought

of as lying on the opposite end of a spectrum. While we focus on these two extremes

to simplify the exposition and clarify the intuition for our results, we expect that a

manager’s decision reflects a weighted average of both considerations in practice. Our

analysis suggests that when the manager focuses more on prices and less on cash flows,

she will treat prices as less noisy signals and place more weight on them when investing.

Our results also imply that how shareholders or regulators can better incentivize man-

agers to pursue green investment depends on the ex-ante desirability of the projects. For

ex-ante unprofitable projects (i.e., µθ < c), tilting the manager’s incentives towards price

29Note that when investors are risk-neutral (i.e., γ = 0), s̄P = s̄C = c and so the investment rules

coincide.
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maximization (e.g., by proving more short-term, price-sensitive compensation) increases

the likelihood of investing in green projects. This is likely to apply to speculative invest-

ments in green technology, which may be ex-ante unprofitable on a purely cash-flow basis.

On the other hand, for ex-ante profitable projects (i.e., µθ > c), making compensation

more sensitive to accounting-based measures of expected cash flows (e.g., earnings) tilts

the manager towards cash-flow maximization, and consequently, increases investment in

green projects.

IV. Welfare

In this section, we explore the relationship between feedback, investment, and investor

welfare. We begin by characterizing the channels through which investment affects in-

vestor welfare in Section IV.A. In Section IV.B, we consider a special case in which

investors have homogeneous climate exposures (i.e., τζ → ∞). This allows us to explic-

itly characterize the welfare-maximizing price-contingent investment rule and compare it

to price-maximizing and cash-flow maximizing rules. In Section IV.C, we re-introduce

heterogeneity in risk-exposures and show how the manager’s use of the information in

price may harm investor welfare.

A. The Impact of Investment on Welfare

Existing models of feedback effects focus on the impact that feedback has on a firm’s

expected cash flows. In many such models, investors are risk neutral so that maximizing

expected cash flows aligns with welfare maximization.30 However, in our model, investor

risk aversion implies that investment has multiple, potentially-offsetting effects on investor

welfare, due to the riskiness of the project and the stock’s usefulness as a hedge.

Because investors are ex-ante symmetric, the ex-ante expected utility of an arbitrary

investor is an unambiguous measure of welfare:

W ≡ E
[
−e−γWi(k(sp))

]
(25)

30Section I discusses notable exceptions, like Dow and Rahi (2003).
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= Pr (k = 1)E
[
−e−γWi(1)|k = 1

]
+ Pr (k = 0)E

[
−e−γWi(0)|k = 0

]
, (26)

where

Wi (k) =


Xi (V (1)− P ) + nV (1)− ziηC k = 1

nV (0)− ziηC k = 0

. (27)

Proposition IA2 in Internet Appendix A characterizes this expression in closed form.

However, to understand the relevant economic forces, it is helpful to study the simpler

special case in which investment is fixed at arbitrary level k, in which case the model

reduces to a standard unconditionally linear-normal form. In this case, we have

E
[
−e−γWi(k)

]
= −e−γ CE(k), (28)

where the certainty equivalent CE(k) can be expressed, after grouping terms, as

CE (k) = E[V (k)]n︸ ︷︷ ︸
Cash flow channel

− γ

2

(
1

τA
+ k2

(
1

τθ
+

1− α2

τη

))
n2︸ ︷︷ ︸

Non-climate risk channel

− γ

2

1

τη
(µZ − kαn)2︸ ︷︷ ︸

Climate risk channel

(1 + Γ)− 1

γ
log(D(k)) (29)

where

D (k) =

√√√√ 1
τA

+k2
1
τη

1
τA

+k2

 1
τη

+
1

β2(τZ+τζ)

︸ ︷︷ ︸
Value of information

√√√√ Γ

γ2 1
τη

(
1
τZ

+ 1
τζ

) , (30)

and

Γ(k) ≡
γ2 1

τη

(
1
τZ

+ 1
τζ

)

1− γ2 1
τη

(
1
τZ

+ 1
τζ

)
1−

k2α2

(
1
τη

)
1
τA

+k2
(

1
β2(τZ+τζ)

+
1
τη

) ×

(
1
τζ

1
τZ

+
1
τζ

)2

︸ ︷︷ ︸
Risk-sharing channel


. (31)
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We have explicitly labeled all five terms in these expressions that depend on the

investment choice k and will discuss them in turn.

• The cash flow channel reflects that investment affects the investor’s expected

wealth via their ownership of n shares. Investment increases (decreases) welfare

through this channel when the project’s expected cash flows are positive (negative).

• The non-climate risk channel reflects that the investment increases investors’

exposure to non-climate risks via the θ and ηI shocks.

• The climate risk channel captures the fact that the investment affects investors’

aggregate exposure to climate shocks. The average investor’s total climate exposure

is µZ−kαn, reflecting both the direct exposure and the exposure through ownership

of the stock. When the direct exposure is sufficiently large (i.e., µZ > n), investment

in green (α > 0) projects mitigates aggregate climate exposure and consequently

raises welfare, while investment in brown (α < 0) projects amplifies aggregate

climate exposure and reduces welfare. This channel is further scaled by the term

1+Γ, which reflects uncertainty about the exposure to climate risk. When investors’

total exposure to climate risk Z + ζi is constant (i.e., τZ , τζ → ∞), we have Γ = 0.

However, when investors face uncertainty about their exposure from either source,

Γ > 0, which amplifies the disutility of climate exposure.

• The risk-sharing channel reflects that the project enables investors to share their

idiosyncratic exposures to climate risk, ζi, by trading the stock. All else equal,

investment improves welfare through this channel. By sharing risk, investors reduce

the dispersion in their climate exposures, reducing the effect of uncertainty about

exposures, Γ.

The overall amount of risk-sharing reflects both the effectiveness of the stock as a

hedging instrument (i.e., the correlation of the stock return with climate risk), and

the proportion of climate exposures that are shared (i.e., the proportion of climate
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exposures that are idiosyncratic, ζi):

Risk-sharing channel =
k2α2 1

τη
1
τA

+k2
(

1
β2(τZ+τζ)

+
1
τη

)
︸ ︷︷ ︸
Hedging effectiveness of stock

=Corr2(V−P,ηC |zi)

×

(
1
τζ

1
τZ

+
1
τζ

)2

.︸ ︷︷ ︸
% shareable climate exposure

(32)

• The value of information channel captures the fact that investors’ information

about cash flows renders the stock more useful in hedging. Observing θ increases

the conditional correlation between the stock’s payoff and ηC . Moreover, this effect

is only relevant when the project is undertaken, and so disappears when k = 0.

This takes a familiar form of the ratio of investors’ conditional variance of the asset

return with and without conditioning on θ.31

Importantly, when the manager chooses investment to maximize the expected price,

she fails to appropriately account for the impact of her decision on the other components

of welfare, as we discuss next.

B. Homogeneous Risk Exposures

We begin with a special case of our model in which all investors have homogeneous ex-

posures to climate risk. In this case, we can explicitly characterize the welfare-maximizing

price-contingent investment rule, as we show in the following Proposition.32

31In our model, investors are endowed with information. However, this term still captures the im-

provement in utility as a result of observing θ relative to being uninformed. Specifically, given fixed

k, this ratio can be represented as V(V |θ,zi,P )
V(V−P |zi) , which reflects the proportional improvement in expected

utility from conditioning on θ, zi, and P vs. zi alone. The welfare expressions in Bond and Garcia (2022)

include a similar term, which they further decompose into a product of the classic value of cash-flow

information, V(V |θ,zi,P )
V(V |zi,P ) , and the value of providing vs. demanding liquidity (i.e., using a price-contingent

schedule vs. not), V(V |zi,P )
V(V−P |zi) . Because these effects are not a primary focus of our analysis we choose to

concisely represent them in a single term.

32To streamline the presentation and derivation, we formulate the investment rule as sp-contingent.

However, as in the baseline model, it can be implemented as a price-contingent rule. Intuitively, with

probability 1, the equilibrium price reveals sp when investors anticipate that the investment is undertaken
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PROPOSITION 5: Suppose that investors have identical exposures to climate risk (i.e.,

τζ → ∞). Then, the welfare-maximizing sp-dependent investment policy is

argmax
k∈{0,1}

W (k; sp) = 1 {sp > s̄W} , (33)

where s̄W ≡ c+ 1
2

γ
τη
n. Moreover,

(i) cash-flow maximization leads to under-investment relative to welfare maximization

if and only if

s̄C − s̄W =
γ

τη
αµZ − τθ (µθ − c)

τp
− 1

2

γ

τη
n > 0, (34)

but over-investment otherwise, and

(ii) price maximization always leads to under-investment relative to welfare maximiza-

tion, since s̄P − s̄W = 1
2

γ
τη
n.

As we show in the appendix, the expressions for welfare simplify considerably when

investors have homogeneous exposures to climate risk because there is no risk-sharing

trade in equilibrium. Consequently, neither the risk-sharing channel nor the value of

information channel are operational.

Proposition 5 clarifies that the cash-flow-maximizing investment rule does not max-

imize welfare even in this special case. The cash-flow-maximizing rule over-weights ex-

pected cash flows, but under-weights both non-climate risk and climate risk, compared

to the welfare-maximizing rule. Hence, cash-flow maximization tends to lead to under-

investment in green projects, but over-investment in brown projects that are ex-ante

profitable, relative to welfare maximization.

Somewhat surprisingly, we find that the price-maximizing rule also leads to under-

investment relative to the welfare-maximizing rule, whenever n > 0. The difference

between the two thresholds stems from the fact that, while welfare depends on the average

and does not reveal sp otherwise. This allows one to directly map the sp-contingent investment rule to an

equivalent price-contingent rule in which the manager does not invest if she observes a price realization

that anticipates no investment, P1 = µA − γ
τA

n, and invests otherwise.
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risk borne by investors, the price reflects the marginal disutility from the risk of holding

the last outstanding share of the firm. Since the marginal disutility from holding the last

share is higher than the average disutility from bearing the risk of all shares investors hold,

the price-maximizing rule leads to under-investment relative to the welfare-maximizing

rule. However, it is worth noting that this difference disappears when the per-capita

endowment of shares per firm becomes arbitrarily small (i.e., n → 0).

The point that decisions based on prices may be socially sub-optimal because prices

reflect marginal and not average valuations was first raised by Spence (1975) in the

context of a monopolist’s choice of product quality. He shows that the chosen quantity

may be too high or too low, from the perspective of social welfare. The intuition for this

result foreshadows ours: quality is chosen based on information contained in a good’s

price, which reflects the valuation of the marginal consumer, while welfare depends on

information about the average consumer.33

Proposition 5 also implies that, in this benchmark, one can implement the welfare-

maximizing investment rule by inducing the manager to maximize a weighted average of

cash flows and the date three price, as summarized by the following result.

PROPOSITION 6: Suppose that the manager maximizes a weighted average of expected

price and expected cash flows:

k(P1) = argmax
k

δ E[P3|P1] + (1− δ)E[V |P1], (35)

where

δ =

τθ
τθ+τp

(µθ − c)− τp
τθ+τp

γ
τη

(
αµZ − 1

2
n
)

τθ
τθ+τp

(µθ − c)− τp
τθ+τp

γ
τη

(
αµZ − 1

2
n
)
+ 1

2
γ 1
τη
n
. (36)

Then, in the maximum-investment threshold equilibrium, the manager invests if and only

33An analogous difference is also highlighted by Levit, Malenko, and Maug (2022) who show that

while prices are determined by the valuation of the marginal investor, valuation is determined by the

valuation of the average (post-trade) shareholder in their setting. Bernhardt, Liu, and Marquez (2018)

highlight a similar difference in the context of takeovers.
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if sp > s̄W . When the project is unexposed to the climate (α = 0), we have that δ = 1
2
.

Moreover, δ ∈ (0, 1) if and only if τθ
τθ+τp

(µθ − c) > τp
τθ+τp

γ
τη

(
αµZ − 1

2
n
)
.

Recall that price maximization leads to under-investment relative to welfare maxi-

mization, but cash-flow maximization can lead to over-investment for brown (α < 0),

ex-ante profitable (µθ > c) projects. In such cases, the above result implies that there

exists a δ ∈ (0, 1) such that a weighted-average objective of the form in (35) leads to the

manager to follow a welfare-maximizing investment rule. In particular, by incentivizing

the manager to maximize a weighted average of expected price and expected cash-flows

where δ is set as in (36), investors can ensure that the manager’s investment rule max-

imizes ex-ante welfare. This provides a natural justification for compensation schemes

that use a combination of price-based and earnings-based incentives, even though such

incentives lead to lower expected stock prices than purely price-based incentives.

However, the above result also implies that such compensation schemes may not be

appropriate when the manager is considering whether to invest in green projects. For

instance, consider a green project with µθ = c. If 2αµZ > n > αµZ , Proposition 6

shows that welfare maximization requires the manager to place a negative weight on the

price (i.e., δ < 0). On the other hand, if n <
2αµZτ2η τz

α2γ2τθ+2τ2η τz
, welfare maximization requires

the manager to place a negative weight on cash flows (i.e., δ > 1). Intuitively, both

price maximization and cash-flow maximization lead to under-investment, so the welfare-

maximizing combination puts a negative weight on the objective that leads to greater

under-investment. However, such negative sensitivity to prices or earnings is difficult to

implement in practice. Moreover, traditional compensation schemes that put positive

weights on prices and earnings-based incentives might actually lead to lower investor

welfare relative to exclusively focusing on one type of objective or the other.

C. Heterogeneous Risk Exposures

The previous discussion illustrates that even when investors have identical climate

exposures, neither cash-flow maximization nor price maximization are generally equiva-

lent to welfare maximization. These differences are further amplified when investors have
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heterogeneous climate exposures.

When the manager maximizes expected cash flows, she does not account for either

the non-climate risk or climate risk channels. Heterogeneity in investors’ climate expo-

sures amplifies the impact that her neglect of the climate risk channel has on welfare.

Intuitively, as can be seen from the expression for the certainty equivalent in (29), this

heterogeneity amplifies the disutility that climate risk creates. Specifically, one can show

that the amplification factor Γ increases in τ−1
ζ , and so the project’s impact on welfare

via aggregate climate risk rises with τ−1
ζ .

To gain intuition for the price-maximization case, note that the share price P (k) can

be expressed as

P (k) = Ei [V ] + γZCi [V, ηC ]− γnVi [V ] . (37)

This expression reveals that the price reflects the aggregate climate exposure, Z, but

does not reflect the diversity in climate exposures (i.e., τ−1
ζ ), which determines the gains

from sharing climate risk (i.e., the risk-sharing channel). Similarly, the price does not

reflect the value of information channel because it does not capture the additional hedging

benefit that investors gain from having observed θ in the event that the manager invests

(i.e., when k = 1). Because each of these channels improves welfare, this implies that a

price-maximizing manager tends to under-invest in climate-sensitive projects relative to

a welfare-maximizing rule. Finally, to reiterate, heterogeneity in exposures, as captured

by τ−1
ζ , amplifies the welfare effect of the climate risk channel. Thus, the price also

does not fully account for the climate risk channel, leading to under-investment in green

projects, which reduce aggregate climate risk, and over-investment in brown projects,

which increase it.

While we are not able to analytically characterize the welfare-maximizing sp-

dependent investment rule in the general heterogeneous exposures case, we can establish

that if the firm is arbitrarily small (i.e., n → 0), then the welfare-maximizing rule is to

always invest. We record this in the following Proposition.
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PROPOSITION 7: Suppose that the share endowment is zero (n = 0) and exposures are

heterogeneous 1
τζ

> 0. Then, the welfare-maximizing sp-dependent investment policy is to

always invest,

argmax
k∈{0,1}

W (k; sp) = 1. (38)

Hence, both cash-flow maximization and price maximization lead to under-investment

relative to welfare maximization, in any states in which they lead the manager to not

invest.

The intuition for this result is straightforward. When the firm is in zero supply,

investment affects welfare only through the “risk-sharing” and “value of information”

channels. Moreover, this implies that, irrespective of the information revealed by sp,

investors strictly prefer that the firm takes the project so that the firm’s shares are useful

for sharing risk. This result further clarifies that traditional managerial incentives can be

misaligned relative to welfare maximization, even if the investment decision has no effect

on aggregate expected cash flows or aggregate risk, when investors have heterogeneous risk

exposures. The effect of investment on risk-sharing can be sufficient to lead investment

to be socially sub-optimal.

The misalignment between the manager’s objective and investor welfare implies that

feedback from prices need not always improve welfare. To formalize this intuition, we

compare investor welfare to a benchmark in which the manager ignores the information

in price and instead chooses to maximize the ex-ante expectation of cash flows or the

share price. In this case, the manager invests if and only if the unconditional expectation

of the price signal sp exceeds the corresponding threshold s̄ ∈ {s̄C , s̄P}.

The next proposition characterizes sufficient conditions under which feedback reduces

welfare.

PROPOSITION 8: Suppose the no-feedback investment policy is k = 1 (i.e., E[sp] > s̄

for the relevant threshold s̄ ∈ {s̄C , s̄P}) and the project is exposed to climate risk (i.e.,

α ̸= 0). Then, feedback reduces welfare if

38



(i) n is sufficiently small, or

(ii) gains from risk-sharing are sufficiently large (i.e., τζ is sufficiently small).

Panel A. Welfare vs. τζ Panel B. Welfare vs. n
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Figure 3. Ex-ante welfare: Feedback vs. no feedback. This figure plots the
ex-ante welfare (i.e., ex-ante expected utility) as a function of τζ and n for a project
with positive expected NPV. Unless otherwise mentioned, the parameters employed are:
τθ = 0.5; τζ = 3; τZ = 2; µA = 0; τA = 5; µθ = c = τη = γ = µZ = n = α = 1. These
parameters ensure the expected NPV of the project is positive.

Figure 3 illustrates these results for the case where the manager maximizes the price,

and the intuition is as follows.34 When the ex-ante NPV of the project is positive, in

the no-feedback benchmark, the manager always invests. In contrast, given feedback, the

firm does not invest for sp ≤ s̄P . On the one hand, feedback improves the expected price

of the stock, which tends to improve welfare through the cash-flow channel. On the other

hand, because it leads to no-investment in some states, feedback reduces the ability of

investors to use the stock as a hedge, and so reduces welfare via the risk-sharing channel.

It also affects the aggregate exposure to non-climate and climate risk (with the direction

depending on the sign of α).

When the per-capita endowment of shares n is small, the cash flow and non-climate

risk channels are relatively small. Moreover, the firm’s investment decision has a small

effect on the aggregate climate exposure, and so the climate risk channel is muted. How-

ever, the risk-sharing channel remains important since it is unaffected by n: regardless of

the firm’s size, its stock remains a useful hedge in the event of investment. Consequently,

the risk-sharing channel dominates, and investors are better off with a rule that always

34The economic intuition for cash-flow maximization is analogous.
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invests, yielding hedging benefits in all states of the world. Analogously, when τζ is small,

investors’ exposures to the climate are highly diverse, so that the ability to share risk

provides them with large welfare gains. Hence, the risk-sharing channel dominates in the

limit, once again leading investors to prefer an investment rule that ensures that the asset

is always useful for hedging.

It is worth noting that the manager’s use of price information always increases the

firm’s expected cash flows (share price) under cash-flow maximization (price maximiza-

tion): any additional information that she infers from the price can only improve invest-

ment efficiency as measured by her objective function. As a result, Proposition 8 implies

that an increase in investment efficiency need not align with an improvement in investor

welfare.

D. Implications for Managerial Compensation

Our welfare results speak to the recent debate on the effectiveness of the use of climate-

risk metrics in executive compensation. On the one hand, there has been a rapid increase

in the use of such measures. Edmans (June 27, 2021) cites that “51% of large U.S.

companies and 45% of leading U.K. firms use ESG metrics in their incentive plans,” and

Hill (November 14, 2021) cites a survey conducted by Deloitte in September 2021, which

suggests that “24 per cent of companies polled expected to link their long-term incentive

plans for executives to net zero or climate measures over the next two years.”35

On the other hand, there is ample skepticism about the effectiveness of such incentives.

In addition to issues around measurement and monitoring of such objectives and the

possibility of unintended consequences, Edmans (June 27, 2021) argues that incentivizing

ESG performance may not necessarily lead to better financial performance. Instead,

he advocates for the use of long-term stock-based compensation, arguing that “[s]ince

material ESG factors ultimately improve the long-term stock price, this holds CEOs

35More broadly, Edmans, Gosling, and Jenter (2023) find that over 50% of surveyed directors and

investors report that offering variable pay to CEO is in part useful to “motivate the CEO to improve

outcomes other than long-term shareholder value.”
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accountable for material ESG issues – even if they aren’t directly measurable.”

Our analysis suggests that this may not be true because the stock price (even in the

long term) does not fully account for the benefit of investing in climate-exposed projects.

As such, providing additional incentives based on climate metrics (e.g., bonuses linked

to climate targets) can improve overall investor welfare. This is despite the fact that

such incentives may decrease stock prices and future profitability on average by leading

to inefficient over-investment (from the perspective of a price-maximization or cash-flow

maximization objective) in green projects. Yet, when investors have diverse climate risk

exposures and find it difficult to hedge these exposures, such incentives improve their

ability to hedge risks and, consequently, can improve overall welfare.

V. Conclusions

In this paper, we develop a model of informational feedback effects in which a firm’s

investment alters its exposure to an aggregate risk, and discuss its application to climate-

exposed investment. When a firm invests in a project that is exposed to climate risk, it

affects how useful the asset is as a hedge for climate risk. As a result, the firm’s stock price

reflects information about investors’ climate exposures and the project’s expected cash

flows, which are both relevant to the manager’s investment choice. We show that this

has novel implications for how a project’s greenness affects the likelihood of investment,

conditional expected returns and future profitability. Moreover, we show that because

the price does not fully reflect the welfare externality generated by investment in climate-

sensitive projects, price-maximization tends to lead to under-investment in green projects.

In addition to climate-exposed investments, our model’s predictions on investment

and managerial incentives apply broadly to investments that are exposed to systematic

risks with variable risk premia. For instance, investments that are exposed to commodity

prices may serve as inflation hedges and thus may have discount rates that vary with

investors’ aggregate inflation concerns. Moreover, investments in emerging markets are

exposed to aggregate demand in those markets, and so are likely to have discount rates

that vary with uncertainty over this demand. Our model’s implications for feedback’s
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impact on welfare also apply more generally, whenever the market is incomplete with

respect to the investment’s risk exposure.

A notable contribution of our analysis is to provide a tractable feedback effects frame-

work with investor risk aversion and priced risk factors. Immediate extensions include

generalizations to the structure of cash flows and information. For instance, allowing

for both public and private information signals would enable future research to assess

the merits of disclosure regarding firms’ climate risk exposures. Similarly, introducing

multiple dimensions of fundamentals as in Goldstein and Yang (2019) and Goldstein,

Schneemeier, and Yang (2020) could enable future work to assess how climate-exposed

investments interact with the other risks that firms face. Finally, it may be interesting

to consider how dynamics and multiple traded assets influence managers’ ability to infer

discount rate information from prices.
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A Proofs

A. Proof of Proposition 1

We first establish the existence of the stated equilibrium, and then argue that, among
all threshold equilibria, it involves the most investment. Begin by conjecturing an equi-
librium of the form posited in the text. That is, suppose that there is a random variable
of the form sp = θ+ 1

β
Z and threshold s ∈ R such that the asset prices at the two trading

dates are identical and take the form

P1 = P3 =

{
A1 +B1sp sp > s̄

A0 sp ≤ s̄
. (A1)

We can now derive the equilibrium, and confirm the above conjecture, by working back-
wards. At date t = 3, investors can observe the actual investment decision made at
t = 2. Hence, they perceive the asset payoff as conditionally normally distributed with
conditional moments

Ei3[V (k)] = Ei3[A+ k(θ + αηC +
√
1− α2ηI − c)] = µA + k(θ − c) (A2)

Ci3(V (k), ηC) = kα 1
τη

(A3)

Vi3(V (k)) = 1
τA

+ k2 1
τη
. (A4)

An arbitrary investor i solves the following static optimization problem at this date:

max
x∈R

Ei3[−e−γWi4 ]. (A5)

Given her demand x, her terminal wealth Wi4 is

Wi4 = (n+Xi1 + x)V − xP3 −Xi1P1 − ziηC , (A6)

where Xi1, the trade from the t = 1 trading round, is taken as given.
Applying well-known results for CARA utility, this problem leads to a standard mean-

variance demand function:

Xi3 =
Ei3[V (k)] + γCi3(V (k), ηC)zi − P3

γVi3(V (k))
− (n+Xi1). (A7)

Plugging in for the conditional moments from above and enforcing market clearing yields
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equilibrium price

P3 = µA + k (θ − c) + γkα 1
τη
Z − γ

(
1
τA

+ k2 1
τη

)
n (A8)

= µA − γ 1
τA
n+ k

(
θ + γα 1

τη
Z − c− γ 1

τη
n
)
, (A9)

where the second line collects terms and uses the fact that k ∈ {0, 1} implies k = k2

to simplify. Hence, to be consistent with our initial conjecture, the endogenous signal
sp must have coefficient 1

β
= γα

τη
on Z. To be consistent with our conjecture, the price

coefficients must satisfy

A0 = µA − γ 1
τA
n (A10)

A1 = µA − γ 1
τA
n− c− γ 1

τη
n (A11)

B1 = 1. (A12)

Stepping back to t = 2, the manager’s problem is to solve

max
k∈{0,1}

E[V (k)|P1], (A13)

where she can condition on the first period price, P1. The optimal investment is therefore

k =

{
1 E[θ|P1] > c

0 E[θ|P1] ≤ c
. (A14)

Now, let s̄C denote the level of sp such that the manager would be indifferent to investing
and not investing if she observed sp, that is,

E[θ|sp = s̄C ]− c = 0.

Because E[θ|sp] = µθ +
τp

τθ+τp

(
sp − µθ − 1

β
µZ

)
, with τp ≡ β2τZ , we have:

E[θ|sp = s̄C ]− c = 0 ⇔ s̄C = µθ +
γα

τη
µZ − τθ + τp

τp
(µθ − c)

= c− τθ (µθ − c)

τp
+

γ

τη
αµZ .

We claim that the threshold s̄ = s̄C is consistent with our conjectured equilibrium,
that is, the manager invests if and only if sp > s̄C . Under such a threshold, when the
manager observes A0, she knows sp lies below s̄C with probability 1, and so infers that
it is suboptimal to invest. In contrast, when she observes P1 ̸= A0, she infers sp and
knows that sp lies above s̄C , and so chooses to invest. Thus, the investment threshold s̄C
is indeed consistent with conjectured form of equilibrium.

Stepping back to t = 1, the problem of an arbitrary investor is

max
x∈R

Ei1[−e−γWi4 ],
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where her terminal wealth is

Wi4 = (n+ x+Xi3)V −Xi3P3 − xP1 − ziηC .

and where the optimal t = 3 demand Xi3 was derived above. Given the functional form
for P3, the realization of P3 is perfectly anticipated under the investor’s information set
Fi1 = σ(θ, zi, P1). Hence, to rule out arbitrage, the price must satisfy P1 = P3, and
consequently all investors are indifferent to trading at t = 1 at this equilibrium price.
Thus, we have now shown the equilibrium stated in the proposition exists.

Finally, we argue that this equilibrium maximizes investment over all possible thresh-
old equilibria. Suppose by contradiction that there were an equilibrium with a lower
investment threshold s̄ < s̄C . Then, the date one price would reveal sp to the manager
for sp ∈ (s̄, s̄C) and the manager would invest for such sp. However, by the definition
of s̄C , investment reduces expected cash flows in this region, and so the manager could
improve the expected cash flows by deviating to not investing when she observes sp in
this region. This contradicts the purported existence of an equilibrium with s̄ < s̄C and
establishes the claim.

B. Proof of Proposition 2

The proof proceeds similarly to the proof of Proposition 1 above. Again, we begin by
conjecturing asset prices in the two trading dates that take the form in (A1). At date
t = 3, investors can observe the actual investment decision made at t = 2. Hence, the
date three equilibrium, given the manager’s investment choice, follows exactly as in the
previous proof: they perceive the asset payoff as conditionally normally distributed with
conditional moments as in equations (A2)–(A4), their optimal demands take the form in
(A7), the date three price takes the form in (A9), and the endogenous signal sp again
must have coefficient 1

β
= γα

τη
on Z.

Stepping back to t = 2, the manager’s problem is now to solve

max
k∈{0,1}

E[P3|P1], (A15)

where she can condition on the first period asset price, P1. Using the expression for P3

derived in the first step of the proof, the manager’s problem reduces to

max
k∈{0,1}

kE
[
sp − c− γ 1

τη
n

∣∣∣∣P1

]
. (A16)

The optimal investment is therefore

k =

{
1 E[sp|P1] > c+ γ 1

τη
n

0 E[sp|P1] ≤ c+ γ 1
τη
n
. (A17)

Note that the threshold s̄P , defined by s̄P ≡ c + γ 1
τη
n is the value such that, if the

manager always observed sp, she would invest if and only if sp > s̄P . We claim that this
threshold is consistent with our conjectured equilibrium. To see this, note that if the
manager observes P1 = A0, she infers sp ≤ s̄P , and so she chooses not to invest. On the
other hand, if she observes any P1 ̸= A0, she infers the realized value of sp, necessarily
strictly greater than s̄P and therefore finds it optimal to invest. Hence, the investment
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threshold s̄P is indeed consistent with our initial conjecture.
Stepping back to t = 1, as in the prior proof, since the manager’s investment decision

is a function of P1, investors can anticipate k given the price. Thus, they can perfectly
anticipate the date three price, and, to rule out arbitrage, the price must satisfy P1 = P3,
and consequently all investors are indifferent to trading at t = 1 at this equilibrium price.
This completes the construction of equilibrium.

This equilibrium maximizes investment over all possible threshold equilibria. Suppose
by contradiction that there were an equilibrium with a lower investment threshold s̄ < s̄P .
Then, the price would reveal sp to the manager for sp ∈ (s̄, s̄P ). Moreover, by the
definition of s̄P , investment lowers price on this region, and so the manager prefers to
deviate to not investing when observing sp in this region.

C. Proof of Proposition 3

The probability of investment is given by

Pr (sp > s̄C) = 1− Φ

(
s̄C − E[sp]

V[sp]

)
= Φ

(
E [sp]− s̄C√

V [sp]

)
(A18)

= Φ

τθ

(
1
τθ
+ 1

τp

)
(µθ − c)√

1
τθ
+ 1

τp

 (A19)

= Φ

(
τθ

√
1

τθ
+

1

τp
(µθ − c)

)
. (A20)

Recalling that τp = β2τZ =
(

τη
γα

)2
τZ , direct inspection now immediately yields the

claimed results.

D. Proof of Proposition 4

The probability of investment is given by

Pr (sp > s̄) = 1− Φ

(
sP − E[sp]

V[sp]

)
= Φ

(
E [sp]− s̄P√

V [sp]

)
(A21)

= Φ

µθ − c− γn
τη

+ αγµZ

τη√
1
τθ
+
(

αγ
τη

)2
1
τZ

 (A22)

This immediately implies probability of investment is increasing in µθ − c, decreasing in
n, increasing in µZ . Moreover, for any arbitrary parameter b we have, after applying the
monotonic transformation Φ−1 (·) and using the definition NPV = θ − c− γ 1

τη
(n− αZ)

from the text to condense notation:

∂

∂b
Pr (sp > s̄) ∝ ∂

∂b

µθ − c− γn
τη

+ αγµZ

τη√
1
τθ
+
(

αγ
τη

)2
1
τZ

(A23)
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=
∂

∂b

E [NPV ]√
V (NPV )

(A24)

=

√
V (NPV ) ∂

∂b
E [NPV ]− E [NPV ] ∂

∂b

√
V (NPV )

V (NPV )
(A25)

=
|E [NPV ]|√
V (NPV )

(
∂
∂b

E[NPV ]

|E[NPV ]| − sgn (E [NPV ])
∂
∂b

√
V(NPV )√

V(NPV )

)
(A26)

=
|E [NPV ]|√
V (NPV )

(
∂
∂b

E[NPV ]

|E[NPV ]| − 1
2
sgn (E [NPV ])

∂
∂b

V(NPV )

V(NPV )

)
. (A27)

For α we have

∂

∂α
Pr (sp > s̄) ∝

(
∂
∂α
E [NPV ]− 1

2
E [NPV ]

∂
∂α

V(NPV )

V(NPV )

)
(A28)

=
γµZ

τη
−
(
µθ − c− γn

τη
+

αγµZ

τη

) 1
α

(
αγ
τη

)2 1
τZ

1
τθ

+
(

αγ
τη

)2 1
τZ

(A29)

=
1
α

(
αγ
τη

)2 1
τZ

1
τθ

+
(

αγ
τη

)2 1
τZ

(
γµZ

τη

1
τθ

+
(

αγ
τη

)2 1
τZ

1
α

(
αγ
τη

)2 1
τZ

−
(
µθ − c− γn

τη
+

αγµZ

τη

))
(A30)

=
1
α

(
αγ
τη

)2 1
τZ

1
τθ

+
(

αγ
τη

)2 1
τZ

(
αγµZ

τη

1
τθ

+
(

αγ
τη

)2 1
τZ(

αγ
τη

)2 1
τZ

−
(
µθ − c− γn

τη
+

αγµZ

τη

))
(A31)

=
1
α

(
αγ
τη

)2 1
τZ

1
τθ

+
(

αγ
τη

)2 1
τZ

(
αγµZ

τη

(
1 +

1
τθ(

αγ
τη

)2 1
τZ

)
−
(
µθ − c− γn

τη
+

αγµZ

τη

))
(A32)

=
1
α

(
αγ
τη

)2 1
τZ

1
τθ

+
(

αγ
τη

)2 1
τZ

((
1
τθ(

αγ
τη

)
1
τZ

)
µZ −

(
µθ − c− γn

τη

))
(A33)

= −
1
α

(
αγ
τη

)2 1
τZ

1
τθ

+
(

αγ
τη

)2 1
τZ

(
µθ − c− γn

τη
− τητZ

αγ
1
τθ
µZ

)
(A34)

which implies

∂

∂α
Pr (sp > s̄) < 0 ⇔ sgn(α)

(
µθ − c− γn

τη
− τητZ

αγ
1
τθ
µZ

)
> 0. (A35)

Moreover, note that because the parameters τ ∈ {τZ , τθ} do not enter the expected NPV
and increases in these τ strictly decrease the variance of the NPV, we have

∂

∂τZ
Pr (sp > s̄) ,

∂

∂τθ
Pr (sp ≥ s̄) ∝ −1

2
sgn (E [NPV ])

∂
∂τ

V(NPV )

V(NPV )
(A36)

∝ sgn (E [NPV ]) (A37)

so that the dependence is pinned down by the sign of the expected NPV, which immedi-
ately establishes the claimed result.

51



E. Proof of Proposition 5

To establish the welfare-maximizing rule, note that the sp-conditional expected utility
is a special case of Proposition IA1 in which τζ → ∞. In this limit, the functions Q and
D that characterize the expected utility W(k; sp) = −D(k; sp) exp{Q(k; sp)} are

Q (k; sp) = −γEp [V ]n+
1

2
γ2

(
1

τA
+ k2

(
Vp (θ) +

1− α2

τη

))
n2

+
1

2
γ2 1

τη
(Ep [Z]− kαn− γkCp (Z, θ)n)

2 (1 + Γ (k; sp))

and

D(k; sp)

√
Γ (k; sp)

γ2 1
τη
Vp (Z)

where

Γ (k; sp) = γ2 1

τη
Vp (Z)

(
1− γ2 1

τη
Vp (Z)

)−1

.

Only the function Q above depends on the investment decision k. Further, grouping
terms and plugging in for Γ(k; sp) allows us to write

Q (k; sp) = −γEp [V ]n+
1

2
γ2

(
1

τA
+ k2

(
Vp (θ) +

1− α2

τη

))
n2

+
1

2
γ2 1

τη
(Ep [Z]− (α + γCp (Z, θ)) kn)

2

(
1− γ2 1

τη
Vp (Z)

)−1

. (A38)

Further, because 1
β
= γα

τη
and Cp(θ, Z) = Cp(sp − 1

β
Z,Z) = − 1

β
Vp(Z) we can write

α + γCp (Z, θ) =
1

β

τη
γ

(
1− γ2 1

τη
Vp(Z)

)
and plugging this back in to the last term in eq. (A38) gives

1

2
γ2 1

τη

(
Ep [Z]−

1

β

τη
γ

(
1− γ2 1

τη
Vp(Z)

)
kn

)2(
1− γ2 1

τη
Vp (Z)

)−1

=
1

2
γ2 1

τη

(
Ep [Z]−

1

β

τη
γ

(
1− γ2 1

τη
Vp(Z)

)
kn

)2(
1− γ2 1

τη
Vp (Z)

)−1

=
1

2
γ2 1

τη

(
1− γ2 1

τη
Vp (Z)

)−1

E2
p[Z]− γk

1

β
Ep[Z]n

+
1

2

(
1

β

)2

τη

(
1− γ2 1

τη
Vp (Z)

)
k2n2

=
1

2
γ2 1

τη

(
1− γ2 1

τη
Vp (Z)

)−1

E2
p[Z]− γk

1

β
Ep[Z]n
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+
1

2
γ2α2 1

τη
− 1

2
γ2

(
1

β

)2

Vp(Z)k
2n2.

Noting that Vp(θ) = Vp(sp − 1
β
Z) =

(
1
β

)2
Vp(Z), plugging the most recent expression

back in to eq. (A38), and collecting terms yields

Q (k; sp) = −γEp [V ]n+
1

2
γ2

(
1

τA
+ k2 1

τη

)
n2

+
1

2
γ2 1

τη

(
1− γ2 1

τη
Vp (Z)

)−1

E2
p[Z]− γk

1

β
Ep[Z]n

= −γ

(
µA + kEp

[
θ +

1

β
Z − c

])
n+

1

2
γ2

(
1

τA
+ k2 1

τη

)
n2

+
1

2
γ2 1

τη

(
1− γ2 1

τη
Vp (Z)

)−1

E2
p[Z]

where we have used Ep[V ] = Ep[A+ k(θ − c)] and grouped terms in the last line.
Now, since sp = θ + 1

β
Z and we have k2 = k for k ∈ {0, 1}, it follows from the above

that the investment k ∈ {0, 1} that maximizes W (k; sp) = −D(k; sp) exp{Q(k; sp)} is

k(sp) = argmax
k∈{0,1}

(
γ (µA + kEp [sp − c])n− 1

2
γ2

(
1

τA
+ k

1

τη

)
n2

)
= 1

{
sp − c− 1

2
γ
1

τη
n > 0

}
.

Defining sW ≡ c+ 1
2

γ
τη
n delivers the investment rule in the Proposition.

Furthermore, using the expressions for the price-maximizing threshold, s = c + γ
τη
n,

from Proposition 2, and the cash-flow-maximizing threshold, s̄C = c− τθ(µθ−c)
τp

+ γ
τη
αµZ ,

from eq. (14), yields the expressions for s− sW and s̄C − sW . The claims about over- and
under-investment are immediate given the signs of these expressions.

F. Proof of Proposition 6

Given our expressions for P1 and P3 in a threshold equilibrium, we can write

δE[P3|P1] + (1− δ)E[V |P1] (A39)

= δ

(
µA − γ

1

τA
n+ k(sp − c− γ

1

τη
n)

)
+

(1− δ)

[
µA + k

(
µθ − c+

β2τZ
τθ + β2τZ

(sp − E[sp])
)]

.

(A40)

The k ∈ {0, 1} that maximizes this expression is

k(sp) = 1

{
δ

(
sp − c− γ

1

τη
n

)
+ (1− δ)

(
µθ − c+

τp
τθ + τp

(sp − E[sp])
)

> 0

}
(A41)
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= 1

{
sp >

1

δ + (1− δ) τp
τθ+τp

(
δ

(
c+ γ

1

τη
n

)
+ (1− δ)

(
c− µθ +

τp
τθ + τp

E[sp]
))}

.

(A42)

Setting the threshold in this expression equal to s̄W = c+ 1
2
γ 1
τη
n and solving for δ yields

δ =
µθ − c− τp

τθ+τp
E[sp] + τp

τθ+τp
s̄W

µθ + γ 1
τη
n− τp

τθ+τp
E[sp]− τθ

τθ+τp
s̄W

=
µθ − c− τp

τθ+τp

(
µθ +

1
β
µZ

)
+ τp

τθ+τp

(
c+ 1

2
γ 1
τη
n
)

µθ + γ 1
τη
n− τp

τθ+τp

(
µθ +

1
β
µZ

)
− τθ

τθ+τp

(
c+ 1

2
γ 1
τη
n
)

=

τθ
τθ+τp

(µθ − c)− τp
τθ+τp

(
1
β
µZ − 1

2
γ 1
τη
n
)

τθ
τθ+τp

(µθ − c)− τp
τθ+τp

(
1
β
µZ − 1

2
γ 1
τη
n
)
+ 1

2
γ 1
τη
n
.

After substituting in 1
β
= γα

τη
and τp = β2τZ , this matches the expression in the Proposi-

tion. If α = 0 then 1
β
→ 0 and τp → ∞, and this expression reduces to

δ =

1
2
γ 1
τη
n

1
2
γ 1
τη
n+ 1

2
γ 1
τη
n
=

1

2
(A43)

as claimed. More generally, note that one can express δ = ω
ω+υ

, where ω = τθ
τθ+τp

(µθ − c)−
τp

τθ+τp

(
1
β
µZ − 1

2
γ 1
τη
n
)
and υ = 1

2
γ 1
τη
n > 0. This implies δ ∈ (0, 1) if and only if ω > 0.

G. Proof of Proposition 7

Consider the conditional welfare expression from Proposition IA1 for an arbitrary
investment k and price signal realization sp. We will show that this expression is strictly
increasing in k for k ∈ [0, 1], from which it follows that the welfare-maximizing investment
is k = 1.

For n = 0 the conditional welfare is

W(k; sp) = −D(k; sp) exp{Q(k; sp)} (A44)

where

Q (k; sp) =
1

2
γ2 1

τη
E2

p [Z] (1 + Γ (k; sp))

where the determinant term D and the function Γ do not depend on n and are as given
in Proposition IA1:

D(k; sp) =

√√√√√ 1
τA

+ k2 1
τη

1
τA

+ k2
(
Vp (θ|zi) + 1

τη

)√√√√ Γ (k; sp)

γ2 1
τη

(
Vp (Z) +

1
τζ

)
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Γ (k; sp) = γ2 1

τη

(
Vp (Z) +

1

τζ

)1− γ2 1

τη

(
Vp (Z) +

1

τζ

)1−
k2α2 1

τη

(
1
τζ

Vp(Z)+ 1
τζ

)2

1
τA

+ k2
(
Vp (θ|zi) + 1

τη

)



−1

.

Because of the negative sign in front of the expression in eq. (A44), to show that condi-
tional expected utility increases in k, it suffices to show that the functions Q and D are
decreasing functions of k for k ∈ [0, 1]. Moreover, because k enters these expressions only
in terms of k2, it suffices to characterize their behavior as functions of k2 for k2 ∈ [0, 1].

Consider first the function Γ, which appears in both Q and D. We have

∂

∂k2

k2α2 1
τη

(
1
τζ

Vp(Z)+ 1
τζ

)2

1
τA

+ k2
(
Vp (θ|zi) + 1

τη

) (A45)

=

1
τA
α2 1

τη

(
1
τζ

Vp(Z)+ 1
τζ

)2

(
1
τA

+ k2
(
Vp (θ|zi) + 1

τη

))2 , (A46)

which is strictly positive when 1
τζ

> 0, from which it follows that Γ is decreasing in k2

and consequently Q is decreasing in k2.

Considering D, it remains only to show that the term
1
τA

+k2 1
τη

1
τA

+k2
(
Vp(θ|zi)+ 1

τη

) is decreasing

since we have already shown that Γ is decreasing. We have

∂

∂k2

1
τA

+ k2 1
τη

1
τA

+ k2
(
Vp (θ|zi) + 1

τη

) =
− 1

τA
Vp(θ|zi)(

1
τA

+ k2
(
Vp (θ|zi) + 1

τη

))2 , (A47)

which is strictly negative when 1
τζ

> 0. Hence, we have verified that investors are strictly

better off when k = 1 than k = 0 for a given price signal realization sp. Because this
holds for all realizations of sp, it follows that the ex-ante welfare-maximizing policy is to
always invest.

H. Proof of Proposition 8

Consider either threshold s ∈ {sC , sP}. If the unconditional policy is to invest (i.e.,
E[sp] − s > 0), then a manager who does not condition on price optimally invests in all
states of the world, leading to ‘no feedback’ investment kNF ≡ 1. Hence, to establish
that feedback reduces welfare, it suffices to show that welfare is higher with kNF = 1
than with the threshold policy k(sp) = 1{sp>s}.

The small n limit in the Proposition follows immediately from Proposition 7 and
continuity of the expected utility in n since that Proposition establishes that the welfare-
maximizing investment policy for n = 0 is for the manager to always invest. Hence,
because feedback causes the manager to not invest with strictly positive probability,
feedback strictly reduces ex-ante welfare.

The τζ limit is easier to establish using the unconditional welfare expression in Propo-
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sition IA2 directly. Establishing the limit as τζ ↓, is equivalent to establishing the
limit as 1/τζ ↑. In order for unconditional expected utility to exist, we must have

1
1
τZ

+
1
τζ

− γ2 1
τη

> 0 ⇔ 0 ≤ 1
τζ

< τη
γ2 − 1

τZ
. Hence, the relevant limit is 1

τζ
↑ τη

γ2 − 1
τZ
.

Using the unconditional welfare from Proposition IA2, welfare under the no-feedback in-
vestment level kNF = 1 is higher than under the feedback policy k(sp) = 1{sp>s} if and
only if

−D(1) exp {Q(1)} > −Φ

(
s−E[sp]+m(0)√

v(0)

)
D(0) exp {Q(0)}

−
(
1− Φ

(
s−E[sp]+m(1)√

v(1)

))
D(1) exp {Q(1)}

⇔ Φ

(
s−E[sp]+m(0)√

v(0)

)
D(0) exp {Q(0)} > Φ

(
s−E[sp]+m(1)√

v(1)

)
D(1) exp {Q(1)} .

Hence, to establish the claimed result, it suffices to show

lim
1
τζ

↑
τη
γ2−

1
τZ

Φ

(
s−E[sp]+m(0)√

v(0)

)
D(0) exp {Q(0)} > lim

1
τζ

↑
τη
γ2−

1
τZ

Φ

(
s−E[sp]+m(1)√

v(1)

)
D(1) exp {Q(1)} .

We will show this by establishing that lim 1
τζ

↑
τη
γ2−

1
τZ

Φ

(
s−E[sp]+m(0)√

v(0)

)
D(0) exp {Q(0)} =

∞, while lim 1
τζ

↑
τη
γ2−

1
τZ

Φ

(
s−E[sp]+m(1)√

v(1)

)
D(1) exp {Q(1)} < ∞.

Letting a = τη
γ2 − 1

τZ
to reduce clutter, note first that

lim
1
τζ

↑a
Γ(k) = lim

1
τζ

↑a
γ2 1

τη

(
1

τZ
+

1

τζ

)1− γ2 1

τη

(
1

τZ
+

1

τζ

)1−
k2α2 1

τη

(
1
τζ

1
τZ

+ 1
τζ

)2

1
τA

+ k2

(
1
τη

+ 1

β2(τZ+τζ)

)



−1

=

{
∞ k = 0

Finite k = 1

where the finite limit in the k = 1 case relies on the assumption α ̸= 0.
It follows that we have

lim
1
τζ

↑a
D(k) = lim

1
τζ

↑a

√√√√√√
1
τA

+ k2 1
τη

1
τA

+ k2

(
1
τη

+ 1

β2(τZ+τζ)

)√√√√ Γ (k)

γ2 1
τη

(
1
τZ

+ 1
τζ

)

=

{
∞ k = 0

Finite k = 1
.
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Similarly,

lim
1
τζ

↑a
Q(k) = lim

1
τζ

↑a

{
−γEp [V ]n+

1

2
γ2

(
1

τA
+ k2

(
Vp (θ) +

1− α2

τη

))
n2

+
1

2
γ2 1

τη
(Ep [Z]− kαn− γkCp (Z, θ)n)

2 (1 + Γ (k; sp))

}
=

{
∞ k = 0

Finite k = 1
.

Because the function Φ is bounded, together these results imply that

lim
1
τζ

↑a
Φ

(
s−E[sp]+m(1)√

v(1)

)
D(1) exp {Q(1)} < ∞

as claimed.

It remains to show that lim 1
τζ

↑a
Φ

(
s−E[sp]+m(0)√

v(0)

)
D(0) exp {Q(0)} = ∞. Considering

s−E[sp]+m(0)√
v(0)

, if 1/β = 0,then s−E[sp]+m(0)√
v(0)

is constant in τζ and we are done. Considering

1/β ̸= 0, we have

lim
1
τζ

↑a

s−E[sp]+m(0)√
v(0)

= lim
1
τζ

↑a

m(0)√
v(0)

= lim
1
τζ
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γC(sp,V (0))n−γ2C(sp,Z) 1
τη

µZ(1+Γ(0))√
V(sp)+γ2C2(sp,Z) 1

τη
(1+Γ(0))

= lim
1
τζ

↑a

−γ2 1
β
V(Z) 1

τη
µZ(1+Γ(0))√

V(sp)+γ2C2(sp,Z) 1
τη

(1+Γ(0))

=

{
−∞ 1

β
> 0

∞ 1
β
< 0

where we use the fact that lim 1
τζ

↑a
Γ(0) = ∞.

If 1/β < 0, the proof is complete, since Q(0) → ∞, D(0) → ∞ and in this case

lim 1
τζ

↑a
Φ

(
s−E[sp]+m(1)√

v(1)

)
> 0, so that lim 1

τζ
↑a
Φ

(
s−E[sp]+m(0)√

v(0)

)
D(0) exp {Q(0)} = ∞. If

1/β > 0, then lim 1
τζ

↑a
Φ

(
s−E[sp]+m(1)√

v(1)

)
= 0, so the limit is still indeterminate. Write

Φ

(
s−E[sp]+m(0)√

v(0)

)
D(0) exp {Q(0)} as

Φ

(
s−E[sp]+m(0)√

v(0)

)
D(0) exp {Q(0)} =

Φ

(
s−E[sp]+m(0)√

v(0)

)
1

D(0)
exp {−Q(0)}

and note that the relevant limit ultimately depends on the relative rate at which the
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various terms grow as x ≡
(
1− γ2 1

τη

(
1
τZ

+ 1
τζ

))−1

approaches ∞ so that we can write

lim
1
τζ

↑a

Φ

(
s−E[sp]+m(0)√

v(0)

)
1

D(0)
exp {−Q(0)}

= lim
x→∞

Φ (−
√
x)

1√
x
exp {−x}

,

where we have used the fact that s−E[sp]+m(0)√
v(0)

and D(0) grow at order
√
x with x and Q

grows at order x. Using L’Hospital’s rule yields

lim
x→∞

Φ (−
√
x)

1√
x
exp {−x}

= lim
x→∞

−1
2
x−1/2ϕ (−

√
x)

− 1√
x
exp {−x} − 1

2
x−3/2 exp {−x}

= lim
x→∞

ϕ (−
√
x)

2 exp {−x}+ x−1 exp {−x}

= lim
x→∞

1√
2π

exp
{
−1

2
x
}

2 exp {−x}+ x−1 exp {−x}
= ∞,

which establishes lim 1
τζ

↑a

Φ

(
s−E[sp]+m(0)√

v(0)

)
1

D(0)
exp{−Q(0)}

= ∞ and completes the proof.
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A Investor Welfare

In this section, we characterize investors’ expected utilities, which is a key step in
establishing the welfare results in the text. We make extensive use of matrix notation,

and let V =
(

V (k)
−ηC

)
denote the stacked vector of payoffs on the stock and the outside

endowment and Zi = ( n
zi ) and Z = ( n

Z ) denote the vectors of individual and aggregate
endowments. Let Ik denote an identity matrix of dimension k. Let 0k denote a column
vector of zeros of length k and let 0j×k represent a zero matrix of dimension j × k.
We will typically suppress subscripts on these objects where no confusion will result
and simply let I or 0 represent a conformable identity matrix or zero vector / matrix,
respectively. We follow the convention that given random vectors X ∈ RJ and Y ∈ RK ,
the cross-covariance matrix C (X, Y ) is the J×K matrix with (j, k)th element C (Xj, Yk).
We denote transposes by ′ and determinants by |·|. Finally, let Fp = σ(sp) denote the
information set given sp, with associated expectation, variance, and covariance operators
Ep[·], Vp(·), and Cp(·), respectively.

The proof of Proposition 2 established that, in equilibrium, we have P1 ≡ P3 and
investors are indifferent to any trading strategy with aggregate trade across the two
trading rounds given by

Xi3 +Xi1 =
Ei3[V (k)] + γCi3(V (k), ηC)zi − P3

γVi3(V (k))
− n. (IA1)

Consequently, the following material proceeds, without loss of generality, under the as-
sumption that Xi1 = 0 and Xi3 = Ei3[V (k)]+γCi3(V (k),ηC)zi−P3

γVi3(V (k))
− n. Hence, to reduce nota-

tional clutter, we suppress the t dependence of the price function and other equilibrium
objects where no confusion will result.

The equilibrium welfare expressions rely, in part, on the following key Lemma, which
relates investors’ conditional variance at the trading dates to the sp-conditional moments
of returns. This is a variant of the key Lemma 1 in Bond and Garcia (2022), applied to our
setting, that represents investor covariances at the trading dates in terms of conditional
covariances under the sp information set.

LEMMA IA1: Consider an arbitrary investor i. Let K ≡ γ
(

1
γ
I2 + Cp (V ,Z)

)
and define

the random vector V∗ = K−1V =
(
V−γCp(V,Z)U

U

)
. We have

Cp (V − P,V∗) = Ci (V,V)

and

Cp (V − P,Zi) = γCp (V − P,V∗)Vp (Z) .

Our first result characterizes the conditional expected utility, given observation of the
price-signal sp. This object is directly useful for characterizing the welfare-maximizing
sp-dependent investment rules and is also used as an intermediate result for deriving the
unconditional expected utility.

PROPOSITION IA1: Consider an arbitrary sp-dependent investment rule k(sp), with
associated asset value V = V (k(sp)) and pricing rule P (sp). The conditional expected
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utility of investor i given Fp = σ(sp) can be written as

W (k; sp) ≡ −D(k; sp) exp {Q(k; sp)} (IA2)

where the quadratic form Q is

Q (k; sp) = −γEp [V ]n+
1

2
γ2

(
1

τA
+ k2

(
Vp (θ) +

1− α2

τη

))
n2

+
1

2
γ2 1

τη
(Ep [Z]− kαn− γkCp (Z, θ)n)

2 (1 + Γ (k; sp))

and the determinant term D is

D(k; sp) =

√√√√√ 1
τA

+ k2 1
τη

1
τA

+ k2
(
Vp (θ|zi) + 1

τη

)√√√√ Γ (k; sp)

γ2 1
τη

(
Vp (Z) +

1
τζ

)
where

Γ (k; sp) = γ2 1

τη

(
Vp (Z) +

1

τζ

)1− γ2 1

τη

(
Vp (Z) +

1

τζ

)1−
k2α2 1

τη

(
1
τζ

Vp(Z)+ 1
τζ

)2

1
τA

+ k2
(
Vp (θ|zi) + 1

τη

)



−1

Taking the expectation of the sp-conditional utility with respect to sp delivers the
unconditional welfare, which we record in the following Proposition.

PROPOSITION IA2: Consider an arbitrary threshold investment rule k(sp) = 1{sp>s}.
The unconditional expected utility under this investment rule can be written as

W = −Φ

(
s−E[sp]+m(0)√

v(0)

)
D(0) exp {Q(0)}

−
(
1− Φ

(
s−E[sp]+m(1)√

v(1)

))
D(1) exp {Q(1)}

where

D(k) =

√√√√√√
1
τA

+ k2 1
τη

1
τA

+ k2

(
1
τη

+ 1

β2(τZ+τζ)

)√√√√ Γ (k)

γ2 1
τη

(
1
τZ

+ 1
τζ

) ,

Q(k) = −γE [V (k)]n+
1

2
γ2

(
1

τA
+ k2

(
1

τθ
+

1− α2

τη

))
n2

+
1

2
γ2 (µZ − kαn)2

1

τη
(1 + Γ (k))

3



and

m(k) = γC (sp, V (k))n− γ2C (sp, Z)
1

τη
(µZ − kαn) (1 + Γ (k))

v(k) = V (sp) + γ2C2 (sp, Z)
1

τη
(1 + Γ (k)) ,

where

Γ (k) = γ2 1

τη

(
1

τZ
+

1

τζ

)1− γ2 1

τη

(
1

τZ
+

1

τζ

)1−
k2α2 1

τη

(
1
τζ

1
τZ

+ 1
τζ

)2

1
τA

+ k2

(
1
τη

+ 1

β2(τZ+τζ)

)



−1

.

A. Proof of Lemma IA1

The equilibrium price can be represented as

P =

∫
j

Ej [V ] dj − γCi (V, U)Z − γVi (V )n

=

∫
Ej [V ] dj − γCi (V,V)Z

where the second equality concisely writes the risk premium terms using vector notation.
Now, we can directly compute

Cp (V − P,V) = Cp

(
V −

∫
j

Ej [V ] dj,V
)
+ Cp (γCi (V,V)Z,V)

=

∫
j

Cp (V − Ej [V ] ,V) dj + γCi (V,V)Cp (Z,V) (IA3)

= Ci (V,V) + γCi (V,V)Cp (Z,V) (IA4)

The second equality uses the linearity of the covariance operator to pull the covari-
ance inside the integral in the first term and pull out the constant vector γCi (V,V)
in the second term. The final equality uses the law of total covariance to conclude
Cp (V − Ej [V ] ,V) = Cj (V,V) and then uses the fact that the conditional covariances
are equal across all investors j, that is, Cj (V,V) = Ci (V,V) for all i, j.

Now, rearranging and grouping terms in eq. (IA3) yields

Cp (V − P,V) = Ci (V,V) + γCi (V,V)Cp (Z,V)

= Ci (V,V) γ
(
1

γ
I2 + Cp (Z,V)

)

Post-multiplying both sides by the matrix (K ′)−1 ≡ 1
γ

(
1
γ
I2 + Cp (Z,V)

)−1

and using

the linearity of the covariance operator to pull the K−1 inside the right-hand argu-
ment of the Cp (V − P,V) yields the expression in the proposition. Now, considering
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the Cp (V − P,Zi) covariance, analogous steps yield

Cp (V − P,Zi) = Cp (V − P,Z)

= Cp

(
V −

∫
j

Ej [V ] dj,Z
)
+ Cp (γCi (V,V)Z,Z)

=

∫
j

Cp (V − Ej [V ] ,Z) dj + γCi (V,V)Cp (Z,Z)

= Ci (V,Z) + γCi (V,V)Vp (Z)

= γCp (V − P,V∗)Vp (Z) .

where the first equality uses the fact that that the idiosyncratic portion of investor en-
dowments are conditionally uncorrelated with V − P to write the covariance in terms
of the aggregate endowment Z, the second equality substitutes in for P , and the third
equality uses the linearity of the covariance operator. The next-to-last line uses the law
of total variance to write Cp (V − Ej [V ] ,Z) = Cj (V,Z) and then symmetry across all
i, j to write this covariance in terms of a generic investor Ci. The final line uses the fact
that investors’ conditional covariance satisfies Ci (V,Z) = 0 (since they either infer Z
from the price in the event of investment or the asset payoff is independent, V = A, in
the event of no investment) and uses Ci (V,V) = Cp (V − P,V∗) from the first part of the
Lemma.

B. Proof of Proposition IA1

To compute the conditional expected utility, we will use the law of iterated expecta-
tions, first computing the expectation conditional on Fi+ = σ({θ, zi, sp}), which is the
investor information set augmented with sp, and then computing the conditional expec-
tation of that object given Fp. We emphasize that the initial step is, in principle, not
identical to computing the expectation given the investor information set Fi itself since
sp is only inferred by the investor in states in which investment is positive and the asset
price has non-trivial dependence on sp. However, we begin the proof by establishing that,
in fact, the conditional expected utilities given Fi and Fi+ are identical.

Because the investment decision k is in both Fi and Fi+ (i.e., k is observed/inferred
by investors in equilibrium and is in Fi+ since k is sp-measurable), all random variables
are conditionally Gaussian under both Fi and Fi+ . Hence, to show that the two condi-
tional expected utilities are identical, it suffices to show that the conditional moments
are identical. Direct calculation establishes that the conditional means satisfy

Ei+ [V ] =

{
E[A|θ, zi, sp] k = 0

E[A+ θ − c+ αηC +
√
1− α2ηI |θ, zi, sp] k = 1

(IA5)

=

{
µA k = 0

µA + E[θ − c|θ, zi, sp] k = 1
(IA6)

= Ei[V ] (IA7)

and

Ei+ [U ] = E[−ηC |θ, zi, sp] = 0 = Ei[U ]. (IA8)
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Similarly, the conditional variances and covariances satisfy

Vi+ [V ] =

{
V[A|θ, zi, sp] k = 0

V[A+ θ − c+ αηC +
√
1− α2ηI |θ, zi, sp] k = 1

(IA9)

=

{
1
τA

k = 0
1
τA

+ 1
τη

k = 1
(IA10)

= Vi[V ], (IA11)

Vi+ [U ] = V[−ηC |θ, zi, sp] = 1
τη

= Vi[U ] (IA12)

and

Ci+(V, U) =

{
C(A,U |θ, zi, sp) k = 0

C(A+ θ − c+ αηC +
√
1− α2ηI , U |θ, zi, sp) k = 1

(IA13)

=

{
0 k = 0

−α 1
τη

k = 1
(IA14)

= Ci(V, U). (IA15)

Because the conditional moments are identical under both Fi and Fi+ , it follows that
the conditional expected utilities are identical and given by substituting the optimal de-
mand back into the investor objective function in Proposition 2. Straightforward algebra
establishes that

Ei[−e−γW ∗
i ] = −e

−γnEi[V ]+γ
(
n+zi

Ci(V −P,U)

Vi(V −P )

)
Ei[V−P ]− 1

2

E2i [V −P ]

Vi(V −P )
+ 1

2
γ2Vi(U |V−P )z2i (IA16)

where we have used Vi (U |V − P ) = Vi (U)−C2
i (U, V − P ) /Vi (V − P ) to condense the

final term in the exponential.
To complete the proof, we need to compute the conditional expectation of this quantity

given Fp. Let hi =
(
1, Ci(V−P,U)

Vi(V−P )

)
be the 2×1 vector of conditional regression coefficients

of (V, U) on V − P and define the 5× 5 block matrix

ai =

V−1
i (V − P ) 01×2 −γh′

i

02×1 02×2 γI2
−γhi γI2 −γ2Vi(V|V − P )

 . (IA17)

Similarly, let

Y ≡
(

V−P
V
Zi

)
=

(
V−P

(VU )
( n
zi )

)

denote the conformably partitioned vector of asset returns, payoffs, and endowments.
With this notation, we can concisely write the Fi+ expected utility above as

Ei[−e−γW ∗
i ] = −e−

1
2
Ei[Y ]′aiEi[Y ]. (IA18)
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Because the investment decision k(sp) is known given Fp, the random vector Ei[Y ] is
conditionally jointly normally distributed given Fp.

2 We can now use standard formulas
for expected exponential-quadratic forms of normal random vectors to compute

ER

[
−e−

1
2
Ep[Y ]′aiEp[Y ]

]
(IA19)

= − |ai|−1/2
∣∣Vp(Ei[Y ]) + a−1

i

∣∣−1/2
exp

{
−1

2
Ep[Y ]′

(
Vp(Ei[Y ]) + a−1

i

)−1 Ep[Y ]

}
(IA20)

where we use the law of iterated expectations to write Ep[Ei[Y ]] = Ep[Y ]. This expression
requires that the matrix ai is invertible. Using standard formulas for determinants of
partitioned matrices (e.g., eq. (5) in Henderson and Searle (1981)) we can compute its
determinant,

|ai| =
∣∣V−1

i (V − P )
∣∣ ∣∣−γ2I2

∣∣ = γ4
∣∣V−1

i (V − P )
∣∣ > 0, (IA21)

which implies that ai is invertible. Similarly, using standard formulas for inverses of
partitioned matrices (e.g., eq. (8) in Henderson and Searle (1981)) we have

a−1
i =

 Vi(V − P ) Ci(V − P,V) 0
Ci (V , V − P ) Vi (V) 1

γ
I2

0 1
γ
I2 V0

 (IA22)

where we have again used Vi (U |V − P ) = Vi (U) −
Ci (U, V − P )V−1

i (V − P )Ci (V − P,U) when simplifying the inverse. It now fol-
lows from the law of total variance, noting that Zi is Fi-measurable and so Vi(Zi) = 0,
that

Vp(Ei[Y ]) + a−1
i = Vp(Ei[Y ]) +

 Vi(V − P ) Ci(V − P,V) 0
Ci (V , V − P ) Vi (V) 1

γ
I2

0 1
γ
I2 0

 (IA23)

= Vp(Y ) +

0 0 0
0 0 1

γ
I2

0 1
γ
I2 0

 (IA24)

≡ Vp(Y ) + I (IA25)

where the final equality defines the 5× 5 matrix I =

( 0 0 0
0 0 1

γ
I2

0 1
γ
I2 0

)
.

Putting together everything above, the conditional expected utility given Fp can be

2Note that Ei[Y ] follows a singular normal distribution since n is a constant. That is, the conditional

variance matrix of Ei[Y ] is only positive semidefinite. However, defining the random vector in this way

causes no difficulties in the derivation below and simplifies the algebra by treating the endowment of

shares and the non-tradeable in a unified way.
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written

Ep[−e−γW ∗
i ] = − 1

γ2

∣∣V−1
i (V − P )

∣∣−1/2 |Vp(Y ) + I|−1/2 exp

{
−1

2
Ep(Y )′ (Vp(Y ) + I)−1 Ep(Y )

}
.

(IA26)

Define

D (k; sp) ≡
1

γ2

∣∣V−1
i (V − P )

∣∣−1/2 |Vp(Y ) + I|−1/2 (IA27)

and

Q (k; sp) ≡ −1

2
Ep(Y )′ (Vp(Y ) + I)−1 Ep(Y ). (IA28)

To complete the proof, we will show how to express D and Q in the form in the Propo-
sition.

B.1. Deriving an expression for the quadratic form Q (k; sp)

We first tackle the quadratic form Q (k; sp). Define the matrix K ≡
γ
(

1
γ
I2 + Cp (V ,Z)

)
and let

V∗ ≡ K−1V =
(
V−γCp(V,Z)U

U

)
.

Consider the change of variables Y 7→ Y ∗ =(
1
γ
V−1

p (V − P ) (V − P − γCp (V − P,V∗)Zi) ,V∗,Zi

)
obtained by premultiplying

Y by the matrix

M ≡
(

1
γ
V−1
p (V−P ) 0 −V−1

p (V−P )Cp(V−P,V∗)

0 K−1 0
0 0 I2

)
. (IA29)

This allows us to write the quadratic form as

− 1

2
Ep[MY ]′

M

 Vp(V−P ) Cp(V−P,V) Cp(V−P,Zi)

Cp(V,V−P ) Vp(V) 1
γ
I2+Cp(V,Z)

Cp(Zi,V−P ) 1
γ
I2+Cp(Z,V) Vp(Zi)

M ′


−1

Ep[MY ]

= −1

2
Ep[Y ∗]′

 A0 Cp(V−P,V∗) B0

Cp(V∗,V−P ) Vp(V∗) 1
γ
I2

B′
0

1
γ
I2 Vp(Zi)


−1

Ep[Y ∗] (IA30)

where we have pre-multiplied each Y by I = M−1M and pulled the M−1’s inside the
inner inverse matrix and where we define

A0 =
1

γ
V−1

p (V − P )− 1

γ
V−1

p (V − P )Cp (V − P,V∗)Cp (Zi, V − P )V−1
p (V − P )

− 1

γ
V−1

p (V − P )Cp (V − P,Zi)Cp (V∗, V − P )V−1
p (V − P )

+ V−1
p (V − P )C (V − P,V∗)V (Zi)Cp (V∗, V − P )V−1

p (V − P )

=
1

γ
V−1

p (V − P )− 1

γ
V−1

p (V − P )Cp (V − P,U)Cp (zi, V − P )V−1
p (V − P )
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− 1

γ
V−1

p (V − P )Cp (V − P, zi)Cp (U, V − P )V−1
p (V − P )

+ V−1
p (V − P )C (V − P,U)V (zi)Cp (U, V − P )V−1

p (V − P )

B0 = V−1
p (V − P )

(
1

γ
Cp (V − P,Zi)− Cp (V − P,V∗)V (Zi)

)
.

= ( 0 V−1
p (V−P )( 1

γ
Cp(V−P,zi)−Cp(V−P,U)V(zi)) )

where the second equality in each definition uses the fact that the second element of
Zi is identically equal to n and so the associated (co)variances are all zero to write the
expressions purely in terms of the nontradeable endowment zi.

Furthermore, using these expressions and grouping terms appropriately in eq. (IA30)
it is tedious but straightforward to verify that that the matrix inside the inverse in eq.
(IA30) can be written as


1
γ2

V−1
p (V−P )(Vp(V−P )−Cp(V−P,zi)V−1

p (zi)Cp(zi,V−P ))V−1
p (V−P ) 0 0

0 Vp(V∗) 1
γ
I2

0 1
γ
I2 0



+

V−1
p (V−P )( 1

γ
Cp(V−P,zi)V−1

p (zi)−Cp(V−P,U))
0

( 01 )

Vp(zi)

V−1
p (V−P )( 1

γ
Cp(V−P,zi)V−1

p (zi)−Cp(V−P,U))
0

( 01 )


′

=


1
γ2

V−1
p (V−P )Vp(V−P |zi)V−1

p (V−P ) 0 0

0 Vp(V∗) 1
γ
I2

0 1
γ
I2 0



+

V−1
p (V−P )( 1

γ
Cp(V−P,zi)V−1

p (zi)−Cp(V−P,U))
0

( 01 )

Vp(zi)

V−1
p (V−P )( 1

γ
Cp(V−P,zi)V−1

p (zi)−Cp(V−P,U))
0

( 01 )


′

where the equality uses Vp (V − P |zi) = Vp (V − P ) −
Cp (V − P, zi)V−1

p (zi)Cp (zi, V − P ) to condense notation.
We can now invert this matrix using eq. (16) in Henderson and Searle (1981) with3

A =

( 1
γ2

V−1
p (V−P )Vp(V−P |zi)V−1

p (V−P ) 0 0

0 Vp(V∗) 1
γ
I2

0 1
γ
I2 0

)

C =D′ =

(
V−1
p (V−P )( 1

γ
Cp(V−P,zi)V−1

p (zi)−Cp(V−P,U))
0

( 01 )

)
B = Vp (zi)

to conclude

(A+ CBD)−1 = A−1 − A−1C
(
B−1 +DA−1C

)−1
DA−1. (IA31)

To pin down the individual terms in eq. (IA31), note that direct calculation using stan-

3The expression in Henderson and Searle (1981) uses U and V to denote the matrices that we label

C and D here. We use different notation to prevent any confusion with the asset payoffs V and U .
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dard methods for inverting a partitioned matrix yields

A−1 =

(
γ2Vp(V−P )V−1

p (V−P |zi)Vp(V−P ) 0 0
0 0 γI2
0 γI2 −γ2Vp(V∗)

)
. (IA32)

And further plugging into the second term in eq. (IA31) and grouping terms yields

− A−1C
(
B−1 +DA−1C

)−1
DA−1

= −

γ2Vp(V−P )V−1

p (V−P |zi)( 1
γ
Cp(V−P,zi)V−1

p (zi)−Cp(V−P,U))
γ( 01 )

−γ2Vp(V∗)( 01 )

 (IA33)

×
(
V−1
p (zi)−γ2Vp(U)+γ2( 1

γ Cp(V −P,zi)V
−1
p (zi)−Cp(V −P,U))

′
V−1
p (V −P |zi)( 1

γ Cp(V −P,zi)V
−1
p (zi)−Cp(V −P,U))

)−1

(IA34)

×


γ2Vp(V−P )V−1

p (V−P |zi)( 1
γ
Cp(V−P,zi)V−1

p (zi)−Cp(V−P,U))(
0
γ

)
−γ2Vp(V∗)( 01 )


′

(IA35)

= −

γ2Vp(V−P )V−1

p (V−P |zi)Cp(V−P,U)(Vp(Z)V−1
p (zi)−1)

γ( 01 )
−γ2Vp(V∗)( 01 )



×
(
V−1
p (zi)−γ2Vp(U)+γ2

C2p(V −P,U)

Vp(V −P |zi)
(Vp(Z)V−1

p (zi)−1)
2
)−1

×


γ2Vp(V−P )V−1

p (V−P |zi)Cp(V−P,U)(Vp(Z)V−1
p (zi)−1)(

0
γ

)
−γ2Vp(V∗)( 01 )


′

(IA36)

where the second equality substitutes in for the equilibrium value of Cp (V − P, zi) from
Lemma (IA1) and collects terms. Eqs. (IA32) and (IA36) together give us the inverse in
eq. (IA30), which we need to pre- and post-muliply by E [Y ∗] and its transpose.

We have

E [Y ∗] = E
[(

1
γ
V−1
p (V−P )(V−P−γCp(V−P,V∗)Zi)

V∗
Zi

)]
=

(
0(Ep[V ]
0

)
(

n
Ep[Z] )

)

where the second equality has used the result from Lemma (IA1), which implies
Ep [V − P ] = γCi (V,V)Ep [Z] = γCp (V − P,V∗)Ep [Z], to conclude that the first el-
ement of Y ∗ has conditional expectation zero.

Putting things together, we have established that (IA28) can be written

− 1

2
Ep [Y

∗]′
(
A−1 − A−1C

(
B−1 +DA−1C

)−1
DA−1

)
Ep [Y

∗]

= −γnEp [V ] +
1

2
γ2 (

n
Ep[Z] )

′ Vp (V∗) (
n

Ep[Z] )

+
1

2
γ2(

n
Ep[Z])

′
Vp(V∗)( 01)

(
V−1
p (zi)−γ2Vp(U)+γ2

C2p(V −P,U)

Vp(V −P |zi)
(Vp(Z)V−1

p (zi)−1)
2
)−1

γ2( 01)
′
Vp(V∗)(

n
Ep[Z]). (IA37)

Finally, using the definition V∗ = K−1V =
(
1 −γCp(V,Z)
0 1

)
we can write

Vp (V∗) =
(
1 −γCp(V,Z)
0 1

)
V (V)

(
1 0

−γCp(Z,V ) 1

)
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which implies

(
n

Ep[Z] )
′ Vp (V∗) ( 0

1 ) = (
n

Ep[Z]−γCp(V,Z)n )
′V (V) ( 0

1 ) = (Ep [Z]− kαn− γCp (Z, V )n)
1

τη

and

(
n

Ep[Z] )
′ Vp (V∗) (

n
Ep[Z] )

= (
n

Ep[Z] )
′ ( 1 −γCp(V,Z)

0 1

)
Vp (V)

(
1 0

−γCp(Z,V ) 1

)
(

n
Ep[Z] )

= (
n

Ep[Z]−γCp(V,Z)n )
′
(

1
τA

+k2
(
Vp(θ)+

1
τη

)
−kα 1

τη

−kα 1
τη

1
τη

)
(

n
Ep[Z]−γCp(V,Z)n )

=

(
1

τA
+ k2

(
Vp (θ) +

1− α2

τη

))
n2 + (Ep [Z]− kαn− γCp (Z, V )n)2

1

τη
.

Plugging back in to eq. (IA37), using Vp (U) = 1
τη
, C2

p (V − P,U) = −αk 1
τη
,Vp (zi) =

Vp (Z) +
1
τζ

and Vp (V − P |zi) = Vp (V |zi) = 1
τA

+ k2
(

1
τθ+β2(τZ+τζ)

+ 1
τη

)
, and grouping

terms yields

Q (k; sp) = −γnEp [V ] +
1

2
γ2( 1

τA
+k2

(
Vp(θ)+

1−α2

τη

))
n2 +

1

2
(Ep[Z]−kαn−γCp(Z,V )n)2 1

τη

+
1

2

(
γ2
)2

(Ep[Z]−kαn−γCp(Z,V )n)2( 1
τη )

2

 1

Vp(Z)+ 1
τζ

−γ2 1
τη

+γ2
k2α2( 1

τη )
2

1
τA

+k2

(
1

τθ+β2(τZ+τζ)
+

1
τη

)
 1

τζ

Vp(Z)+ 1
τζ


2


−1

= −γnEp [V ] +
1

2
γ2

(
1

τA
+ k2

(
Vp (θ) +

1− α2

τη

))
n2

+
1

2
γ2 1

τη
(Ep [Z]− kαn− γCp (Z, V )n)2 (1 + Γ (k; sp))

where we define

Γ (k; sp) = γ2 1
τη

 1

Vp(Z)+ 1
τζ

−γ2 1
τη

+γ2
k2α2( 1

τη )
2

1
τA

+k2

(
1

τθ+β2(τZ+τζ)
+

1
τη

)
( 1

τζ

Vp(Z)+ 1
τζ

)2


−1

= γ2 1
τη

(
Vp(Z)+ 1

τζ

)1−γ2 1
τη

(
Vp(Z)+ 1

τζ

)1−
k2α2 1

τη

1
τA

+k2

(
1

τθ+β2(τZ+τζ)
+

1
τη

)
( 1

τζ

Vp(Z)+ 1
τζ

)2



−1

.

This now matches the expression in the statement of the Proposition after substituting
in Cp(Z, V ) = kCp(Z, θ).

B.2. Deriving an expression for the determinant D (k; sp)

Consider now the determinant term defined in eq. (IA27)

D (k; sp) =
1

γ2

∣∣V−1
i (V − P )

∣∣−1/2 |Vp(Y ) + I|−1/2

Using the same transformation described by the matrix in eq. (IA29), we can write

|Vp(Y ) + I| (IA38)
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=
∣∣M−1

∣∣ |M (Vp(Y ) + I)M ′|
∣∣∣(M ′)

−1
∣∣∣ (IA39)

= |γVp (V − P )|2 |K|2 |A+ CBD| (IA40)

= γ2 |Vp (V − P )|2 |A+ CBD| (IA41)

= γ2 |Vp (V − P )|2 |A| |B|
∣∣B−1 +DA−1C

∣∣ (IA42)

= γ2 |Vp (V − P )|2 1

γ6

∣∣V−1
p (V − P )Vp (V − P |zi)V−1

p (V − P )
∣∣ |Vp (zi)| (IA43)

×

∣∣∣∣∣∣∣
1

Vp (Z) +
1
τζ

− γ2 1

τη
+ γ2

k2α2
(

1
τη

)2
1
τA

+ k2
(

1
τθ+β2(τZ+τζ)

+ 1
τη

) ( 1
τζ

Vp (Z) +
1
τζ

)2

∣∣∣∣∣∣∣ (IA44)

=
1

γ4
|Vp (V − P |zi)| |Vp (zi)|

 1

Vp(Z)+ 1
τζ

−γ2 1
τη

+γ2
k2α2( 1

τη )
2

1
τA

+k2

(
1

τθ+β2(τZ+τζ)
+

1
τη

)
( 1

τζ

Vp(Z)+ 1
τζ

)2

(IA45)

where the first equality pre- and post-multiplies the matrix by I = M−1M and uses the
multiplicative property of the determinant, the second equality uses the fact that |M | =
|γVp (V − P )| |K| and plugs in for M (Vp(Y ) + I)M ′ using the decomposition defined
earlier in eq. (IA31), and the third equality uses the fact that |K| = 1. The fourth equality
uses the multiplicative property of determinants and Sylvester’s determinant identity to
write |A+ CBD| = |A| |I + A−1CBD| = |A| |I +DA−1CB| = |A| |B| |B−1 +DA−1C|.
The fifth equality computes the determinants of A and B and substitutes in for B−1 +
V A−1U , which was computed as part of the proof in Section (B.1) above. The final line
cancels terms and uses the fact that the B−1+V A−1U term is a scalar and so is identical
to its determinant

We can now plug back into eq. (IA27) to yield the overall determinant term

D(k; sp) =

√
Vi(V − P )

Vp(V − P |zi)

√
1

Vp(zi)
(IA46)

×

 1

Vp (Z) +
1
τζ

− γ2 1

τη
+ γ2

k2α2
(

1
τη

)2
1
τA

+ k2
(

1
τθ+β2(τZ+τζ)

+ 1
τη

) ( 1
τζ

Vp (Z) +
1
τζ

)2


−1/2

(IA47)

=

√√√√√ 1
τA

+ k2 1
τη

1
τA

+ k2
(

1
τθ+β2(τZ+τζ)

+ 1
τη

)√ 1

Vp (Z) +
1
τζ

(IA48)

×

 1

Vp (Z) +
1
τζ

− γ2 1

τη
+ γ2

k2α2
(

1
τη

)2
1
τA

+ k2
(

1
τθ+β2(τZ+τζ)

+ 1
τη

) ( 1
τζ

Vp (Z) +
1
τζ

)2


−1/2

(IA49)

which matches the expression in the statement of the Proposition after grouping terms
in the last terms appropriately in order to express in terms of Γ (k, sp).
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C. Proof of Proposition IA2

Using the law of iterated expectations, the unconditional expected utility can be
represented as the unconditional expectation of the sp-conditional expected utility from
Proposition IA1, evaluated at the investment rule k(sp) = 1{sp>s}:

W = E [W(sp)] (IA50)

= P(sp > s)E[W(sp)|sp > s] + P(sp ≤ s)E[W(sp)|sp ≤ s]. (IA51)

From eq. IA26 in the proof of IA1, we have that the conditional expected utilities are of
the form

W(sp) = − 1

γ2

∣∣V−1
i (V (k)− P )

∣∣−1/2 |Vp (Y (k)) + I|−1/2 (IA52)

× exp

{
−1

2
Ep [Y (k)] (Vp(Y (k)) + I)−1 Ep [Y (k)]

}
(IA53)

where the asset payoff V = V (k) and price function P = P (k) are those associated with
the particular investment decision k ∈ {0, 1}, and where the vector

Y (k) =

V (k)− P
V
Zi

 , (IA54)

with V =

(
V (k)
−ηC

)
and Zi =

(
n
zi

)
the sub-vectors of the tradeable and non-tradeable

payoffs and the endowments, respectively.
To evaluate the expected utility, eq. (IA51), it is straightforward to calculate the

probabilities of the two regions. It remains to to calculate the conditional expectation
of W(sp) given sp > s and sp ≤ s. Given that the determinant terms in eq. (IA52) are
constant within each region, this reduces to computing the expectation of the exponential
term. To proceed, note that using standard normal-normal updating we can write

Ep[Y (k)] = E[Y (k)] + C(Y (k), sp)V−1(sp)(sp − E[sp]). (IA55)

Hence, the expression in the exponential in eq. (IA52) can be written as

− 1

2
Ep[Y (k)]′(Vp(Y (k)) + I)−1Ep[Y (k)] (IA56)

= −1

2
E[Y (k)]′(Vp(Y (k)) + I)−1E[Y (k)] (IA57)

− E[Y (k)]′(Vp(Y (k)) + I)−1C(Y (k), sp)V−1(sp)(sp − E[sp]) (IA58)

− 1
2
(sp − E[sp])V−1(sp)C(sp, Y (k))(Vp(Y (k)) + I)−1C(Y (k), sp)V−1(sp)(sp − E[sp]),

(IA59)

which can be written as a quadratic form d+ a′X +X ′AX with X = sp − E[sp] and

d = −1

2
E[Y (k)]′(Vp(Y (k)) + I)−1E[Y (k)] (IA60)

a = −V−1(sp)C(sp, Y (k))(Vp(Y (k)) + I)−1E[Y (k)] (IA61)
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A = −1
2
V−1(sp)C(sp, Y (k))(Vp(Y (k)) + I)−1C(Y (k), sp)V−1(sp). (IA62)

We can now compute the two conditional expectations, corresponding to the invest-
ment and no-investment regions, using Lemma IA2 from Appendix D, which provides a
closed-form expression for the expected exponential-quadratic of a truncated normally
distributed random variable.

A large amount of tedious algebra, directly analogous to that in the proof of the
conditional welfare expression in Proposition IA1 but with expectations and (co)variances
computed under the unconditional rather than Fp-conditional distribution, delivers the
expression in the Proposition. From inspection of the Γ (k) term in the given expression,

the maintained parameter restriction 1−γ2 1
τη

(
1
τZ

+ 1
τζ

)−1

> 0 ensures that the expected

utility is finite.

D. Exponential-quadratic form of truncated normal random vector

The following result computes the unconditional expectation of an exponential-
quadratic form of a truncated normal random vector, which is used to characterize the
unconditional welfare under the equilibrium investment rule.

LEMMA IA2: Suppose X ∈ Rn is distributed N(µ,Σ) with positive definite variance ma-
trix Σ. Consider the quadratic form d+a′X+X ′AX, for conformable d, a and symmetric
A. Let C ⊆ Rn be an arbitrary measurable set.

Suppose further that A is such that Σ−1 − 2A is positive definite and define the com-
posite parameters

µ̂ = (I − 2ΣA)−1(µ+ Σa) (IA63)

Σ̂ = (Σ−1 − 2A)−1 (IA64)

Ĉ =
{
B−1 (x− µ̂) : x ∈ C

}
, (IA65)

where B is the unique positive definite matrix square root of Σ̂ (i.e., Σ̂ = BB).
Then, we have

E
[
exp {d+ a′X +X ′AX}

∣∣∣∣X ∈ C
]

(IA66)

=
∫
Ĉ ϕ(y)dy∫
C ϕ(y)dy

1

|I−2ΣA|1/2
exp

{
d−1

2
µ′Σ−1µ+

1
2
(µ+Σa)′Σ−1(Σ−1−2A)−1Σ−1(µ+Σa)

}
. (IA67)

Proof of Lemma IA2 Writing the expectation explicitly as an integral, we have

E
[
exp {d+ a′X +X ′AX}

∣∣∣∣X ∈ C
]

(IA68)

=

∫
Rn

exp {d+ a′x+ x′Ax}P(X ∈ dx|X ∈ C) (IA69)

=

∫
C
exp {d+ a′x+ x′Ax}

1

(2π)n/2|Σ|1/2
exp

{
−1

2
(x− µ)′Σ−1(x− µ)

}
P(X ∈ C)

dx. (IA70)
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By completing the square, we can group the terms in the exponentials as

d+ a′x+ x′Ax− 1
2
(x− µ)′Σ−1(x− µ) (IA71)

= d− 1
2
µ′Σ−1µ+ 1

2

[
(Σ−1 − 2A)−1Σ−1(µ+ Σa)

]′
(Σ−1 − 2A)

[
(Σ−1 − 2A)−1Σ−1(µ+ Σa)

]
(IA72)

− 1
2

(
x− (Σ−1 − 2A)−1Σ−1(µ+ Σa)

)′
(Σ−1 − 2A)

(
x− (Σ−1 − 2A)−1Σ−1(µ+ Σa)

)
(IA73)

= d− 1
2
µ′Σ−1µ+ 1

2
(µ+ Σa)′Σ−1(Σ−1 − 2A)−1Σ−1(µ+ Σa) (IA74)

− 1
2

(
x− (I − 2ΣA)−1(µ+ Σa)

)′
(Σ−1 − 2A)

(
x− (I − 2ΣA)−1(µ+ Σa)

)
. (IA75)

where we have used the fact that Σ−1 − 2A being positive definite implies that it is
invertible and also implies that I − 2ΣA is invertible. To see the second claim, com-
pute the determinant, using the fact that positive definite matrices have strictly positive
determinants, |I − 2ΣA| = |ΣΣ−1 − 2ΣA| = |Σ| |Σ−1 − 2A| > 0.

So, plugging back in to eq. (IA70) yields

=

∫
C
exp {d+ a′x+ x′Ax}

1

(2π)n/2|Σ|1/2
exp

{
−1

2
(x− µ)′Σ−1(x− µ)

}
P(X ∈ C)

dx (IA76)

= exp
{
d−1

2
µ′Σ−1µ+

1
2
(µ+Σa)′Σ−1(Σ−1−2A)−1Σ−1(µ+Σa)

}
(IA77)

× 1
P(X∈C)

∫
C

1

(2π)n/2|Σ|1/2
exp

{
−1
2(x−(I−2ΣA)−1(µ+Σa))

′
(Σ−1−2A)(x−(I−2ΣA)−1(µ+Σa))

}
.dx

(IA78)

Let

µ̂ = (I − 2ΣA)−1(µ+ Σa) (IA79)

Σ̂ = (Σ−1 − 2A)−1 = (I − 2ΣA)−1Σ (IA80)

Ĉ =
{
B−1

(
x− (I − 2ΣA)−1(µ+ Σa)

)
: x ∈ C

}
(IA81)

where B is the unique positive definite n× n matrix square root of the positive definite
matrix Σ̂ (i.e., Σ̂ = BB). Using these definitions, we can further express the integral in
eq. (IA78) as ∫

C

1

(2π)n/2|Σ|1/2
exp

{
−1
2
(x−µ̂)′Σ̂−1(x−µ̂)

}
dx (IA82)

=

∫
Ĉ

1

(2π)n/2|Σ|1/2
1

|B−1| exp
{
−1
2
y′y
}
dy (IA83)

= 1

|I−2ΣA|1/2

∫
Ĉ
ϕ(y)dy (IA84)

where the first equality changes variables y = B−1 (x− (I − 2ΣA)−1(µ+ Σa)) and the

final line uses |B−1| = |B|−1 =
(
|BB|1/2

)−1

=
∣∣∣Σ̂∣∣∣−1/2

= |(I − 2ΣA)−1Σ|−1/2
=

|Σ|−1/2 |I − 2ΣA|1/2 and simplifies notation using the n-dimensional standard normal cdf
ϕ(x) = 1

(2π)n/2 exp
{
−1

2
y′y
}
. Recall also that it was shown above that |I − 2ΣA| > 0, as

required for the |I − 2ΣA|1/2 in this expression to be well-defined. Plugging this expres-
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sion for the integral back into eq. (IA78) delivers the expression in the Lemma.

B Expected Returns and Profitability

In this Appendix, we characterize how expected returns and profitability, conditional
on investment, differ across the two investment rules. These results highlight how differ-
ences in mangerial objectives and, consequently, what managers learn from prices, have
important implications.

A. Expected return conditional on investment

The impact of investment on expected returns is widely studied empirically, and
existing evidence typically focuses on the average relationship between these variables
in the cross-section. Our results highlight that the relation can depend critically on the
manager’s objective and the nature of projects that firms invest in.

We begin by characterizing the conditional expected return under cash-flow maxi-
mization.

PROPOSITION IA1: Suppose the manager maximizes expected cash flows. In the
investment-maximizing equilibrium, the expected return conditional on no investment is

E [V − P |k = 0] =
γn

τA
, (IA1)

and the expected return conditional on investment is given by

E [V − P |k = 1] = γn

(
1

τA
+

1

τη

)
− γα

τη
E[Z|sp > s̄C ]. (IA2)

Conditional on investment, the expected return:
(i) increases in µθ − c, and n,
(ii) decreases in µZ for α > 0 and increases in µZ for α < 0, and,
(iii) may either increase or decrease in α, even when α > 0 and µZ > 0.

In contrast, the following result characterizes the conditional expected return under
price maximization.

PROPOSITION IA2: Suppose the manager maximizes the date three price. In the
investment-maximizing equilibrium, the expected return conditional on no investment is

E [V − P3|k = 0] =
γn

τA
, (IA3)

and the expected return conditional on investment is given by

E [V − P3|k = 1] = γn

(
1

τA
+

1

τη

)
− γα

τη
E [Z|sp > s̄P ] . (IA4)

Conditional on investment, the expected return:
(i) increases in µθ − c, τZ, and n,
(ii) decreases in µZ for α > 0 and increases in µZ for α < 0, and,
(iii) decreases in α if µZ > 0 and α ≥ 0.
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When the manager does not invest, the expected return reflects the standard risk pre-
mium that investors demand for owning the stock that is, γ

τA
n. Conditional on investment,

the expected return is driven by two components: (i) the standard unconditional risk pre-

mium γn
(

1
τA

+ 1
τη

)
, and (ii) the investors’ expected aggregate exposure to climate risk

conditional on investment: −γα
τη
E [Z|sp > s̄]. Intuitively, as previously discussed, −γα

τη
Z

captures the portion of the project’s discount rate that is driven by its exposure to climate
risk, and so −γα

τη
E [Z|sp > s̄] captures the expectation of this discount rate conditional

on investment.
To understand the determinants of this expectation, note that we can write:

−γα

τη
E [Z|sp > s̄] = −γα

τη
µZ︸ ︷︷ ︸

avg. risk exposure

−

adjustment for manager’s investment strategy︷ ︸︸ ︷(
γα

τη

)2 1
τZ√
V [sp]

H

(
s̄− E[sp]√

V [sp]

)
, (IA5)

where H(·) = ϕ(·)
1−Φ(·) is the hazard ratio of the standard normal distribution. This reveals

two channels through which investment relates to expected returns. First, investment
unconditionally raises the magnitude of the covariance between the firm’s cash flows
and the climate risk shock, which leads to the portion of the risk premium driven by
the average risk exposure term µZ . Second, the manager invests only when the price-
signal sp is sufficiently high. Note that, all else equal, the price signal tends to be high
when the climate portion of the discount rate, −γα

τη
Z, is low, regardless of whether the

manager internalizes the discount rate (as with price maximization) or not (as with cash-
flow maximization). Hence, all else equal investment in the project is associated with
lower discount rates and therefore lower expected returns. Consequently, conditional
on investment, the discount rate is, in expectation, below its unconditional mean; this
channel is captured by the hazard-rate term above.

This decomposition provides intuition for the above proposition. An increase in prof-
itability µθ−c increases the likelihood of investment and, therefore, increases the expected
return via the second term in (IA5). Similarly, when the risk factor generates less vari-
ation in the discount rate (i.e., τZ is greater), V [sp] tends to fall, which raises expected
returns. While an increase in firm size n tends to lower the likelihood of investment and
so decreases expected return via the second term in (IA5), this channel is dominated

by the direct effect of the standard risk premium channel (i.e., γn
(

1
τA

+ 1
τη

)
), and so

expected returns increase with n.
Moreover, it is immediate that expression (IA5) decreases in µZ when α > 0, but

increases otherwise. This is intuitive: when the average exposure to climate risk increases,
expected returns for green projects decrease while those for brown projects increase.
Notably, the effect of project greenness (α) depends on the manager’s objective, which
is a consequence of how the manager responds to non-cash-flow variation in prices in the
two cases.

Consider a firm with a green project, α > 0. Since µZ > 0, an increase in α leads to a
direct decrease in the unconditional risk premium term (since µZ > 0). The increase in
α also increases the variance of the price signal V[sp]. In the case of a price-maximizing
manager, because the non-cash-flow variation in the price signal contains useful discount
rate information, the manager’s investment decision becomes more sensitive and con-
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sequently investment is associated even more strongly with lower realizations discount
rate portion of the price signal. This works in the same direction as the unconditional
risk premium effect and generates an unambiguously negative relation between α and
conditional expected returns.

On the other hand, for a cash-flow-maximizing manager with a green project, increases
in α are still associated with decreases in the unconditional risk premium (assuming µZ >
0). However, because a cash-flow maximizing manager seeks to filter out non-cash-flow
variation in the price signal, her the manager’s investment decision becomes less sensitive
which weakens the association between investment and the discount rate component of
the price signal. These two effects work in opposite directions and consequently the
overall relation between α and conditional expected returns is ambiguous and depends
on the relative strength of the two forces.

B. Future profitability

Standard models of feedback effects typically imply that more informative prices lead
to more profitable investment decisions. A number of empirical papers find evidence
consistent with this prediction (e.g., Chen, Goldstein, and Jiang (2007)). Not surprisingly,
we show that this result arises naturally when the manager maximizes cash flows, as
summarized below.

PROPOSITION IA3: Let ∆V ≡ E [V |k = 1]−E [V |k = 0] denote the change in expected
cash flows due to investment. Suppose the manager maximizes expected cash flows. In
the investment-maximizing equilibrium, ∆V is always positive.

However, this is no longer always the case when the manager maximizes the stock
price.

PROPOSITION IA4: Let ∆V ≡ E [V |k = 1]−E [V |k = 0] denote the change in expected
cash flows due to investment. Suppose the manager maximizes the date three price. In
the investment-maximizing equilibrium,

(i) ∆V is always positive when α = 0.
(ii) ∆V is negative when α ̸= 0 and µθ − c is sufficiently negative.
(iii) ∆V is increasing in µθ − c and n, decreasing in µZ when α > 0, and increasing

in µZ when α < 0.

Figure B.1 provides an illustration of the latter result. As before, the result follows
from the observation that the manager’s investment decision depends not only on the
project’s profitability, but also its discount rate. Part (i) of the above proposition cor-
responds to the standard intuition from the existing literature – when the project does
not have a climate risk exposure, feedback-based investment increases the firm’s expected
profitability. However, part (ii) implies that when the project has a climate risk exposure,
the manager may still invest even when it has low or even negative expected profitability
because it is sufficiently valuable to investors as a climate risk hedge. This occurs when
the project’s ex-ante profitability is low. In this case, the manager invests in the project
because of good discount rate news, as opposed to cash flow news. That is, the price
signal is more likely to be sufficiently high for investment (sp > s̄) because of high hedging
benefits (driven by a realization of Z) as opposed to high future cash flows (θ).

Consistent with intuition, the expected change in future cash flows as a result of
investment increases with the project’s expected profitability. Moreover, because the

18



Figure B.1. Change in Expected Cash Flows Due to Investment

This figure plots the impact of the investment on the firm’s expected cash flows as

a function of α and µZ . Unless otherwise mentioned, the parameters employed are:

τθ = τη = c = τA = τZ = µZ = γ = 1; n = 0.5. Panel (b) focuses on the case in which

µθ − c = 1.
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threshold for investment increases with n, conditional on investment, expected future
cash flows increase with n. Finally, the dependence on µZ follows from the fact that
holding cash flows fixed, the expected pricing of the project increases with µZ for green
projects, but decreases with µZ for brown projects. As a result, conditional on investment,
expected cash flows are decreasing in µZ for green projects, but increasing in µZ for brown
projects.

C. Proofs of above results

C.1. Proof of Proposition IA1

Using the expression for the equilibrium asset price in eq. (15), the expression for the
conditional expected return given no investment is straightforward. The expression in
the case of investment follows from using the asset price in eq. (15) to write:

E [V − P |k = 1] = E [V − P |sp > s̄C ] (IA6)

= γn

(
1

τA
+

1

τη

)
− E

[
γα

τη
Z

∣∣∣∣sp > s̄C

]
(IA7)

= γn

(
1

τA
+

1

τη

)
− E

[
E
[
γα

τη
Z

∣∣∣∣sp] ∣∣∣∣sp > s̄C

]
(IA8)

= γn

(
1

τA
+

1

τη

)
− E

[
γα

τη
µZ +

1
τp

1
τθ
+ 1

τp

(sp − E [sp])

∣∣∣∣sp > s̄C

]
(IA9)

= γn

(
1

τA
+

1

τη

)
− γα

τη
µZ −

1
τp

1
τθ
+ 1

τp

√
V[sp]H

(
s̄C − E [sp]√

V [sp]

)
(IA10)

= γn

(
1

τA
+

1

τη

)
− γα

τη
µZ − 1

τp
√

1
τθ
+ 1

τp

H
(
−τθ

√
1
τθ
+ 1

τp
(µθ − c)

)
.

(IA11)
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This immediately implies that E [V − P |k = 1] is increasing in µθ − c and n, and is
decreasing in µZ for α > 0 and increasing in µZ for α < 0. Now, considering α, we have

∂

∂α
E [V − P |k = 1]

= − γ

τη
µZ −

 ∂

∂α

1

τp
√

1
τθ
+ 1

τp

H (·)− 1

τp
√

1
τθ
+ 1

τp

∂

∂α
H
(
−τθ

√
1
τθ
+ 1

τp
(µθ − c)

)

= − γ

τη
µZ −

 ∂

∂τp

1

τp
√

1
τθ
+ 1

τp

( ∂

∂α
τp

)
H (·)

+
τθ (µθ − c)

√
1
τθ
+ 1

τp

τp

(
1
τθ
+ 1

τp

) (
∂

∂τp

√
1
τθ
+ 1

τp

)(
∂

∂α
τp

)
H ′
(
−τθ

√
1
τθ
+ 1

τp
(µθ − c)

)

= − γ

τη
µZ −

(
∂

∂α
τp

) ∂

∂τp

1

τp
√

1
τθ
+ 1

τp

H (·)−
τθ (µθ − c)

√
1
τθ
+ 1

τp

τp

(
1
τθ
+ 1

τp

) (
∂

∂τp

√
1
τθ
+ 1

τp

)
H ′ (·)


= − γ

τη
µZ −

(
∂

∂α
τp

)
− 1

τp

∂
∂τp

√
1
τθ

+
1
τp

1
τθ

+
1
τp

− 1

τ2p

1√
1
τθ

+
1
τp

H(·)+
−τθ

√
1
τθ

+
1
τp

b(µθ−c)

τp

(
1
τθ

+
1
τp

) (
∂

∂τp

√
1
τθ

+
1
τp

)
H′(·)


= − γ

τη
µZ +

(
∂

∂α
τp

)
1

τ 2p

1√
1
τθ
+ 1

τp

H (·)

+

(
∂

∂α
τp

)(
∂

∂τp

√
1
τθ
+ 1

τp

)
1

τp

(
1
τθ
+ 1

τp

) (H (·)−
(
−τθ

√
1
τθ
+ 1

τp
(µθ − c)

)
H ′ (·)

)
.

The first term is clearly negative for µZ > 0. For α > 0, the second term is negative, but
the final term is positive.

C.2. Statement and Proof of Lemma IA1

The following Lemma will be useful for proving some of the results from the body of
the paper.

LEMMA IA1: Define

Γ = E[sp|sp > s]. (IA12)

We have

Γ = E [sp] +
√
V [sp]H

(
s̄− E [sp]√

V [sp]

)
, (IA13)

where H (x) = ϕ(x)
1−Φ(x)

is the hazard ratio for the standard normal distribution. Moreover,
Γ is increasing with µθ, c, µZ and n, and is increasing in α for α ≥ 0 if µZ > 0.

The expression for Γ follows from standard results for the expectation of a truncated
normal random variable. To derive the comparative statics results, note that by plugging
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in the explicit expressions for the threshold s and the moments of sp, we can express Γ
as

Γ = µθ +
αγµZ

τη
+

√
1

τθ
+

(
αγ

τη

)2
1
τZ
H

−
µθ − c+ αγµZ

τη
− γn

τη√
1
τθ
+
(

αγ
τη

)2
1
τZ

 . (IA14)

Note that H (x) > 0 and H ′ (x) ∈ (0, 1). This immediately implies that Γ is increasing
in µθ, c, µZ , n. To prove the claim for α, let A ≡ E [sp] = µθ +

αγµZ

τη
and B ≡

√
V [sp] =√

1
τθ
+
(

αγ
τη

)2
1
τZ
. Then,

Γ = A+BH

(
s̄− A

B

)
(IA15)

⇔ ∂
∂α
Γ = ∂

∂α
A+

(
∂
∂α
B
)
H

(
s̄− A

B

)
+BH ′

(
s̄− A

B

)
×

(
−B ∂

∂α
A− (s̄− A) ∂

∂α
B

B2

)
(IA16)

=
(

∂
∂α
A
)(

1−H ′
(
s̄− A

B

))
+
(

∂
∂α
B
)(

H

(
s̄− A

B

)
−
(
s̄− A

B

)
H ′
(
s̄− A

B

))
.

(IA17)

Note that H ′ (x) ∈ (0, 1) and H (x)− xH ′ (x) > 0, and that

∂
∂α
A = γµZ

τη
(IA18)

∂
∂α
B = 1

2

2α
(

γ
τη

)2
1
τZ√

1
τθ
+
(

αγ
τη

)2
1
τZ

, (IA19)

which are (weakly) positive if µZ ≥ 0 and α ≥ 0, respectively. We conclude that ∂
∂α
Γ > 0

for µZ > 0 and α ≥ 0.

C.3. Proof of Proposition IA2

Using the expression for the equilibrium asset price in eq. (19), the expressions for
conditional expected return given no investment and investment are straightforward.

To derive the comparative statics results for the expected return conditional on in-
vestment, note that we can write:

E [V − P3|k = 1] = E [V − P3|sp > s] (IA20)

= γn

(
1

τA
+

1

τη

)
− γα

τη
E [Z|sp > s̄] (IA21)

= γn

(
1

τA
+

1

τη

)
− E [sp − θ|sp > s̄] (IA22)

= γn

(
1

τA
+

1

τη

)
− E

[
sp −

(
µθ +

1
τθ

1
τθ
+ 1

τp

(
sp − µθ −

γα

τη
µZ

))∣∣∣∣∣ sp > s̄

]
(IA23)
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= γn

(
1

τA
+

1

τη

)
+

1
τp

1
τθ
+ 1

τp

µθ −
1
τθ

1
τθ
+ 1

τp

γα

τη
µZ −

1
τp

1
τθ
+ 1

τp

Γ, (IA24)

where the third equality uses the law of iterated expectations to write E[θ|sp > s] =
E[E[θ|sp]|sp > s], and where the last line collects terms and uses where Γ = E [sp|sp > s̄]
as in Lemma IA1.

Now, plugging in for Γ from Lemma IA1 and grouping terms further yields

E [V − P3|k = 1] = γn

(
1

τA
+

1

τη

)
− γα

τη

µZ +

(
αγ
τη

)
1
τZ√

1
τθ
+
(

αγ
τη

)2
1
τZ

H

−
µθ − c+ αγµZ

τη
− γn

τη√
1
τθ
+
(

αγ
τη

)2
1
τZ


 .

(IA25)

This immediately implies E [V − P3|k = 1] is increasing in µθ−c. Further, it is decreasing
in µZ for α > 0 and increasing for α < 0 since

∂

∂µZ

E [V − P3|k = 1] = −γα

τη

1−

(
αγ
τη

)2
1
τZ

1
τθ
+
(

αγ
τη

)2
1
τZ

H ′

−
µθ − c+ αγµZ

τη
− γn

τη√
1
τθ
+
(

αγ
τη

)2
1
τZ


 < 0

(IA26)

because 0 < H ′ < 1.
Now, consider n and note that

∂

∂n
E [V − P3|k = 1] = γ

(
1

τA
+

1

τη

)
−

(
αγ
τη

)2
1
τZ

1
τθ
+
(

αγ
τη

)2
1
τZ

γ
τη
H ′

−
µθ − c+ αγµZ

τη
− γn

τη√
1
τθ
+
(

αγ
τη

)2
1
τZ


(IA27)

= γ
1

τA
+ γ

1

τη

1−

(
αγ
τη

)2
1
τZ

1
τθ
+
(

αγ
τη

)2
1
τZ

H ′

−
µθ − c+ αγµZ

τη
− γn

τη√
1
τθ
+
(

αγ
τη

)2
1
τZ




(IA28)

≥ 0 (IA29)

again because 0 < H ′ < 1.
Considering α, following the proof of Lemma IA1, let A ≡ E [sp] = µθ +

αγµZ

τη
and

B ≡
√

V [sp] =

√
1
τθ
+
(

αγ
τη

)2
1
τZ
. We can write

∂

∂α
E [V − P3|k = 1] = ∂

∂α

−γα

τη

µZ +

(
αγ
τη

)
1
τZ

B
H

(
s− A

B

) (IA30)
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= ∂
∂α


−γα

τη
µZ −

(
αγ
τη

)2
1
τZ

1
τθ
+
(

αγ
τη

)2
1
τZ

BH

(
s− A

B

)
 (IA31)

= − γ

τη
µZ − ∂

∂α


(

αγ
τη

)2
1
τZ

1
τθ
+
(

αγ
τη

)2
1
τZ

 BH

(
s− A

B

)
(IA32)

−

(
αγ
τη

)2
1
τZ

1
τθ
+
(

αγ
τη

)2
1
τZ

∂
∂α

(
BH

(
s− A

B

))
. (IA33)

We clearly have − ∂
∂α

( (
αγ
τη

)2 1
τZ

1
τθ

+
(

αγ
τη

)2 1
τZ

)
BH

(
s−A
B

)
< 0 as long as α > 0, so it remains to

establish that the remaining terms are, collectively, negative. Note that we can express
− γ

τη
µZ = − ∂

∂α
A, so we want to sign

− ∂
∂α
A−

(
αγ
τη

)2
1
τZ

1
τθ
+
(

αγ
τη

)2
1
τZ

∂
∂α

(
BH

(
s− A

B

))
. (IA34)

Note that we have

∂
∂α
BH

(
s− A

B

)
=
(

∂
∂α
B
)
H
(
s−A
B

)
+BH ′ ( s−A

B

)
∂
∂α

s− A

B

=
(

∂
∂α
B
)
H
(
s−A
B

)
+BH ′ ( s−A

B

) [−B
∂
∂α

A−(s−A)
∂
∂α

B

B2

]
=
(

∂
∂α
B
) (

H
(
s−A
B

)
− s−A

B
H ′ ( s−A

B

))
−
(

∂
∂α
A
)
H ′ ( s−A

B

)
and plugging in to eq. (IA34) now yields

− ∂
∂α
A−

(
αγ
τη

)2
1
τZ

1
τθ
+
(

αγ
τη

)2
1
τZ

((
∂
∂α
B
) (

H
(
s−A
B

)
− s−A

B
H ′ ( s−A

B

))
−
(

∂
∂α
A
)
H ′ ( s−A

B

))
(IA35)

= −

1−

(
αγ
τη

)2
1
τZ

1
τθ
+
(

αγ
τη

)2
1
τZ

H ′

 ∂
∂α
A−

(
αγ
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)2
1
τZ

1
τθ
+
(

αγ
τη

)2
1
τZ

(
H
(
s−A
B

)
− s−A

B
H ′ ( s−A

B

)) (
∂
∂α
B
)
.

(IA36)

We know from the proof of Lemma IA1 that ∂
∂α
A > 0 if µZ > 0 and ∂

∂α
B ≥ 0 for α ≥ 0.

Furthermore, we always have H ′ ∈ (0, 1) and H (x) − xH ′ (x) ≥ 0. It follows therefore
that the expression in eq. (IA34) is negative and hence that ∂

∂α
E [V − P3|k = 1] < 0 for

µZ > 0 and α ≥ 0.
Finally, consider τθ. It will be more convenient to study dependence on the variance
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1/τθ. We have

∂

∂
(
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τθ
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∂
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∂
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∂

∂
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∂

∂
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H
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.

Hence, the derivative of expected returns with respect to 1/τθ has the opposite

sign of ∂

∂
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)
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1√
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. Applying the monotonic transformation log (·) to
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H

(
s̄−E[sp]√
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)
and differentiating yields

∂

∂
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 .

Let K < 0 be the unique root of the function 1 + H′(K)
H(K)

K and note that this function
crosses zero from below as its argument increases, so that it is strictly negative for points
below K and strictly positive for points above K.

We conclude that ∂

∂
(

1
τθ

) log
(

1
β

1
τZ√
V[sp]

H

(
s̄−E[sp]√

V[sp]

))
> 0 if and only if s̄−E[sp]√

V[sp]
< K. From

this, it follows that ∂

∂
(

1
τθ

)E [V − P3|k = 1] < 0 and hence ∂
∂τθ

E [V − P3|k = 1] > 0.
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C.4. Proof of Proposition IA3

We have

∆V = E [V |k = 1]− E [V |k = 0] (IA37)

= E [V |sp > s̄C ]− E [V |sp ≤ s̄C ] (IA38)

= E
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A+ θ + αηC +

√
1− α2ηI − c|sp > s̄C

]
− E [A|sp ≤ s̄C ] (IA39)
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))
(IA44)

> 0, (IA45)

since x+H (−x) > 0 for all x.

C.5. Proof of Proposition IA4

∆V = E [V |k = 1]− E [V |k = 0] (IA46)

= E [V |sp > s̄P ]− E [V |sp ≤ s̄P ] (IA47)

= E [θ − c|sp > s̄P ] (IA48)

= E
[
µθ +
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θ

V [sp]
(sp − E [sp])
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= µθ − c+
1
τθ√

1
τθ
+
(

αγ
τη

)2
1
τZ

H

−
µθ − c− γ

τη
(n− αµZ)√

1
τθ
+
(

αγ
τη

)2
1
τZ

 (IA51)

where the fourth equality follows from the law of iterated expectations after conditioning
on sp, and the fifth equality substitutes in for E[sp|sp > s̄P ] from Lemma IA1.

When α = 0, we have

∆V = µθ − c+
1

√
τθ
H

(
−
√
τθ

(
µθ − c− γ

τη
n

))
(IA52)
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=
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≥ 1
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> 0 (IA55)

since x+H (−x) > 0 for all x.
Next, supposing that α ̸= 0, consider the behavior of ∆V as µθ−c becomes arbitrarily

negative. We have
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where the next-to-last equality follows from continuity and the fact that
limx→−∞

H(−a(x−b))
x

= − limx→∞
H(a(x+b))

x
= −a for any a > 0, b ∈ R. Hence, if α ̸= 0,

then for µθ − c sufficiently negative, we have ∆V < 0.
Further, differentiating yields
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1
τθ
+
(

γα
τη

)2
1
τz

H ′

−
µθ − c− γ

τη
(n− αµZ)√

1
τθ
+
(

αγ
τη

)2
1
τZ

 (IA62)

and since H ′ (x) ∈ (0, 1), we have ∂
∂(µθ−c)

∆V ∈ (0, 1).
Moreover,

∂

∂µZ

∆V = −γα

τη

1
τθ

1
τθ
+
(

γα
τη

)2
1
τz

H ′

−
µθ − c− γ

τη
(n− αµZ)√

1
τθ
+
(

αγ
τη

)2
1
τZ

 , (IA63)
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which is negative for α > 0 and positive for α < 0.
Finally,

∂

∂n
∆V =

γ

τη

1
τθ

1
τθ
+
(

γα
τη

)2
1
τz

H ′

−
µθ − c− γ

τη
(n− αµZ)√

1
τθ
+
(

αγ
τη

)2
1
τZ

 > 0. (IA64)

C Dispersed Investor Information about Project

Fundamentals

This Appendix sets up and solves a version of the model in the paper in which traders
have heterogeneous information about the project fundamental θ and the manager seeks
to maximize the date-3 stock price. Our key result is that the manager’s optimal invest-
ment decision remains equivalent to that in an otherwise-identical setting in which she
is endowed with perfect knowledge of the aggregate of investor signals θ + ω (where we
allow for, but do not require, a common error ω) and the aggregate climate exposure Z.

A. Assumptions

We retain the following features from our baseline model. There are four dates t ∈
{1, 2, 3, 4} and two securities, the firm and the risk-free asset. Investors have CARA
utility over t = 4 wealth with risk aversion γ and are endowed with n shares of the firm
and zi = Z + ζi units of a nontradeable asset with payoff −ηC . The random variables are
distributed as Z ∼ N

(
µZ , τ

−1
Z

)
, ζi ∼ N

(
0, τ−1

ζ

)
, and ηC ∼ N

(
0, τ−1

η

)
, and are mutually

independent. The firm’s cash flow per share is

V (k) = A+ k
(
θ + αηC +

√
1− α2ηI − c

)
where θ ∼ N

(
µθ, τ

−1
θ

)
and ηI ∼ N

(
0, τ−1

η

)
are independent of one another and all other

previously defined random variables.
The key difference with the existing setting in the paper is the information structure.

Assume now that at date 1 each trader observes an imperfect private signal regarding θ:

si = θ + ω︸ ︷︷ ︸
≡S

+εi

where ω ∼ N (0, τ−1
ω ) is a common error and εi ∼ N (0, τ−1

ε ) are iid idiosyncratic errors.

Let τS ≡ 1
V(S) =

(
1
τθ
+ 1

τω

)−1

concisely denote the prior precision of S. Note our analysis

allows, as a special case, the limit in which there is no common error in investors’ signals
(τω → ∞).

We continue to define a threshold equilibrium as in our baseline model, with one
difference: we now focus on equilibria in which the price statistic sp depends on the
common error in investors’ signals ω, and in particular, takes the form sp = S + 1

β
Z,

where β is an endogenous constant. As is standard in noisy rational expectations models,
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we allow investors to update their beliefs about θ (and Z) from prices.
The following proposition characterizes threshold equilibria, analogous to the equi-

librium that we study in our baseline model. Note that, as in, e.g., Ganguli and Yang
(2009), there can exist multiple equilibria corresponding to different values of the price-
signal coefficient β. We focus on equilibria that maximize investment for a given solution
β.

PROPOSITION IA1: There exists a threshold equilibrium. In this equilibrium, prices
are:

P1 = P3 = µA − γ
1

τA
n+ k

[
µθ − c+

τω
τθ + τω

τε + β2 (τZ + τζ)

τS + τε + β2 (τZ + τζ)

(
sp −

(
µθ +

1

β
µZ

))
+

γα

τη
µZ − γ

((
τω

τθ + τω

)2 1

τS + τε + β2 (τZ + τζ)
+

1

τθ + τω
+

1

τη

)
n

]

where the price-signal coefficient β satisfies the cubic equation

0 =
γα

τη
(τZ + τζ) β

3 − τζ
τω

τθ + τω
β2 +

γα

τη
(τS + τε) β − τω

τθ + τω
τε

and the investment-maximizing threshold sP for any given solution β satisfies

0 = µθ − c+
τω

τθ + τω

τε + β2 (τZ + τζ)

τS + τε + β2 (τZ + τζ)

(
sP −

(
µθ +

1

β
µZ

))
+

γα

τη
µZ

− γ

((
τω

τθ + τω

)2
1

τS + τε + β2 (τZ + τζ)
+

1

τθ + τω
+

1

τη

)
n.

The manager’s investment decision is

k = 1

{
P1 > µA − γ

1

τA
n

}
,

and is identical to the case in which she separately observes S and Z.

As in the baseline model, price aggregates investors’ information in an efficient manner
from the manager’s perspective, in that she takes the same decision that she would if she
could separately observe S and Z. To see this, note that the the impact of the manager’s
investment on her objective function, P3, depends on S and Z only through the price
signal sp, so that:

E [P3|S,Z] = E [P3|P1] .

Intuitively, this result again follows because the price signal the manager conditions on
and the objective she intends to maximize put the same (relative) weights on S and Z.

B. Equilibrium

We again search for a threshold equilibrium, which is defined as in Definition 1 in the
paper. Let sp = S + 1

β
Z denote the endogenous price statistic and sP the endogenous

investment threshold.
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B.1. t = 3 trading date

At the last trading date, information sets are Fi3 = σ (si, zi, P1, P3, k). Hence, investor
i perceives the asset payoff as conditionally normally distributed with conditional mean

Ei3 [V (k)]

= µA + kEi3 [θ − c]

= µA + k (Ei3 [E [θ|S]]− c)

= µA + k

(
µθ +

τω
τθ + τω

Ei3 [S − µθ]− c

)
= µA + k

µθ−c+ τω
τθ+τω

E[S−µθ |zi]+C

S,( sisp )

∣∣∣∣ziV−1

 si
sp

∣∣∣∣zi( si−E[si|zi]
sp−E[sp|zi]

)


= µA + k

µθ−c+ τω
τθ+τω


1
τS
1
τS


′

1
τS

+ 1
τε

1
τS

1
τS

1
τS

+ 1
β2

V(Z|zi)


−1 si−µθ

sp−(µθ+
1
β
E[Z|zi])




= µA + k

µθ−c+ τω
τθ+τω


1
τS
1
τS


′

1
τS

+ 1
τε

1
τS

1
τS

1
τS

+ 1

β2(τZ+τζ)


−1 si−µθ

sp−
(
µθ+

1
β

(
µZ+

τζ
τZ+τζ

(zi−µZ)

))


= µA + k
µθ−c+ τω

τθ+τω

 τε

τS+τε+β2(τZ+τζ)
(si−µθ)+

β2(τZ+τζ)
τS+τε+β2(τZ+τζ)

(sp−(µθ+
1
β
µZ))−

β2(τZ+τζ)
τS+τε+β2(τZ+τζ)

1
β

τζ
τZ+τζ

(zi−µZ)




and conditional (co)variances (where we have suppressed the i subscripts since these
quantities are identical across traders)

V3 (V (k)) =
1

τA
+ k2V3

(
θ + αηC +

√
1− α2ηI − c

)
=

1

τA
+ k2

(
V3 (θ) +

1

τη

)
=

1

τA
+ k2

(
V3 (E [θ|S]) + V (θ|S) + 1

τη

)
=

1

τA
+ k2

((
τω

τθ + τω

)2
1

τS + τε + β2 (τZ + τζ)
+

1

τθ + τω
+

1

τη

)
C3 (V (k) , ηC) =

kα

τη
.

It follows that the optimal trade is

Xi3 =
Ei3 [V (k)] + γCi3 (V (k) , ηC) zi − P3

γVi3 (V (k))
− (n+Xi1) .

Now, market clearing yields∫
Xi3di = 0

⇔ n =

∫
Ei3 [V (k)] + γCi3 (V (k) , ηC) zi − P3

γVi3 (V (k))
di

P3 = µA+k

(
µθ−c+ τω

τθ+τω

(
τε

τS+τε+β2(τZ+τζ)
(S−µθ)−

β2(τZ+τζ)
τS+τε+β2(τZ+τζ)

1
β

τζ
τZ+τζ

(Z−µZ)

)
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+ τω
τθ+τω

β2(τZ+τζ)
τS+τε+β2(τZ+τζ)

(sp−(µθ+
1
β
µZ))

)
+k γα

τη
Z−γV3(V (k))n

= µA+k

(
µθ−c+ τω

τθ+τω

(
τε

τS+τε+β2(τZ+τζ)
(S−µθ)−

β2(τZ+τζ)
τS+τε+β2(τZ+τζ)

1
β

τζ
τZ+τζ

(Z−µZ)

)
+ γα

τη
Z

+ τω
τθ+τω

β2(τZ+τζ)
τS+τε+β2(τZ+τζ)

(sp−(µθ+
1
β
µZ))

)
−γV3(V (k))n

= µA+k

µθ−c+ τω
τθ+τω

τε

τS+τε+β2(τZ+τζ)

S−µθ+

γα
τη

− τω
τθ+τω

β2(τZ+τζ)
τS+τε+β2(τZ+τζ)

1
β

τζ
τZ+τζ

τω
τθ+τω

τε

τS+τε+β2(τZ+τζ)
(Z−µZ)


+ τω

τθ+τω

β2(τZ+τζ)
τS+τε+β2(τZ+τζ)

(sp−(µθ+
1
β
µZ))+ γα

τη
µZ

)
−γV3(V (k))n.

Equating the coefficient on Z with the initial conjecture 1
β
yields a polynomial equation

in β

1

β
=

γα
τη

− τω
τθ+τω

β2(τZ+τζ)
τS+τε+β2(τZ+τζ)

1
β

τζ
τZ+τζ

τω
τθ+τω

τε
τS+τε+β2(τZ+τζ)

.

After substituting this back into the price function and plugging in the explicit expression
for V3 (V (k)) we can write the price concisely as

P3 = µA + k

(
µθ − c+

τω
τθ + τω

τε + β2 (τZ + τζ)

τS + τε + β2 (τZ + τζ)

(
sp −

(
µθ +

1

β
µZ

))
+

γα

τη
µZ

)
− γ

(
1

τA
+ k2

((
τω

τθ + τω

)2
1

τS + τε + β2 (τZ + τζ)
+

1

τθ + τω
+

1

τη

))
n. (IA1)

Note that after manipulating and grouping terms, the polynomial for β is a cubic

0 =
γα

τη
(τZ + τζ) β

3 − τζ
τω

τθ + τω
β2 +

γα

τη
(τS + τε) β − τω

τθ + τω
τε. (IA2)

By Descartes’ rule of signs, this equation has at least one real root and up to three real
roots. All real roots are positive if α > 0 and are negative if α < 0.

B.2. t = 2 investment decision

As in the baseline model, the price-maximizing manager’s investment problem is

max
k∈{0,1}

E [P3|P1] .

Given the conjectured piecewise linear equilibrium, the optimal investment rule takes a

threshold form, k∗ ≡ 1
{
P1 > µA − γ 1

τA
n
}
, which is equivalent to a threshold rule in sp,

1 {sp > sP}. Applying the same arguments as in our main proofs, fixing a solution β to
(IA2), the unique investment-maximizing threshold sP equates the firm’s price conditional
on investment and no-investment. Appealing to equation (IA1), this implies that sP solves

µA − γ
1

τA
n = µA +

(
µθ − c+

τω
τθ + τω

τε + β2 (τZ + τζ)

τS + τε + β2 (τZ + τζ)

(
sP −

(
µθ +

1

β
µZ

))
+

γα

τη
µZ

)
30



− γ
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1
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+
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τω

τθ + τω

)2
1

τS + τε + β2 (τZ + τζ)
+

1

τθ + τω
+

1

τη

)
n

⇔ 0 = µθ − c+
τω

τθ + τω

τε + β2 (τZ + τζ)

τS + τε + β2 (τZ + τζ)

(
sP −

(
µθ +

1

β
µZ

))
+

γα

τη
µZ

− γ

((
τω

τθ + τω

)2
1

τS + τε + β2 (τZ + τζ)
+

1

τθ + τω
+

1

τη

)
n. (IA3)

This can be rearranged to arrive at a unique, explicit solution for sP . Following anal-
ogous arguments to those in the proofs in our baseline model, given the form of P1, in
equilibrium, this investment rule can be implemented as the stated price-contingent rule.

B.3. t = 1 trading date

As in the baseline model, in the conjectured equilibrium, a trader at t = 1 can observe
sp × 1(sp > sP ). This enables her to perfectly anticipate both the manager’s investment
rule and the date-3 price P3. Thus we must have P1 = P3 in equilibrium, or the market
could not clear.
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