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1 Introduction

Belief dispersion appears to be negatively related to the cross section of stock returns (e.g.,

Diether, Malloy, and Scherbina (2002)), but positively related to the cross section of bond

returns (e.g., Güntay and Hackbarth (2010)). Similarly, distress risk has been positively

linked to expected returns on debt (e.g., Huang and Huang (2012) and Bai, Goldstein, and

Yang (2020)), but negatively linked to expected returns on equity (e.g., Campbell, Hilscher,

and Szilagyi (2008)). Existing theoretical approaches, including noisy rational expectations

(RE) and difference of opinions (DO) models, are unable to simultaneously reconcile these

stylized facts because they consider settings in which security payoffs are linear in underlying

fundamentals, and so ignore the inherent non-linearity in debt and equity payoffs.

To understand how investor information, disagreement and liquidity (noise) trading affect

debt and equity returns, we develop a model where investors who have dispersed information

about a firm’s cash flows trade securities with liquidity, or noise, traders (e.g., as in the noisy

RE model of Hellwig (1980)). Our model captures two key features. First, the payoffs to

debt and equity depend non-linearly on the firm’s underlying cash flows. Second, belief

dispersion can arise through a combination of asymmetric information and noise trading (as

in noisy RE models) and investor disagreement (as in DO models).1

Our analysis shows that the interaction of these features generates a number of predictions

that are consistent with empirical evidence but difficult to derive from traditional models.

For instance, we show that idiosyncratic distress risk (driven by firm-specific information

and noise trading) raises the expected return on investment-grade debt, but lowers the

expected return on equity for such firms, in line with existing empirical work. However,

this relationship reverses for firms close to bankruptcy, and thus the overall relation between

distress risk and equity returns is hump-shaped, consistent with Garlappi, Shu, and Yan

(2008).

Moreover, while more noise trading and higher disagreement both lead to higher belief

dispersion, we show that these affect expected returns differently: an increase in the former

leads to lower equity returns and higher debt returns, while an increase in the latter leads

to the opposite effects. As such, our model is able to simultaneously reconcile the negative

relation between belief dispersion and equity returns and the positive relation for debt.

However, it also suggests that controlling for measures of liquidity trading is important

when studying the relation between belief dispersion and expected returns.

1We distinguish between “belief dispersion” and “disagreement.” Belief dispersion refers to any situation
in which investors assign different conditional distributions to firm fundamentals, regardless of the underlying
source of such differences. Disagreement refers specifically to situations in which beliefs are dispersed because
investors “agree to disagree” about the information content of one another’s signals.
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Our model also generates novel predictions about how the relation between firm-specific

default risk and expected returns varies across firms. We find that this relation weakens, and

can even reverse, when disagreement among investors is sufficiently high or when liquidity

trading is very low. Moreover, considering the prices of equity and debt jointly, we show that

a firm’s capital structure affects its valuation even in the absence of traditional frictions such

as tax shields of debt or distress costs. Specifically, the optimal choice of leverage depends

on the relative amount of liquidity trading in each security. When liquidity trading is higher

in equity, the total value of a levered firm can be higher than that of an unlevered firm.

Overview of Model and Mechanism. In our model, privately-informed, risk-averse

investors trade the debt and equity of a levered firm alongside liquidity traders.2 We allow,

but do not require, investors to agree to disagree about the quality of others’ information and,

consequently, dismiss the information in prices. Our model nests two natural benchmarks as

special cases: investors may either exhibit rational expectations (RE) and correctly interpret

the information in prices, or exhibit pure differences of opinion (DO) and completely ignore

price information. A key challenge in characterizing the equilibrium is that the payoffs to

levered equity and debt are option-like, and depend non-linearly on the firm’s underlying

cash flows, and so standard approaches (e.g., Hellwig (1980)) cannot be employed. Instead,

we apply recent work on non-linear equilibria by Breon-Drish (2015), and the multi-asset

model of Chabakauri, Yuan, and Zachariadis (2022), to characterize an equilibrium in which

security prices depend non-linearly on beliefs about fundamentals and liquidity trading.

The option-like nature of the equity and debt payoffs affects how the prices of these

securities aggregate investor information and respond to liquidity shocks. To gain intuition,

we start with a benchmark setting where liquidity-trader demands in the equity and debt

markets are identical. In this case, debt and equity prices each convey the same information

signal to investors. We find that equity and debt valuations depend crucially on how investors

update from this price signal. Specifically, after controlling for systematic risk, the expected

excess return on equity is negative and the expected excess return on debt is positive unless

investors are sufficiently dismissive of price information and liquidity-trading volatility is

sufficiently low.

These results are driven by how the security prices respond to investors’ private infor-

mation and liquidity-trader demand in equilibrium. We show that security prices can be

2In our benchmark analysis, we consider a single-firm model in which the source of systematic risk is
the aggregate supply of each security that investors have to hold. In Section 7, we show that our analysis
extends naturally to a setting with multiple firms and a systematic risk factor. Our results on “excess”
expected returns should be interpreted as predictions about “alphas” from the perspective of an outside
econometrician who is controlling for variation in systematic risk exposures of the securities. However, these
alphas do not reflect mispricing from the perspective of investors in the model.
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expressed as expected security payoffs under a risk-neutral distribution, where the risk-

neutral expectation of cash flows is increasing in investors’ aggregate cash flow expectations

and liquidity-trader demand.

This enables us to provide a simple characterization of expected returns. Since equity

payoffs are convex in cash flows, the equity price is a convex function of the risk-neutral

cash flow expectation — analogously, the debt price is concave. Building on the intuition

from Jensen’s inequality, this implies that the expected returns on the securities depend on

the difference between the volatility of the risk-neutral cash flow expectation and that of

the (physical) cash flow expectation of a typical investor. The convexity in equity payoffs

and prices implies that expected excess returns on equity are positive when the risk-neutral

expectation is less volatile. The concavity for debt implies that the expected excess returns

are positive when the reverse is true.

The relative volatility of the risk-neutral cash flow expectation versus the cash flow ex-

pectation of a typical investor depends on asymmetric information, noise-trading volatility,

and their interaction with disagreement. On the one hand, because the risk-neutral ex-

pectation reflects aggregate investor beliefs, it tends to be less volatile than the beliefs of an

individual investor. On the other hand, because the risk-neutral expectation is also driven by

liquidity-trader demand, it tends to be more volatile when noise-trading volatility is higher.

We show that the relative impact of these forces depends crucially on disagreement,

and specifically how much weight investors give the information in prices when forming their

beliefs. When investors interpret the price as being informative (e.g., when they exhibit RE),

they put relatively more weight on the common (price) signal. This amplifies the impact

of noise-trading volatility and makes the risk-neutral expectation more volatile, which leads

to lower equity returns and higher debt returns. In contrast, when investors disagree about

the informativeness of others’ signals, they dismiss the information in prices, which makes

individual expectations more volatile. As a result, when noise-trading volatility is sufficiently

low, the first channel dominates, which leads to higher equity returns and lower debt returns.

Implications. The above economic mechanisms have several empirically-relevant implica-

tions. First, for firms far from default, we find that higher leverage is associated with lower

debt prices, even after controlling for systematic risk. Thus, consistent with the credit-spread

puzzle, an increase in firm-specific default risk raises the discount rate on the firm’s debt

by more than the expected losses conditional on default (e.g., Huang and Huang (2012)).

Similarly, equity returns are negatively related to leverage when default probabilities are low

(consistent with Campbell et al. (2008)), but increase with leverage for highly distressed

firms.3

3Note this overall hump shape is consistent with the results in Garlappi et al. (2008) and Garlappi and
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Second, the above intuition implies that these relations weaken, and can even reverse,

when investors are highly dismissive of the information in prices and the volatility of liq-

uidity trading is sufficiently low. As such, our model provides novel predictions on how

the relation between expected returns and distress risk varies across firms. Specifically, the

expected return on debt is positively related to the interaction between distress risk and

liquidity-trading volatility, but negatively related to the interaction between distress risk

and disagreement; the predictions for the expected return on equity are reversed.

We then generalize our benchmark model to consider a setting in which liquidity trading

in debt and equity markets can have arbitrary correlation. Investors update their beliefs

about cash flows from both the debt and equity prices, which generates a spillover across

markets: liquidity-trader demand in the equity market increases debt prices and vice versa.

Our analysis implies that the correlation between equity and debt prices increases with

leverage when the likelihood of default is sufficiently low, consistent with the empirical

evidence in Pasquariello and Sandulescu (2021).

In our baseline analysis, because liquidity traders’ demands in both markets are identical,

their impact on the combined valuation of debt and equity cancel out exactly. As a result,

the total value of the levered firm is equal to the value of the unlevered firm i.e., Modigliani

and Miller’s irrelevance result obtains. However, when liquidity trading differs across the

two markets, this is no longer true. Instead, we find that when the volatility of liquidity

trading in equity is higher than that in debt, the positive effect on equity prices dominates

the negative effect on debt prices and so the total market value of the levered firm is hump-

shaped in leverage. This suggests that an interior level of leverage is optimal for the firm,

even in the absence of traditional frictions associated with debt financing (e.g., tax shields,

distress costs).

Finally, we consider a multi-firm generalization in which there are an arbitrary number

of firms, each with a potentially different leverage policy, and whose cash flows are exposed

to a systematic risk factor and are subject to firm-specific shocks. We show that the insights

of our baseline model apply directly: when investors are informed about the firm-specific

component of cash flows and liquidity trading is idiosyncratic across firms, our predictions

about expected returns from the baseline model become predictions about expected returns

in excess of those in a frictionless economy without private information or liquidity trading

(i.e., in which returns are driven only by exposure to the systematic risk factor). This

analysis establishes that our key mechanisms survive in a multiple firm setting even after

properly controlling for systematic risk, and consequently firm-specific private information

and liquidity trade continue to influence expected returns.

Yan (2011).
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The rest of the paper is as follows. The next section discusses the related literature and

our incremental contribution. Section 3 presents the model, and Section 4 characterizes the

equilibrium in the baseline case. Section 5 characterizes how the expected returns on debt

and equity depend on the features of the model. Section 6 presents the characterization of the

equilibrium when the liquidity-trader demands in the two markets are not identical. Section

7 generalizes the baseline model to a setting with multiple firms and an explicit systematic

risk factor. Section 8 presents the empirical implications of the model and discusses existing

empirical research that relates to our results. Finally, Section 9 concludes. Unless noted

otherwise, proofs are in the Appendix.

2 Related Literature

One contribution of our analysis is to study trade in equity and debt in a setting that

allows for both heterogeneity in investor information and differences of opinion. That is, in

addition to jointly considering both equity and debt issued by the same firm (as in Chabakauri

et al. (2022)), our model differs from the standard noisy rational expectations framework by

allowing investors to “agree to disagree”. We show that this leads to readily-interpretable

closed-form solutions for demands and prices in the two securities and novel predictions on

how non-linearity in payoffs affects expected return

Chabakauri et al. (2022) offers the closest model to ours, analyzing private information

in a general multi-asset noisy rational expectations framework with CARA investors. When

applying their model to study debt and equity prices, their focus is on showing that the

informativeness of these prices does not depend on the firm’s capital structure (a result that

also holds in our model). We complement their work by allowing investors to potentially

disregard the information in prices, by analyzing expected debt and equity returns, and

by considering a setting with multiple firms and systematic risk factors. Moreover, while

Chabakauri et al. (2022) do not focus on the expected returns on debt and equity, they do

characterize the relationship between payoff skewness and expected returns when investors

exhibit rational expectations. Our results show that the relationship between skewness and

prices they document depends on investor disagreement and can reverse when investors

dismiss the information in prices and liquidity-trading volatility is low.

Our analysis is related to noisy rational expectations models of debt and equity markets

in which non-linearity in security prices plays a key role. To study the credit-spread puzzle,

Albagli, Hellwig, and Tsyvinski (2021) consider a setting in which risk-neutral, informed

investors have position limits and trade in a bond with binary payoffs, and find that the

bond price overweights risk. Similarly, Albagli, Hellwig, and Tsyvinski (2023) argue that in
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general settings, noisy aggregation of information leads to prices that place excess weight

on tail risks. Davis (2017) extends their analysis to consider the firm’s issuance decision

over time and across markets, in a setting where investors choose how much information

to acquire about fundamentals. Back and Crotty (2015) consider the pricing of debt and

equity in a continuous-time Kyle model in which a strategic, informed investor can trade

in both debt and equity markets, and market making is integrated. They show that the

stock-bond correlation depends on the cross-market lambda, and is positive (negative) when

the strategic trader is informed about the mean (risk) of firm’s assets.

In a single-period Kyle model of debt and equity with segmentation in market making,

Pasquariello and Sandulescu (2021) study how changes in leverage affect the sensitivity of

debt and equity to firm value, and consequently, affect the intensity of informed specula-

tion in each security. This gives rise to variation in liquidity across debt and equity, and

non-monotonicity in the co-movement of their prices. Chaigneau (2022) considers capi-

tal structure when investors have information on both upside and downside risks. Finally,

Frenkel (2023) considers a Glosten-Milgrom model of debt trading to characterize how neg-

ative news for firms that are close to default can trigger more information acquisition, and

subsequently, lead to liquidity dry-ups.

We view our analysis as complementary to this earlier work. While these papers largely

consider settings in which the price is determined by risk-neutral investors/market mak-

ers, investors in our model are risk-averse. Moreover, while these models focus on rational

expectations equilibrium, our model allows investors to “agree to disagree” about the in-

formativeness of others’ signals, and consequently dismiss the information in prices. We

show that this has important implications for how non-linearity in payoffs affects expected

returns.4

3 Model Setup

We consider a model of trade among informed investors in the spirit of Hellwig (1980), with

two modifications: we allow the firm to be levered and for investors to potentially ignore

the information in price. We begin with a single-firm model, where our results are most

transparent, but illustrate how they extend to a large economy with many firms in Section

7.

4Models in which investors “agree to disagree” about others’ information include Miller (1977), Morris
(1994), Kandel and Pearson (1995), Scheinkman and Xiong (2003), and Banerjee (2011). Our analysis also
has implications for settings where investors dismiss the information in prices due to other reasons, including
“cursedness” (e.g., Eyster, Rabin, and Vayanos (2018)), costly price information (e.g., Mondria, Vives, and
Yang (2022)) and “wishful thinking” (e.g., Banerjee, Davis, and Gondhi (2019)).
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Payoffs. Investors trade in the risky debt and equity of a firm alongside a risk-free

security. The gross return on the risk-free security is normalized to 1. The firm’s total cash

flows per share (i.e., the sum of its cash flows per share/unit that accrue to equity and debt

holders) are V ≡ m+ θ, where m is a constant and θ ∼ N (0, σ2
θ). The assumption that V is

normally distributed keeps the traders’ updating problem simple and transparent, but can

be relaxed using the approach of Breon-Drish (2015) and Chabakauri et al. (2022).

The firm has debt with a face value of K per unit, i.e., equity payoffs per share are

VE = max (V −K, 0) and debt payoffs per unit are VD = min (V , K), so that V = VE + VD.

We assume that there are liquidity traders who submit identical demand z ∼ N (0, σ2
z) shares

/ units in both the equity and debt markets. The per capita supply of the firm’s securities is

κ ≥ 0 (i.e., there are κ units of debt and κ shares outstanding per capita). Note that setting

per capita supply equal in the debt and equity securities ensures that changes in the firm’s

capital structure do not mechanically change the total cash flow paid out to investors. That

is, the aggregate cash flow of the two securities κVD + κVE always sums to κ× V .
The assumption that the liquidity-trader demands in the debt and equity markets are

perfectly correlated is made for expositional clarity in our initial analysis. In Section 6,

we explore a setting where liquidity trading in the two markets follows a general bivariate

normal distribution, which allows for imperfect correlation and/or different variances across

the markets. Note that setting K ≥ 0 ensures that firms’ equity holders always earn non-

negative payoffs, consistent with limited liability. However, because the cash flow V can

take on negative values, our baseline analysis allows for potentially negative payoffs to the

debt. We extend our model to fully incorporate limited liability in Appendix D in which we

consider a setting where the cash flow is bounded below by zero.

Preferences and Information. There is a unit mass of investors indexed by i ∈ [0, 1].

Each investor i is endowed with κ shares of the stock and bond, and exhibits CARA utility

with risk-tolerance τ over her terminal wealth Wi. Let xE,i and xD,i denote investor i’s

demands for the equity and debt, respectively (so that xk,i − κ is her net trade in security

k ∈ {D,E}), and let PE denote the equity and PD the debt price per share/unit. The

terminal wealth Wi of investor i is therefore:

Wi = κ(PD + PE) + xE,i(VE − PE) + xD,i(VD − PD).

Investor i observes a private signal si of the form:

si = θ + εi, (1)

where the error terms εi ∼ N (0, σ2
ε) are independent of all other random variables.
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Subjective Beliefs. We allow for a flexible specification of subjective beliefs about the

private information of others. Following Banerjee (2011), we assume that investor i’s beliefs

about her own signal are given by (1), but her beliefs about investor j’s signal are given by:

sj =i ρ θ +
√

1− ρ2 ξi + εj, (2)

where the random variables ξi ∼i N(0, σ2
θ) and εj ∼i N (0, σ2

ε) are independent of all other

random variables and each other. We use a subscript i on expectations, variances, and

distributions to refer to investor i’s subjective beliefs.

The parameter ρ ∈ [0, 1] captures the degree of disagreement across investors.5 Specif-

ically, when ρ = 1, investors agree: all investors share common priors about the joint dis-

tribution of fundamentals and signals, and so exhibit rational expectations (as in Hellwig

(1980)). In this case, investors fully condition on the information in prices (in addition to

their private information) when updating their beliefs about fundamentals. At the other

extreme, when ρ = 0, investors disagree maximally and exhibit “pure” differences of opinion

(as in Miller (1977)): each investor believes no other investor has payoff relevant information,

and so prices are not incrementally informative about payoffs. In this case, investors do not

place any weight on price information when updating their beliefs about cash flows. Finally,

when ρ ∈ (0, 1), investors disagree partially about the informativeness of each other’s signals,

since each investor believes others’ signals are informative, but less so than they actually are.

As a result, each investor is partially dismissive of the information in prices when forming

beliefs.

The assumption that all investors can trade in both markets is made for tractability,

but also serves as a useful benchmark. It allows us to focus on the implications of belief

heterogeneity on debt and equity valuations without introducing differences in clienteles,

investor information, or risk aversion across these securities. In practice, one might argue

that bond markets are more specialized and have less participation than equities. Although

we expect the economic mechanisms that we study to operate in richer settings, explicitly

accounting for different groups of investors in each security (e.g., investor specialization) is

intractable in our framework.6

Equilibrium. An equilibrium consists of demands {xE,i, xD,i}i∈[0,1] and prices (PD, PE)

5The assumption that ξi has the same distribution as θ ensures that investor i cannot detect the error in
her subjective beliefs based on the unconditional mean and variance of others’ signals. Note that investor
i believes that ξi is the common “error” in all other investors’ signals. This is analogous to the subjective
beliefs of investors in other difference of opinions models (e.g., Scheinkman and Xiong (2003)) and in the
“cursed equilibrium” of Eyster et al. (2018).

6As Section 6 illustrates, we can allow for differences in the informativeness of debt and equity prices by
assuming that liquidity trading in the two markets have different variances.
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such that (i) the demands (xD,i, xE,i) maximize investor i’s expected utility, given her infor-

mation Fi = σ(si, PD, PE) and subjective belief formation mechanism described above, and

(ii) the equilibrium prices (PD, PE) are determined by market clearing∫
xk,idi+ z = κ; k ∈ {D,E}. (3)

4 Analysis

Because the equity and debt securities are effectively options on the underlying cash flows,

their payoffs are not normally distributed. As a result, the equilibrium in which prices

are linear in the fundamental and liquidity trade, which is common in traditional CARA-

Normal rational expectations models, does not exist. Instead, we focus on the following

more general class of equilibria, which is a two-asset version of the equilibrium studied in

Breon-Drish (2015) and Chabakauri et al. (2022) and allows for non-linear price functions.7

We emphasize that this class of equilibria is not an approximation to a linear equilibrium;

rather, it entertains more general functional forms for asset prices.

Definition 1. A generalized linear equilibrium is one in which there exists an injective

function (PD(·), PE(·)) mapping R2 into R2, and linear statistics of the form

sp1 = s+ b1z (4)

sp2 = s+ b2z, (5)

where s =
∫
sjdj is the average private signal and b1, b2 are endogenous constants such that

the equilibrium debt and equity prices are given by PD(sp1, sp2) and PE(sp1, sp2).

The key feature of such an equilibrium is that the information in prices reduces to two

linear statistics sp1 and sp2, corresponding to the fact that investors observe two prices. This

implies that Bayesian updating takes a tractable form as in linear noisy rational expecta-

tions models. As we will see, in the case of identical liquidity trading in both markets, in

equilibrium, the debt and equity prices convey the same information, and as such, the two

price statistics are identical. We refer to the single statistic conveyed by prices as

sp1 = sp2 = sp ≡ s+ bz =i ρ θ +
√

1− ρ2 ξi + bz. (6)

7We follow existing applied work in focusing on equilibria in the generalized linear class. Indeed, in classic
CARA-Normal settings (e.g., Grossman and Stiglitz (1980), Hellwig (1980)), the set of generalized linear
equilibria is precisely the set of linear equilibria. The equilibria we characterize below are unique in the class
of generalized linear equilibria.
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It is worth noting that the objective distribution of this signal is given by sp = θ+ bz, which

coincides with investors’ beliefs when ρ = 1.

To solve for an equilibrium, we derive investors’ demands given these beliefs, apply market

clearing, and verify that the resulting price indeed takes the “generalized linear” form from

Definition 1.

4.1 Benchmarks

To provide intuition for the equilibrium that arises in the general case, we start by charac-

terizing the equilibrium in two natural benchmarks.

4.1.1 Unlevered firm benchmark

First, consider the case in which the firm issues only equity (i.e., when K → −∞). In this

case, the payoff to equity holders is normally distributed as in traditional models, and so we

recover the standard, linear equilibrium. Moreover, since the firm only issues one type of

security, investor i infers a single linear statistic from the unlevered equity price that takes

the form in (6).

Given this signal, investor i’s conditional beliefs about cash flows V are normal with

moments given by

µi ≡ Ei [V|si, PU ] = m+ σ2
s

(
si
σ2
ε

+
sp
ρσ2

p

)
and (7)

σ2
s ≡ Vi [V|si, PU ] =

(
1

σ2
θ

+
1

σ2
ε

+
1

σ2
p

)−1

,where (8)

σ2
p ≡

1− ρ2

ρ2
σ2
θ +

b2σ2
z

ρ2
(9)

and where it is understood that when ρ = 0, we take 1
σ2
p
= 1

ρσ2
p
= 0 in the above expressions.

Standard calculations imply that investor i’s optimal demand for the security is given by

xi = τ

(
µi − PU
σ2
s

)
, (10)

and market clearing implies that the equilibrium price is given by:

PU =

∫
µidi+

σ2
s

τ
(z − κ) .

This implies the following result.
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Lemma 1. Unlevered firm benchmark. Suppose that the firm only issues equity (i.e.,

K → −∞). Then, there is a unique linear equilibrium in which the firm’s price satisfies:

PU(·) = m+ σ2
s

((
1

σ2
ε

+
1

ρσ2
p

)
(s+ bz)− κ

τ

)
, (11)

where b = σ2
ε

τ
, and σ2

s =
(

1
σ2
θ
+ 1

σ2
ε
+ 1

σ2
p

)−1

.

Notably, the above equilibrium coincides with the rational expectations equilibrium in

Hellwig (1980) when ρ = 1. On the other hand, when ρ = 0, investors ignore the information

in prices (since the weight they put on sp in (7) is zero).

4.1.2 Risk-neutral, uninformed benchmark

As a second benchmark, consider the setting in which investors are risk neutral (i.e., τ → ∞)

and completely uninformed (i.e., σ2
ε → ∞). In this case, the price of each security is given

by the unconditional expectation of its payoff i.e.,

PE = E [max (V −K, 0)] and PD = E [min (V , K)] .

In what follows, the definition below will be convenient.

Definition 2. Suppose x ∼ N(µx, σ
2
x). Let ME(µx, σ

2
x, K) and MD(µx, σ

2
x, K) denote:

ME(µx, σ
2
x,K) ≡ E [max (x−K, 0)] =

[
1− Φ

(
K − µx

σx

)]µx −K + σx
ϕ
(
K−µx
σx

)
1− Φ

(
K−µx
σx

)
 , (12)

MD(µx, σ
2
x,K) ≡ E [min (x,K)] = K − Φ

(
K − µx

σx

)K − µx + σx
ϕ
(
K−µx
σx

)
Φ
(
K−µx
σx

)
 . (13)

It is worth noting that since max(x −K, 0) is an increasing, convex function of x −K,

we immediately have that ME(µx, σ
2
x, K) is increasing in µx and σ2

x, but decreasing in K.

Similarly, since min(x,K) = K +min(x−K, 0) is increasing and concave in x, we have that

MD(µx, σ
2
x, K) is increasing in µx and K, but decreasing in σ2

x.

Given the above definition, we can characterize the equilibrium in this benchmark as

follows.

Lemma 2. Risk-neutral, uninformed benchmark. Suppose that investors are risk

neutral and uninformed (i.e., τ → ∞, σ2
ε → ∞). Then, there is a unique equilibrium in which

the firm’s equity and debt prices are given by PE =ME (m,σ2
θ , K) and PD =MD (m,σ2

θ , K).

Moreover, the total value of the firm is given by PE + PD = m.

11



The above results are intuitive. Note that Pr(V < K) = Φ
(
K−m
σθ

)
reflects the probability

that the firm defaults on its debt. Given this, the price of equity is given by the probability

of no default times the conditional expected cash flows, given no default i.e.,

PE = Pr(V > K)× E[V −K|V > K],

which corresponds to the expression for ME in (12), evaluated at the firm’s cash flow mean

and variance. Similarly, the price of debt is given by the face value of debt, K, minus the

probability of default times the loss given default i.e.,

PD = K − Pr(V < K)× E[K − V|V < K],

which corresponds to the expression for MD in (13). Not surprisingly, since investors are

uninformed and risk-neutral, the total value of the firm reflects the unconditional expected

cash flows. In the following subsection, we show that the equilibrium prices when investors

are risk averse and privately informed are natural generalizations of the above expressions.

4.2 Equilibrium

To start, we study investors’ demands holding fixed the equity and debt prices. We then

show that the firm’s equity and debt prices contain the same information as in the unlevered

firm benchmark, which lends tractability to our model.

Lemma 3. Given equity and debt prices PE and PD, investors’ demands take the form:(
xE,i

xD,i

)
=

τ

σ2
s

[(
µi

µi

)
−G

(
PE

PD

)]
, (14)

for a function G(·) defined in the appendix. As a result, the firm’s equity and debt prices

contain the same information as in the unlevered firm benchmark, i.e., they depend upon

{si} and z only through the statistic sp.

The first part of the lemma illustrates that investors’ demands are additively separable

in investors’ beliefs about the firm’s total cash flow, µi = Ei [V ], and the prices PE, PD.

Moreover, each investor speculates on her beliefs in the same direction in both markets, and

exhibits the same trading aggressiveness in the two markets:

∂xE,i
∂µi

=
∂xD,i
∂µi

=
τ

σ2
s

=
risk tolerance

posterior uncertainty
. (15)
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Intuitively, both securities are exposed to the firm’s underlying cash flows in the same direc-

tion. One might posit that investors would trade more aggressively in the security that is

more exposed to a shift in the firm’s cash flows. For instance, when the firm’s expected cash

flows µi are large, the debt almost certainly pays off K, and so the equity is considerably

more sensitive to a change in µi. Thus, one might expect an investor with a positive signal

to take a larger position in the equity than the debt. However, while the expected payoffs

to trading on private information are greater in the security that is more exposed to θ, so

too is the risk, and these two effects precisely offset.8

Equation (15) holds regardless of the firm’s debt level K, which implies that the firm’s

capital structure does not influence the investors’ trading aggressiveness. In addition, the

total supplies of the equity and debt to be absorbed by the investors, κ − z, are identical.

Together, these results imply that the equity and debt prices contain the same information

and that this information is the same as in the case where the firm is unlevered, as in

Chabakauri et al. (2022). Therefore, investors’ expectations and variances of total firm cash

flows in equilibrium are identical to those in equations (7) and (8).

Building on these findings, the next proposition characterizes the equilibrium price and

investor demands.

Proposition 1. There exists a generalized linear equilibrium, unique within this class, in

which the equity and debt prices satisfy:

PE =ME

(
PU , σ

2
s , K

)
and PD =MD

(
PU , σ

2
s , K

)
. (16)

Moreover, the total value of the equity and debt is equal to PU i.e., PU = PE + PD, and

investors’ equilibrium equity and debt demands satisfy:

xE,i = xD,i = τ
µi −

∫
µjdj

σ2
s

− z + κ. (17)

This proposition demonstrates that the firm’s equity and debt prices are equal to their

expected payoffs under the distribution V ∼ N(PU , σ
2
s). That is, V ∼ N(PU , σ

2
s) is the

risk-neutral distribution of cash flows in our equilibrium.9 Importantly, the mean of this

distribution PU =
∫
µidi +

σ2
s

τ
(z − κ) captures both how prices aggregate investors’ diverse

information signals (via the term
∫
µidi), as well as the risk premium associated with bearing

8Note we have verified that this result on demand linearity in private information holds when the firm’s
cash flow V follows an arbitrary distribution and investors receive conditionally iid signals about V. It does
not depend upon normally distributed cash flows.

9Similarly, in the case of an unlevered firm, the price PU of the unlevered equity is precisely the expectation
of the firm’s cash flows under this distribution.
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the net supply of equity and debt (via the term σ2
s

τ
(z − κ)).

The total market price of the firm’s equity and debt, PE + PD, is independent of the

firm’s capital structure and equal to the price were the firm unlevered PU . This implies the

Modigliani-Miller theorem holds in this setting, even though investors have private infor-

mation.10 Finally, consistent with the finding in Lemma 3 that investors speculate on their

beliefs equally in both markets, their equilibrium demands in the two markets are identical

and coincide with their demands in the unlevered firm case.

Intuitively, because the investors have private information about the firm’s cash flows,

their goal is to obtain exposure the firm’s total cash flows (either positive or negative,

depending on their signal). Moreover, investors can do this by reconstructing a security

that pays off in proportion to the firm’s total cash flows by buying equal amounts of the

outstanding debt and equity securities. Importantly, because the noise trading in the two

securities is identical (as is the aggregate supply of each security), both security markets

can clear in this case regardless of the firm’s capital structure. As a result, each investor’s

equilibrium demands for debt and equity are equal, and the equilibrium price of a claim to

the firm’s total cash flows (i.e., PU) is independent of the firm’s capital structure and equal

to the sum of the debt and equity prices (i.e., PE + PD).

Because the securities’ prices can be expressed as their expected payoffs under a risk-

neutral cash flow distribution, they satisfy a number of intuitive features. For instance, any

feature that shifts up the unlevered price, PU , while holding fixed posterior uncertainty σ2
s ,

will also cause the prices of the debt and equity to increase. This yields the following result.

Corollary 1. The firm’s equity and debt prices:

(i) increase with an increase in mean cash flows, m,

(ii) increase with an increase in liquidity-trader demand, z, and

(iii) decrease with an increase in per capita supply, κ.

The firm’s equity (debt) price decreases (increases) with an increase in the face value of

debt, K. Moreover, the firm’s equity (debt) price is convex (concave) in the risk-neutral

expectation, PU .

10Our analysis differs from Simsek (2013) along this dimension. Simsek (2013) models a security whose
payoff has multiple components and shows that splitting the security into separate securities that allow
investors to trade on the individual components changes investors’ equilibrium risk exposures. This effect
does not arise in our model because investors are informed about total firm cash flows, V, and consequently
seek to speculate on this. They can always do so regardless of the firm’s capital structure by trading one
unit of each of the firm’s outstanding securities.
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Figure 1: Price Function

This figure plots the equilibrium price of equity, debt, and a claim to the total cash

flow of the firm as a function of the risk-neutral mean PU . The parameters are set to:

σ2
θ = σ2

ε = σ2
z = ρ = m = τ = K = 1;κ = 0.1.
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Figure 1 illustrates the equity and debt price functions as a function of the risk-neutral

mean PU . Importantly, note that the equity price is convex in the risk-neutral expectation

PU of cash flows, while the debt price is concave in it. To understand the economic intuition,

consider the price of equity — the intuition is precisely reversed in the case of debt. Note

that the equity payoff is a convex function of the firm’s cash flows. Intuitively, since equity

payoffs are unbounded above, but bounded below by zero, this implies that good cash flow

news has a larger price impact on equity than bad cash flow news.

Similarly, the impact of liquidity trading on prices is also non-linear. When liquidity

traders sell the firm’s equity, investors must hold larger long positions and demand a drop in

price to do so. However, since the equity payoffs are truncated from below (i.e., equity payoffs

are positively skewed), the downside from being long is limited, and the price compensation is

relatively small.11 On the other hand, when liquidity traders buy equity, informed investors

bear the risk of being short. In this case, their downside is unlimited and so they charge a

large increase in the price for bearing the risk.12

Since the risk-neutral expectation of cash flows, PU , is linear in (aggregate) investor

beliefs and noise-trading demand, the above implies that the equity price is convex in PU .

Analogously, the debt price is concave in PU . As we show in the next section, this has

11Investors with CARA utility exhibit a preference for (positive) skewness, see e.g., Eeckhoudt and
Schlesinger (2006).

12This asymmetric risk-compensation effect is absent in traditional models with linear prices because the
value is symmetric and unbounded. However, it is analogous to the “skewness effect” discussed in Albagli
et al. (2021), Chabakauri et al. (2022), Cianciaruso, Marinovic, and Smith (2022), and Banerjee, Marinovic,
and Smith (2022).
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implications for the expected returns on debt and equity.

5 Expected Return on Debt and Equity

In our setting the (dollar) return on debt and equity can be expressed as RD = VD − PD

and RE = VE − PE, respectively. When the security payoff is linear in fundamental shocks

and liquidity trade, the expected return typically increases with the per capita supply of the

asset. For instance, note that the price of the unlevered firm from Lemma 1 implies that the

expected return on unlevered equity is given by

E[RU ] = E[V − PU ] =
σ2
s

τ
κ.

This implies that if the per capita supply of the firm is zero (i.e., κ = 0), so is the expected

return, because the firm does not expose investors, on average, to any risk. The firm’s price

under zero net supply corresponds to the price of the idiosyncratic cash flows of a typical

firm in the economy. The reason is that, as the typical firm is a small part of the overall

economy, its idiosyncratic cash flows exhibit negligible correlation with the average investor’s

wealth.

In contrast, when security payoffs are non-linear, this is no longer true. The following

result illustrates that in general, the expected return on debt and equity systematically differ

from zero, even when the per capita supply of shares is zero. This implies that idiosyncratic

risk affects the expected returns on debt and levered equity in our model. We show in Section

7 that this remains true when we extend the model to a multi-firm setting where firm cash

flows are driven by idiosyncratic and systematic shocks.

Proposition 2. Suppose the per capita endowment of shares is zero (i.e., κ = 0). Then:

(i) the expected return on equity is positive (i.e., E[RE] > 0) if and only if V[PU ] < Vi[µi].

(ii) the expected return on debt is positive (i.e., E[RD] > 0) if and only if V[PU ] > Vi[µi].

To gain intuition for the above, note that one can express the expected return on equity

and debt as

E[RE] = E[VE − PE] = Ei
[
ME(µi, σ

2
s , K)

]
− E

[
ME(PU , σ

2
s , K)

]
and (18)

E[RD] = E[VD − PD] = Ei
[
MD(µi, σ

2
s , K)

]
− E

[
MD(PU , σ

2
s , K)

]
, (19)
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respectively.13 Now, the unconditional means of µi and PU are zero — the assumption that

κ = 0 ensures the latter. Moreover, since ME(·) is convex in its first argument, the sign of

expected equity returns depends on the relative variance of µi versus PU — the expected

return on equity is positive when the variance of a typical investor’s subjective expectation

of cash flows, µi, is higher than the variance of the risk-neutral expectation of cash flows,

PU . Similarly, since MD(·) is concave in its first argument, the expected return on debt is

positive when the difference in the two variances is flipped.

To understand the economic intuition underlying these results, it is useful to consider

the characterization in the following corollary.

Corollary 2. Suppose the per capita endowment is zero (i.e., κ = 0).

(i) When σ2
z >

τ2

σ2
ε
, then for any value of ρ ∈ [0, 1], the expected return on equity is negative,

and the expected return on debt is positive i.e., E[RE] < 0 and E[RD] > 0.

(ii) When σ2
z <

τ2

σ2
ε
, then there exists ρ∗ ∈ (0, 1) such that the expected return on equity is

positive when ρ < ρ∗ and negative otherwise, and the expected return on debt is negative

when ρ < ρ∗ and positive otherwise.

Recall that Proposition 2 establishes that the key quantity that determines the signs of

the expected returns is V[PU ]− Vi[µi], which reflects the difference between the variance of

the risk-neutral expectation of cash flows and the variance of a typical investor’s expectation

of cash flows. The difference in variances is driven by two countervailing effects. On the

one hand, the risk-neutral expectation PU can be less variable than the expectation µi of

the typical investor because it reflects the aggregate (or average) valuation (i.e., V[
∫
µjdj] <

Vi[µi]). In fact, in the limit when the volatility of noise trading approaches zero (i.e., σz → 0),

the risk-neutral expectation PU perfectly reflects fundamentals, and so is always (weakly)

less volatile than the typical investor’s beliefs i.e., V[PU ] ≤ Vi[µi].
14 On the other hand, PU

can be more variable that µi because it is more sensitive to liquidity-trading shocks via the

“risk compensation” term σ2
s

τ
z. For instance, in the benchmark with no private information

(i.e., when 1/σ2
ε → 0), the typical investor’s conditional expectation is constant, and so

Vi[µi] < V[PU ] so long as there is some noise trading.

Importantly, the relative impact of these forces depends on (i) the magnitude of noise-

trading volatility relative to the precision of private information, and (ii) the degree of

disagreement. When the volatility of noise trading is sufficiently high relative to the precision

13The second equality follows from the fact that investors’ unconditional distribution of cash flows coincides
with the objective distribution and so we have E[VE ] = Ei[VE ] and E[VD] = Ei[VD].

14The inequality is strict as long as investors do not exhibit rational expectations i.e., for all ρ < 1, and
their information is noisy i.e., σε > 0.
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of private information (i.e., σ2
z >

τ2

σ2
ε
), the second channel dominates irrespective of the degree

of disagreement. As a result, the variance of the risk-neutral expectation is higher than that

of a typical investor’s expectation (i.e., V[PU ] > Vi[µi]), and consequently, the expected

return on debt (equity) is always positive (negative).

However, when noise-trading volatility is not too high, the relative impact of the two

forces depends on the degree of disagreement. Specifically, when disagreement is high (i.e.,

ρ is low), investors put relatively less weight on the price and more weight on their private

information, and as a result, the first channel dominates. This implies the risk-neutral expec-

tation is less volatile than that of a typical investor (i.e., V[PU ] < Vi[µi]) and consequently,

the expected return on debt (equity) is negative (positive). On the other hand, when dis-

agreement is low (i.e., ρ is high), investors put a lot of weight on the price, and so the second

channel dominates and the implications for debt and equity returns are reversed.

We next characterize how expected returns on the two securities relate to the model’s

parameters.

Corollary 3. Suppose the per capita endowment of shares is zero (i.e., κ = 0).

(i) The magnitudes of the expected returns in the debt and equity, |E[RE]|, |E[RD]|, are

hump-shaped in K and maximized at K = m.

(ii) Expected equity returns decrease and expected debt returns increase with liquidity-trading

volatility σz.

This corollary follows directly from equations (18) and (19). Together with Jensen’s

inequality, these equations reveal that two quantities drive the magnitude of expected returns

in the securities: the extent of convexity/concavity the security’s expected payoff in the

expected cash flow ∂
∂t2
Mx(t, σ

2
s , K) and the magnitude of V[PU ] − Vi[µi]. Part (i) of the

corollary follows because, in the two limits in which leverage K is large or small, one of the

debt or equity securities is approximately linear, while the other has value close to zero. Thus,

in either such limit, the extent of convexity/concavity, ∂
∂t2
Mx(t, σ

2
s , K), is close to zero for

both debt and equity. When K = m, the firm’s expected cash flows lie directly at the point

of default (E[V ] = K), when debt and equity payoffs are the most concave/convex. This

can also be understood by via the analogy between equity/debt and call/put options: the

convexity, or “vega,” of option prices tends to be largest for options that are approximately at

the money. Part (ii) of the corollary follows since, when liquidity-trading volatility increases,

the variance of PU , and thus V[PU ] − Vi[µi], increases, which reduces equity returns and

increases debt returns.
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Figure 2: Expected Return Comparative Statics

This figure plots expected returns on the equity and debt as a function of the model parameters.

The parameters are set to: σ2
θ = σ2

ε = σ2
z = m = τ = K = 1;κ = 0; ρ = 0.5.
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Figure 2 illustrates the corollary. The upper panel demonstrates how expected returns

vary with the firm’s leverage, in terms of the probability of default.15 The plot shows that the

magnitude of these returns are maximized when the debt level is equal to the firm’s expected

cash flows, corresponding to a 50% default probability (which corresponds toK = m). These

results suggest that for the typical firm with default probability well below 50%, expected

returns on debt increase, and expected returns on equity fall, with default risk (even when

this risk is idiosyncratic). This is consistent with the credit-spread puzzle, i.e., the finding

that expected debt returns increase with default risk. We further note that the specific

pattern in expected debt returns as a function of default risk — an increasing and then

decreasing relationship — is consistent with empirical evidence (e.g., Ang (2014), Chapter

9). The plot also demonstrates that the marginal impact of distress risk on expected debt

returns is strongest for firms that have a low degree of default risk.

15Both expected returns and default risk depend on µ and K only through µ−K, and so this plot looks
identical regardless of whether variation in default risk is driven by K or µ.
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The figure further shows that prior uncertainty and private information quality, which

we can jointly capture via the signal-to-noise ratio
σ2
θ

σ2
θ+σ

2
ε
, have a non-monotonic impact on

expected returns. Intuitively, when investors’ private information quality is very high, their

beliefs converge towards the true value of the firm, and hence expected returns must converge

to zero. When investors’ private information quality is very low, they rely on their common

priors and so the only force that drives V [PU ] − Vi [µi] is liquidity trade. Thus, equity

and debt returns are negative and positive, respectively. Finally, for intermediate values of

private information quality, investors’ beliefs are more dispersed and prices aggregate these

diverse beliefs. As discussed above, this reduces V [PU ]− Vi [µi], thereby raising equity and

lowering debt returns.

6 Extension: Imperfectly-Correlated Liquidity Trade

In this section, we consider a generalization of the baseline setting in which liquidity-traders’

demands in the debt and equity markets differ, but are potentially correlated. Specifically,

in contrast to the baseline setting described in Section 3, demand shocks z = (zD, zE) ∈ R2

follow a general bivariate normal distribution z ∼ N(0,Σz) with Σz an arbitrary 2 × 2

positive definite covariance matrix.16 As in the baseline setting, we let xD,i and xE,i denote

the investor’s demand for debt and equity respectively, with xi = (xD,i, xE,i) the vector of

demands.

The definition of a generalized linear equilibrium is analogous to that above, but gener-

alized to account for the fact that in this setting the debt and equity prices generally depend

on two non-identical linear statistics.

Definition 3. A “generalized linear equilibrium” is one in which there exists an injective

function P (·, ·) = (PD(·), PE(·)) mapping R2 into R2 and linear statistics of the form

sp1 =

∫
sjdj + b1DzD + b1EzE

sp2 =

∫
sjdj + b2DzD + b2EzE

such that the equilibrium price vector is

P (sp1, sp2) =

(
PD(sp1, sp2)

PE(sp1, sp2)

)
.

16The proofs of all results in this section allow for an arbitrary mean vector µz ∈ R2 and allow for a
covariance matrix Σz that is only positive semi-definite. In the text, we normalize the means to zero and
consider only strictly positive definite Σz for expositional clarity.
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Let s ≡
∫
sjdj denote the cross-sectional average signal and let

sp = 1s+Bz

concisely denote the stacked vector of price-signals, with 1 a conformable vector of ones and

B =
(
b1D b1E
b2D b2E

)
the 2 × 2 matrix of coefficients on z. In the main text we will focus on the

case in which Σz is invertible (i.e., strictly positive definite).17

Given si and the conjectured sp, investor i’s beliefs about the firm cash flow V are normal

with conditional moments

µi ≡ E [V|si, sp] = m+ σ2
s

(
si
σ2
ε

+ 1′Σ−1
p

1

ρ
sp

)
, and (20)

σ2
s ≡ V (V|si, sp) =

(
1

σ2
θ

+
1

σ2
ε

+ 1′Σ−1
p 1

)−1

, (21)

where Σp ≡ 1−ρ2
ρ2
σ2
θ11

′ + 1
ρ2
BΣzB

′.18 These are the analogues to Equations (7)-(8) in the

benchmark analysis.

We next extend our characterization of the investor’s optimal demand in Lemma 3 to

this case.

Lemma 4. Fix any P = (PD, PE) ∈ R2. The optimal demand of trader i is given by

xi =
τ

σ2
s

(1µi −G (P )) ,

where G : R2 → R2 is a function defined in the proof.

As before, investor i’s optimal demand is additively separable in her beliefs µi and the

prices, and her trading aggressiveness again remains the same in each security. The equilib-

rium debt and equity prices follow from imposing market clearing and matching coefficients

on the price-signal vector sp.

Proposition 3. There exists a generalized linear equilibrium in the financial market, unique

within the generalized linear class. The vector of equilibrium asset prices takes the form

P = g′
(
1

∫
µj dj

σ2
s

− 1

τ
(κ1− z)

)
(22)

17The case in which Σz is singular (e.g., perfectly correlated liquidity trade across both markets, or one
of the liquidity trades constant) is considered in the formal derivations in the appendix.

18Because Σz is assumed positive definite, it follows that BΣzB
′ is positive definite. Furthermore, Σp,

being a sum of a positive definite and positive semidefinite matrix is itself positive definite and therefore
invertible, where it is understood that we take Σ−1

p = 0 and Σ−1
p

1
ρ = (ρΣp)

−1 = 0 in the above expressions
when ρ = 0.
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= g′
(

1

σ2
s

(
1m+ σ2

s

(
I
1

σ2
ε

+ 11′Σ−1
p

1

ρ

)
sp −

σ2
s

τ
1κ

))
(23)

where the equilibrium coefficient matrix is B =

(
σ2
ε

τ
0

0 σ2
ε

τ

)
, and g′ : R2 → R2 is the gradient

of a function g : R2 → R, both given in closed-form in the Appendix.

The above result extends the generalized linear equilibrium characterized in Proposition

1. Combining the expression for the optimal demand from Lemma 6 and the equilibrium

price in this proposition immediately yields the equilibrium quantity demanded by each

investor, which we record in the following corollary.

Corollary 4. The equilibrium demand of investor i is

xi = τ
µi −

∫
µjdj

σ2
s

1+ κ1− z. (24)

This result shows that the speculative portion of each investor’s holdings are equal across

the debt and equity markets, and, as in our benchmark model, are given by τ
µi−

∫
µjdj

σ2
s

. Thus,

investors’ debt and equity demands differ if and only if the liquidity trade in the debt and

equity markets differ.

6.1 Cross-Market Demand Spillovers

Figure 3 illustrates how the equity and debt prices respond to liquidity-trader demand in

each market. Specifically, liquidity-trader demand for a given security affects not only the

price of that security, but also the price of the other security. Intuitively, this is driven

by both information and risk effects. Since demand in either security may be perceived as

informed, it raises investors’ expectations of cash flows, and consequently, the price of both

securities. In addition, holding debt (equity) exposes an investor to the risk of the firm’s

underlying cash flows, which also makes them view the equity (debt) as riskier. Thus, equity

demand also raises the price of debt, and vice versa, via investor risk aversion. However,

demand for equity has a much stronger effect on the equity price than on the debt price

through this risk aversion effect, and vice versa. As a result, the demand spillover between

the two markets is incomplete in the sense that zE has a stronger impact on the equity price

than zD, and zD has a stronger impact on the debt price than zE.

As in the baseline model (e.g., see Figure 1), the equity (debt) price is a convex (concave)

function of demand in each market. This, in turn, implies that our main results regarding

expected returns continue to hold in this case. Interestingly, however, the total price of
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Figure 3: Cross-Market Demand Spillovers

This figure plots the expected security prices conditional on equity liquidity trade zE
(left panel) and debt liquidity trade zD (right panel). The parameters are set to:

σ2
θ = 1.52;σ2

ε = V [zE ] = V [zD] = m = τ = K = 1;κ = 0;C [zE , zD] = 0.
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the firm (i.e., PE + PD) is convex in equity liquidity-trader demand, but concave in debt

liquidity-trader demand. As we discuss further in the next subsection, this implies that the

Modigliani-Miller theorem no longer holds in this setting. Instead, the sum of the firm’s debt

and equity prices is greater (lower) than the price of an unlevered firm, on average, when

the volatility of equity liquidity trading is higher (lower) than that of debt liquidity trading.

The incomplete spillover of demand shocks across securities also affects the correlation

between equity and debt prices. As Figure 4 illustrates, the correlation between debt and

equity prices is maximized when the likelihood of default is 50%.19 Intuitively, when the

default probability approaches zero, the payoff to debt is almost risk-free, and so demand

shocks in either security have little impact on the debt price but significant impact on the

equity price. Similarly, when the probability of default approaches one, the value of equity

approaches zero and is relatively insensitive to demand shocks, but the price of debt remains

responsive to such shocks. As a result, the correlation in prices approaches zero in both

extremes. In contrast, for intermediate levels of distress, both security prices are sensitive

to demand shocks, and so price correlation is high.

19Pasquariello and Sandulescu (2021) derive a similar result in a Kyle model where risk-neutral market
makers specialize in either debt or equity, while investors can trade both securities. As such, the market
making in their model is segmented: the price in each market depends only on the order flow in that market.
In contrast, markets are integrated in our setting: investors can update their beliefs from equity and debt
prices and can trade in both markets.
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Figure 4: Leverage and Debt-Equity Price Correlation

This figure plots the correlation between the debt and equity prices as a function of the firm’s

default risk. The parameters are set to: m = 3;K = 2;σ2
θ = 1;σ2

ε = V [zE ] = V [zD] = τ = 1;κ =

0;C [zE , zD] = 0.
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6.2 Capital Structure and Total Firm Valuation

We next show that, in contrast to our baseline specification, the Modigliani-Miller theorem

does not hold, i.e., the firm’s equity and debt prices do not, in general, sum to the price

of the unlevered firm: E [PE + PD] ̸= E [PU ]. As a result, the firm’s capital structure can

meaningfully impact its value, even in the absence of traditional frictions (e.g., tax shields

of debt, costs of financial distress).

In Figure 5, we show that the expected price of the debt plus equity relative to the

price of the unlevered firm depends upon the relative amount of liquidity trade in the two

markets. For instance, the left panel of Figure 5 plots E [PE + PD] as a function of
√
V [zE],

holding fixed the volatility of debt liquidity trade (i.e.,
√

V [zD]). The plot illustrates that

the expected value of debt plus equity is higher than the expected value of the unlevered

firm (i.e., E [PE + PD] > E [PU ] = 1) if and only if the volatility of equity liquidity trading is

higher than that of debt liquidity trading (i.e., V [zE] > V [zD]). Intuitively, this is because

liquidity trade in the equity market does not fully spill over into the debt market. As such,

the price-increasing effect that equity liquidity-trading volatility has on equity prices tends

to raise the overall value of the firm.

This result holds irrespective of whether investors use the information in prices (i.e.,

whether ρ = 1 or ρ = 0), but is stronger when investors do not condition on prices (i.e.,

when ρ = 0). This is because, even though the effect of belief dispersion on expected prices in

24



the two securities precisely offset, investors face more uncertainty when they do not condition

on prices, and this increases the sensitivity of prices to liquidity trading shocks. The right

panel of Figure 5 shows the same result by plotting the expected value of debt plus equity

as a function of debt liquidity-trading volatility, holding fixed the equity liquidity-trading

volatility.

Figure 5: Violations of Modigliani-Miller

This figure plots the total expected firm price, E [PE + PD], as a function of liquidity trade

volatility in the two markets. The parameters are set to: σ2
θ = 1.52;σ2

ε = V [zE ] = V [zD] = m =

τ = K = 1;κ = 0;C [zE , zD] = 0. Note that E[PU ] = m = 1.
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Figure 6 illustrates how the firm’s capital structure influences its valuation. When equity

liquidity-trading volatility exceeds that in the debt, the value of the levered firm is higher

than an unlevered firm E [PE + PD] > E [PU ]. In this case, there is an interior optimal

capital structure that maximizes the firm’s valuation. Intuitively, an all equity or all debt

firm is suboptimal as, in either case, the firm has linear payoffs, and so E [PE + PD] →
E [PU ]. This implies that even in the absence of traditional frictions associated with leverage,

heterogeneity in information, beliefs, and liquidity trading across debt and equity markets

causes the value of the firm to be maximized at an interior level of debt.

7 Extension: Systematic Risk and Multiple Firms

In this section, we illustrate how our results extend to a multi-firm economy with systematic

and idiosyncratic sources of risk. We show that the condition that determines the sign of

expected returns in our baseline analysis now determines how the firm’s expected returns

compare to a benchmark without liquidity and informed trade. Moreover, we verify that our
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Figure 6: Optimal Capital Structure

This figure plots the total expected firm price, E [PE + PD], as a function of the firm’s leverage,

paramaterized in terms of its ex-ante probability of default, Fθ (K −m). The parameters are set

to: σ2
θ = 1.52;σ2

ε = m = τ = K = 1;κ = 0;C [zE , zD] = 0;V [zE ] = 4; and V [zD] = 1. Note that

E[PU ] = m = 1.

0.0 0.2 0.4 0.6 0.8 1.0

1.00

1.05

1.10

1.15

Default Probability Fθ(K-μ)

T
o
ta
l
E
x
pe
ct
ed
F
ir
m
P
ri
ce

E
[P

E
+
P
D
]

Liquidity-Trading Vol in Equity > Debt

Rational Expectations ρ=1 Differences in Opinions ρ=0

comparative statics results continue to apply in this setting.

Formally, assume now that investors trade in the securities of N firms. Firm n’s total

cash flows per share are:

Vn ≡ mn + θn + βnF.

The terms θn ∼ N (0, σ2
θ) are independent across firms and the term F ∼ N (0, σ2

F ) captures

a common systematic risk factor. Moreover, mn denotes firm n’s expected cash flows and βn

captures firm n’s cash-flow beta.

We assume that the only source of systematic risk in the economy is F and that there is

a tradeable factor security with payoff VF = mF + F . Investors are endowed with κ shares

of the factor security and zero shares of each firm’s equity and debt, which corresponds to

a large economy where each individual firm is small.20 Thus, in aggregate, investors have

no exposure to θn, and so θn is a purely idiosyncratic source of risk and would not affect

expected returns if the investors were homogeneous.

We allow for arbitrary differences in leverage across firms: firm n has debt and equity

20We can obtain similar results by taking the limit of an economy with finite investors and firms as the
number of investors and firms grows large. In this case, each firm becomes a small part of the economy and
so the per capita supply of each firm approaches zero. However, to avoid the notational burden of having
to take limits throughout the analysis, it is more convenient to simply assume that F is the only systematic
source of risk.
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defined as in the baseline model, where the face value of the debt is Kn. Investor i now

observes a private signal sin about the idiosyncratic cash flows of each firm n:

sin = θn + εin, (25)

where the error terms εin ∼ N (0, σ2
ε) are independent of all other random variables. We

continue to allow investors to agree to disagree about one another’s signals. Specifically,

each investor i believes that others’ signals are of the form

sjn = ρθn +
√

1− ρ2ξin + εjn

where ξin ∼ N(0, σ2
θ) are independent of one another.

Finally, we assume that there are liquidity traders in each firm’s stock who seek exposures

of zn ∼ N (0, σ2
z) to the idiosyncratic cash flows of each firm θn. Formally, these traders

submit demands zn ∼ N (0, σ2
z) in the debt and equity of each firm and hedge the risk

exposure that these demands create by submitting demands of −βnzn in the factor asset.

Thus, market clearing in the factor security requires that:∫
i

xiFdi−
∑
n

βnzn = κ,

and market clearing in each individual firm’s equity and debt requires that:∫
i

xinEdi+ zn = 0 and

∫
i

xinDdi+ zn = 0.

The assumption that liquidity traders hedge in this fashion enables us to interpret the

risk exposures they create as idiosyncratic. One can interpret these traders as allocating

a fixed trading budget across stocks, while keeping their total allocation to systematic risk

fixed. Specifically, this ensures that liquidity trade in a given stock does not affect the supply

of systematic risk F to be borne by the remaining traders, and thus does not shift the price

of the factor. Hence, the price variation that such liquidity traders create would not be

captured by betas in standard factor models of returns and is purely idiosyncratic. However,

this assumption is generally not essential for our equilibrium construction; except in the case

in which ρ = 1, our model allows as a special case the limit in which there is no liquidity

trade.21

21When ρ = 1 and there is no liquidity trade, investors correctly infer that firm n’s equity/debt prices
perfectly reveal θn, and so expected excess returns (i.e., expected returns after accounting for βn) are zero.
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7.1 Equilibrium and Expected Returns

Analogous to our baseline model, we search for an equilibrium in which each firm n’s price

is a generalized linear function of investors’ aggregate signal about firm n’s cash flows,

s̄n ≡
∫
i
sindi, and liquidity trade in firm n’s stock, zn. The next proposition is analogous to

our Proposition 1.

Proposition 4. There exists a generalized linear equilibrium. The price of the factor asset

satisfies:

PF = mF − τ−1σ2
Fκ < 0. (26)

Each firm n’s equity and debt prices satisfy:

PnE =ME(PnU , σ
2
s + β2

nσ
2
F , Kn) and PnD =MD(PnU , σ

2
s + β2

nσ
2
F , Kn), (27)

where:

PnU = mn + σ2
s

(
1

σ2
ε

+
1

ρσ2
p

)
(sn + bzn)− βnEi[F − PF ], (28)

and where b, σ2
s , and σ

2
p take the same form as in the baseline model.

This proposition illustrates that the equilibrium prices can again be expressed as the

risk-neutral expectation of security payoffs, where the risk-neutral distribution of firm n’s

cash flows are given by Vn ∼ N(PnU , σ
2
s + β2

nσ
2
F ). Note that these prices differ from those in

the single-asset model in two ways. First, each firm’s price includes a risk premium that is

proportional to its cash-flow beta, βn. This enters the debt and equity prices through the

unlevered price statistic PnU . Second, the risk-neutral variance now includes a term that is

driven by the firm’s exposure to systematic risk, β2
nσ

2
F .

We next characterize each firm’s expected price and returns. Recall that in our baseline

model, we studied whether expected returns were positive or negative; given that we excluded

any source of systematic risk, non-zero expected returns could be attributed to asymmetric

information and/or liquidity trade. In this setting, however, there is a systematic risk, and

so, even absent these forces, expected returns would be non-zero. To understand how firm-

specific asymmetric information and liquidity trade influence expected returns, we compare

expected returns to a frictionless benchmark without liquidity and informed trade, i.e., σ2
z →

0 and σ2
ε → ∞. In such a setting returns are driven only by exposures to the systematic

factor. Specifically, let RnE = VnE − PnE and RnD = VnD − PnD denote the return on firm

n’s debt and equity, and let R̄nE and R̄nD denote the corresponding returns in a frictionless

economy in which σ2
z → 0 and σ2

ε → ∞. The following result shows that an analog to

Proposition 2 obtains in this setting.
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Proposition 5. (i) The expected excess return on equity is positive (i.e., E[RnE− R̄nE] > 0)

if and only if V[PnU ] < Vi[Ei[θn|si, sp]].
(ii) The expected excess return on debt is positive (i.e., E[RnD − R̄nD] > 0) if and only if

V[PnU ] > Vi[Ei[θn|si, sp]].

This result follows from a similar argument to that in our baseline model: the sign of

the expected excess return follows by applying Jensen’s inequality to the difference between

the expectation of the price in (27) and the expectation of the price in an economy without

informed and liquidity trading (since the unconditional expected cash flow is identical across

both economies). The result clarifies that, in our setting, expected returns on debt and equity

can vary across firms even after controlling for their risk exposures. Specifically, the sign

of the expected excess return (or “alpha”) on a security depends on the difference between

the variance of the risk-neutral expectation of cash flows (i.e., V[PnU ]) and the variance of

cash flow expectations of a typical investor, just as in the benchmark analysis. The impact

of information quality
σ2
θ

σ2
θ+σ

2
ε
, liquidity trade volatility σ2

z , and disagreement ρ on returns are

also similar in this setting. The reason is that the magnitude of expected excess returns is

again driven by the variance difference V[PnU ]−Vi[Ei[θn]], which takes the same form as in

our baseline model.22

Importantly, neither of the variances V[PnU ] nor Vi[Ei[θn]] depend on the firm’s risk-factor

loading βn.
23 As such, the above result clearly establishes how firm-specific, or idiosyncratic,

risk — driven by firm-specific information about θn, firm-specific liquidity demand zn from

noise traders, and disagreement (i.e., ρ) — affects expected returns on debt and equity, even

holding fixed a firm’s systematic risk-factor loadings βn.

8 Empirical Implications

Our model generates predictions on expected debt and equity returns and how these returns

vary with financial distress, disagreement, and the intensity of liquidity trade. Existing work

proposes several proxies for these constructs that render our predictions directly testable. For

instance, considerable work proxies for belief dispersion using volume and analyst forecast

dispersion (Diether et al. (2002), Banerjee (2011)), while other research proxies for liquidity-

trader volatility based upon the concentration of a firm’s ownership and the correlation in

the liquidity shocks its owners face (Greenwood and Thesmar (2011), Friberg, Goldstein,

22Numerical results indicate that, similar to expected returns in our baseline model, E[RnD − R̄nD] and
E[RnE − R̄nE ] are non-monotonic in default risk.

23Note that even though βn affects the price PnU , it does not affect its variance since the factor risk
premium E[F − PF ] is constant.
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and Hankins (2022)). We summarize our model’s predictions and their relation to existing

empirical work below; several are consistent with existing empirical analyses while others

have yet to be tested.

Given that a key feature of our model is the ability of both diversely-informed investors

and liquidity traders to take positions in debt, our results apply most clearly to public debt

markets. As such, when referencing debt markets, we focus on the literature on public

bond markets. We further focus on our predictions for firms that are far from bankruptcy

(i.e., with less than 50% probability of default), as such firms represent the vast majority of

publicly-traded stocks.

Note our findings speak to expected returns after controlling for systematic risk exposures.

Specifically, the predictions are about “alphas” from the perspective of an econometrician

who accounts for systematic risk, even though these returns do not reflect any mispricing

from the perspective of investors in the model. Note because debt and equity are non-linear

securities, expected returns in our model depend non-linearly on systematic risk exposures.

Thus, to control for the impact of these risk factors on expected returns, one should apply

a technique that controls for potential non-linearities, such as sorting firms into portfolios

based on standard risk factors. Indeed, this is common in the existing literature that studies

the returns to distressed securities (e.g., Campbell et al. (2008)).

Decomposing the dispersion in beliefs. In our benchmark model, dispersion in beliefs

can be captured by the cross-sectional variance in investor’s conditional expectation of cash

flows i.e.,

D ≡
∫
i

(
µi −

∫
µjdj

)2

di =
1

σ2
ε

(
1
σ2
θ
+ 1

σ2
ε
+ 1

σ2
p

)2
where we recall that σ2

p =
1−ρ2
ρ2
σ2
θ +

1
ρ2
σ2
z

(
σ2
ε

τ

)2
is investors’ perceived variance of the error in

the price signal. This implies that dispersion increases with (i) the extent to which investors

disagree about the informativeness of others’ signals (a decrease in ρ) and (ii) the volatility

of liquidity trading (an increase in σz), all else equal. However, as clarified by Corollary

2, these have opposing effects on expected returns: holding all else fixed, an increase in

liquidity-trading volatility decreases equity returns (increases debt returns), but an increase

in disagreement (decrease in ρ) can increase equity returns (decrease debt returns). As such,

our analysis emphasizes the importance of distinguishing between belief dispersion driven by

disagreement (lower ρ) versus liquidity-trading volatility (higher σz).

Specifically, Corollary 2 suggests the following regressions, where the dependence of ex-

pected returns on systematic risk-factor loadings are omitted for brevity and the predicted
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signs are presented below the coefficients:

RE,t+1 = γ0,E + γ1,E︸︷︷︸
>0

Disagreementt + γ2,E︸︷︷︸
<0

LiqTradeV olt;

RD,t+1 = γ0,D + γ1,D︸︷︷︸
<0

Disagreementt + γ2,D︸︷︷︸
>0

LiqTradeV olt.

Interpreting the negative relation between belief dispersion and equity (e.g., Diether et al.

(2002)) and the positive relation for debt (e.g., Güntay and Hackbarth (2010)) through the

lens of these predictions suggests that the cross-sectional variation in belief dispersion used

in these papers is driven primarily by variation in liquidity-trading volatility across stocks.

However, our analysis recommends that in order to fully account for the relation between

belief dispersion and security returns, one should ideally decompose the variation in belief

dispersion explicitly into variation driven by liquidity-trading volatility and disagreement.24

More generally, our analysis also sheds light on the mixed empirical evidence on the

relation between belief dispersion and equity returns. The existing empirical literature finds

that the sign and magnitude of this relation varies with the empirical proxy for disagreement,

firm size, and time period considered (e.g., Diether et al. (2002), Johnson (2004), Banerjee

(2011), Cen, Wei, and Yang (2017), Hou, Xue, and Zhang (2020), Chang, Hsiao, Ljungqvist,

and Tseng (2022)). Our model predicts that in samples (or for proxies) where dispersion

in beliefs is primarily driven by disagreement, the relation between expected returns and

dispersion should be positive. On the other hand, when it is driven by liquidity-trading

volatility, the relation should be negative.

Distress risk and expected returns. Several empirical studies examine the relationship

between firm-specific distress risk and equity returns, controlling for standard systematic

risk exposures. However, such a relationship is difficult to reconcile with traditional models

due to the forces of diversification, leading the literature to propose that distress risk is

mispriced (e.g., Campbell et al. (2008)). Our analysis suggests that such a relation can

arise when investors are diversely informed and prices are noisy, even when they rationally

incorporate all the information available to them (i.e., even when ρ = 1). More generally,

our model predicts that distress risk is negatively associated with equity returns among firms

far from bankruptcy, which is consistent with the empirical evidence (e.g., Dichev (1998),

Campbell et al. (2008), Penman, Richardson, and Tuna (2007), and Caskey, Hughes, and

Liu (2012)).

24In addition to measures of liquidity-trading volatility discussed above, Banerjee (2011) proposes a proxy
of ρ based on the correlation between trading volume and return volatility.
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In the debt market, several studies find that default risk has an excessive impact on

credit spreads, commonly termed the credit-spread puzzle (e.g., Huang and Huang (2012),

Bai et al. (2020)). Our analysis implies that expected debt returns increase with firm-specific

distress risk for firms with less than a 50% probability of default is further consistent with

this finding. Note while other studies offer explanations in terms of systematic distress risk

(e.g., Chen, Hackbarth, and Strebulaev (2022)), our findings are novel in that they speak to

firm-specific distress risk. Moreover, our model predicts that the marginal impact of distress

risk on expected debt returns is strongest for firms that have a low degree of default risk.

Our model further predicts that the relationship between distress risk and expected stock

returns depends on (i) the extent to which investors disagree and (ii) the prevalence of

liquidity trade in a firm’s stock and bonds. Thus, our analysis motivates the following

regressions for firms with less than 50% probability of default, where the dependence on

systematic risk-factor loadings and the main effects are omitted for brevity and the predicted

signs are presented below the coefficients:

RE,t+1 = γ0,E + γ1,E︸︷︷︸
>0

Distresst ×Disagreementt + γ2,E︸︷︷︸
<0

Distresst × LiqTradeV olt;

RD,t+1 = γ0,D + γ1,D︸︷︷︸
<0

Distresst ×Disagreementt + γ2,D︸︷︷︸
>0

Distresst × LiqTradeV olt.

These predictions follow from the observation that the expected return on equity (debt) is

decreasing (increasing) in the difference in variances, V[PU ]−Vi[µi] (see Proposition 2), which

increases in liquidity-trading volatility and is greater when investors exhibit DO than when

they exhibit RE. Moreover, our analysis suggests that for extremely distressed firms, distress

risk has the opposite impact on expected returns. Note that some work finds non-monotonic

or positive relationships between distress risk and returns (e.g., Chava and Purnanandam

(2010), Garlappi et al. (2008)), and these cross-sectional predictions may be useful in future

work to reconcile these mixed results.

Covariance between expected equity and debt returns. A central prediction of our

model is that a firm’s expected excess equity and debt returns are inversely related. The

key intuition is that equity and debt payoffs are convex and concave, respectively. Again,

our predictions concern “alphas” for debt and equity, after accounting appropriately for

systematic risk exposures. Such exposures likely lead to common sources of variation in

expected debt and equity returns that counteract the source of return variation we study.

Past empirical evidence showing that several of the factors that predict equity returns do not

predict debt returns is consistent with this finding (Chordia, Goyal, Nozawa, Subrahmanyam,
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and Tong (2017), Choi and Kim (2018), Bali, Subrahmanyam, and Wen (2021)).

Co-movement in equity and bond prices. The analysis in Section 6.1 implies that

shocks to demand in either security impact both debt and equity prices, and so induce

correlation in these securities’ prices. Our results are broadly consistent with the evidence in

Back and Crotty (2015), who show that while the unconditional correlation between stock

and bond returns is low, the correlation in the parts driven by order flow is quite large.

Our analysis suggests that the stock-bond correlation is higher when liquidity trading in

the two markets is more correlated. Our results are also consistent with the evidence of

Pasquariello and Sandulescu (2021), who document that the stock-bond correlation is low

when the firm-level default probability is either very high or very low, but higher otherwise.

Capital structure and firm valuation. When liquidity traders’ demands in equity and

bond markets are not identical, our model implies that the capital structure of the firm

affects its total valuation, even in the absence of traditional frictions (e.g., tax shields of

debt, distress costs). Since we expect that for most firms, the probability of default is lower

than 50% and the volatility of liquidity trading in equity is higher than that in debt, our

model predicts that an increase in leverage leads to an increase in firm value. Moreover,

the model predicts that, ceteris paribus, the impact of an increase in leverage is larger when

investors dismiss the information in prices.

9 Conclusion

We develop a model where privately-informed, risk-averse investors trade alongside liquidity

traders in the debt and equity of a firm. We show that the impact of private information

on security valuation depends on the firm’s likelihood of default, the intensity of liquidity

trading in each market, and the extent to which investors learn from prices. Finally, we show

that a firm’s capital structure can affect its total valuation even in the absence of traditional

frictions associated with debt issuance (e.g., tax shields, distress costs).

Our model generates a number of novel empirical predictions about the relation among

disagreement, liquidity trading, distress risk, and debt and equity valuation. Moreover, our

model serves as a useful benchmark for future theoretical analysis. For instance, it would be

interesting to explore the incentives of investors to acquire information (e.g., Davis (2017))

in our setting when the liquidity trading in debt and equity are not identical, as well as to

study the effects of segmentation across debt and equity markets. It would also be interesting

to study how joint trade in equity and debt influences managers’ investment decisions, both

through their costs of capital and through managerial learning from debt and equity prices
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(as explored by Davis and Gondhi (2019)).
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A Proofs

A.1 Proof of Lemmas 1 and 2

These results are limiting cases of Proposition 1 below.

A.2 Proof of Lemma 3

This result is a special case of Lemma 6, where we define G(P ) ≡ σ2
s× (g′)−1(P ) to condense

notation in the statement of the Lemma.

A.3 Proof of Proposition 1

The existence of a generalized linear equilibrium is a special case of Proposition 6 and the

representation of the equilibrium demands is a special case of Corollary 4. It remains to

show that the expression for the equilibrium price from Proposition 6 can be represented in

terms of the ME and MD functions and that the equilibrium debt and equity prices sum to

PU . From Proposition 6, we have that the equilibrium price vector satisfies

P = g′
(

1

σ2
s

(
1m+ 1σ2

s

(
1

σ2
ε

+
1

ρσ2
p

)
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σ2
s
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1κ

))
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1
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s

)
,

where the second line uses the definition of PU (from Lemma 1) to simplify the argument of

the gradient g′ and where the function g : R2 → R satisfies
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.

Computing the two partial derivatives that make up the gradient g′ yields
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Evaluating these expressions at y1 = y2 =
PU

σ2
s
gives the debt and equity prices, respectively:

PD =
∂g

∂y1
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y1=y2=
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and
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as claimed. Adding the expressions above immediately yields that the overall firm value is:

PD + PE =ME

(
PU , σ

2
s , K

)
+MD

(
PU , σ

2
s , K

)
= PU .

A.4 Proof of Corollary 1

It is straightforward to verify that ME(x, ·, ·) and MD(x, ·, ·) increase in x. Hence, results

(i)-(iii) follow from the fact that, as can be seen in Lemma 1, PU increases in θ and z

and decreases in κ. To verify that the equity and debt prices decrease and increase in K,

respectively, note:

∂

∂K
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2
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A.5 Proof of Proposition 2

Observe that PU is unconditionally normally distributed with mean

E [PU ] = E
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σ2
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τ
(z − κ)

]
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40



Thus, we have:
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where we have defined Ω ≡ σ2
s +V[PU ] = σ2

θ −Vi[µi] +V[PU ], using the law of total variance

to express σ2
s = σ2

θ − Vi[µi] in the second equality. The debt result follows analogously.

We next show how the equity payoffs compare to equity expected cash flows; the result

for debt follows analogously. Observe that, as κ → 0, the expected equity price approaches

ME (m,Ω, K). Now, the expected equity payoff equals:

E [max (θ −K, 0)] =ME

(
m,σ2

θ , K
)
.

Thus, equity earns negative expected returns if and only ifME (m,Ω, K)−ME (m,σ2
θ , K) > 0

and earns positive expected returns if and only if ME (m,Ω, K)−ME (m,σ2
θ , K) < 0. Now,

note that the derivative of ME with respect to its second argument is:
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Thus, we have that:
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θ , K
)
≷ 0 ⇔ Ω− σ2

θ ≷ 0 ⇔ V[PU ]− Vi[µi] ≷ 0,

which completes the proof of statements (i) and (ii) in the proposition.

A.6 Proof of Corollary 2

As in the proof of Proposition 2, let Ω ≡ σ2
s + V[PU ]. From Proposition 2, to sign expected

returns, it suffices to determine the sign of Ω− σ2
θ = V(PU) + σ2

s − σ2
θ in terms of the deep

parameters of the model.
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We can write the unconditional variance of PU as
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inside the first term in the large paren-

theses and uses the definition of 1
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to simplify. The final equality does

algebraic manipulations and collects terms. Hence, the sign of Ω−σ2
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The limits of the expression in eq. (30) as ρ tends to zero and one, being careful to
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Furthermore, the expression in eq. (30) is strictly increasing in ρ since
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It follows that for σ2
z >

τ2

σ2
ε
⇔ b2σ2

z

σ2
ε
> 1 we have Ω− σ2

θ > 0 for all ρ ∈ [0, 1]. On the other

hand, for σ2
z <

τ2

σ2
ε
⇔ b2σ2

z

σ2
ε
< 1 the above implies that there exists some ρ∗ such that for all

ρ < ρ∗ we have Ω− σ2
θ < 0 while for all ρ > ρ∗ we have Ω− σ2

θ > 0.

A.7 Proof of Corollary 3

Part (i) We consider equity returns; the proof for debt returns is analogous. We have
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.

where, again, Ω = σ2
s +V[PU ] is as defined in the proof of Proposition 2. Differentiating the

expected return with respect to K yields
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where the second equality uses the fundamental theorem of calculus to express the difference

in the ME function an integral. Computing the cross-partial derivative of ME yields
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Hence, for K < m, we have
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On the other hand for K > m,
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Because |E[RE]| is strictly increasing in K for K < m and strictly decreasing in K for

K > m, it follows that |E[RE]| is hump-shaped in K and achieves its maximum at K = m.

Part (ii) Consider debt returns. We have that:
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Similarly, for equity returns, we obtain ∂E[RE ]
∂σz

∝ − ∂Ω
∂σz

. Now,
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A.8 Proof of Lemma 4

This is a special case of Lemma 6, where we define the function G(P ) = σ2
s × (g′)−1(P ) in

the text.

A.9 Proof of Proposition 3

This is a special case of Proposition 6 in which µz = (0, 0) and Σz is positive definite.

A.10 Proof of Proposition 4

The existence of equilibrium and the specific expressions for the security prices follow from

Proposition 7 after specializing the vector notation to isolate individual assets. In the vector
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representation of prices as risk-neutral expected payoffs, the risk-neutral mean for a given

firm n’s cash flow (or for the factor cash flow) is the unlevered price, PnU (or PF for the

factor) given in Lemma 7. Similarly, the risk-neutral variance for a given cash flow is the nth

(or (N + 1)st, in the case of the factor) diagonal element of the cash flow variance matrix

Γ =
(
σ2
sI+σ

2
F ββ

′ σ2
F β

σ2
F β

′ σ2
F

)
. Finally, we can write 1

τ
σ2
Fκ = mF − PF = Ei[F ] − PF , which allows

one to express the final term in eq. (28) in the form of the cash flow beta times the factor

expected return. Substituting in these values yields the expression in the Proposition.

A.11 Proof of Proposition 5

Note, analogously to the representation of unconditional expected prices in Proposition 2 we

can write firm n’s unconditional expected equity and debt prices are:

E [PnE] =ME

(
E[PnU ],V[PnU ] + σ2

s + β2
nσ

2
F , Kn

)
=ME

(
mn − βnE[F − PF ],V[PnU ] + σ2

s + β2
nσ

2
F , Kn

)
;

E [PnD] =MD

(
E[PnU ],V[PnU ] + σ2

s + β2
nσ

2
F , Kn

)
=MD

(
mn − βnE[F − PF ],V[PnU ] + σ2

s + β2
nσ

2
F , Kn

)
.

Next, note that in the no information, no liquidity trade benchmark, we still have that

E[PnU ] = mn − βnE[F − PF ] but in that case the variance of the unlevered price is zero,

V [PnU ] = 0 and investors’ conditional cash flow variance is equal to the prior variance

σ2
s = σ2

θ . Thus, given the convexity of ME and concavity of MD, we have that debt (equity)

returns are higher (lower) than under the benchmark if and only if V [PnU ] + σ2
s + β2

nσ
2
F <

σ2
θ + β2

nσ
2
F ⇔ V [PnU ] < σ2

θ − σ2
s = Vi[Ei[θn|si, sp]].

B Equilibrium with arbitrary, correlated liquidity trad-

ing

In this section, we characterize the equilibrium in the fully-general version of the model in

which liquidity trading z = (zD, zE) follows a general bivariate normal distribution N(µz,Σz)

where µz ∈ R is an arbitrary vector of means, and Σz is an arbitrary positive semi-definite

covariance matrix. As in the text, we consider equilibria of the “generalized linear” form

specified in Definition 3 where the endogenous price statistics take the form

sp = 1s+B (z − µz) .

with B =
(
b1D b1E
b2D b2E

)
the 2× 2 matrix of coefficients to be determined.
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We begin by characterizing an arbitrary investor i’s conditional distribution of the vec-

tor of debt and equity payoffs, V = (VD, VE), given arbitrary N(µi, σ
2
s) beliefs about the

underlying firm cash flow V .

Lemma 5. Suppose that V is conditionally normally distributed with mean µi and variance

σ2
s . Then the vector V = (min (V , K) ,max (V −K, 0)) follows a bivariate exponential family

with moment-generating function (MGF) that is finite for any u ∈ R2, and is given explicitly

by

Ei [exp {u′V }] = exp

{
g

(
u+ 1

µi
σ2
s

)
− g

(
1
µi
σ2
s

)}
where the function g : R2 → R is defined as

g

(
y1

y2

)
= log

(
exp

{
1

2
σ2
sy

2
1

}
Φ

(
K − σ2

sy1
σs

)
+ exp

{
(y1 − y2)K +

1

2
σ2
sy

2
2

}(
1− Φ

(
K − σ2

sy2
σs

)))
.

(37)

Proof. (Lemma 5) The claim about finiteness follows immediately once we have proven that

the MGF takes the given form since, by inspection, the function g is finite on all of R2.

The claim that the distribution is an exponential family also follows immediately from the

functional form (see e.g., Sampson (1975), Hoffmann and Schmidt (1982)). To establish the

expression for the MGF, write

Ei [exp {u′V }]

=

∫ ∞

−∞
exp {u1min {t,K}+ u2max {t−K, 0}} dFθ(t|si, sp)

=

∫ K

−∞
exp {u1t} dFθ(t|si, sp) +

∫ ∞

K

exp {u1K + u2 (t−K)} dFθ(t|si, sp)

= exp

{
µiu1 +

1

2
σ2
su

2
1

}
Φ

(
K − µi − σ2

su1
σs

)
+ exp

{
(u1 − u2)K + µiu2 +

1

2
σ2
su

2
2

}(
1− Φ

(
K − µi − σ2

su2
σs

))

= exp

{
1

2
σ2
s

(
µi
σ2
s

+ u1

)2

− 1

2
σ2
s

(
µi
σ2
s

)2
}
Φ

K − σ2
s

(
µi
σ2
s
+ u1

)
σs


+ exp

{
(u1 − u2)K +

1

2
σ2
s

(
µi
σ2
s

+ u2

)2

− 1

2
σ2
s

(
µi
σ2
s

)2
}1− Φ

K − σ2
s

(
µi
σ2
s
+ u2

)
σs


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=

(
exp

{
1
2
σ2
s

(
µi
σ2
s
+ u1

)2}
Φ

(
K−σ2

s

(
µi
σ2
s
+u1

)
σs

)

+ exp

{
(u1 − u2)K + 1

2
σ2
s

(
µi
σ2
s
+ u2

)2}(
1− Φ

(
K−σ2

s

(
µi
σ2
s
+u2

)
σs

)))
exp

{
−1

2
σ2
s

(
µi
σ2
s

)2}
.

Taking the logarithm, this expression is identical to that in the Lemma after recognizing that

g as defined in the statement of the Lemma satisfies g ( yy ) = 1
2
σ2
sy

2 when both arguments

are identical.

With trader beliefs pinned down, we next characterize the optimal demand.

Lemma 6. Fix any P = (PD, PE) in set of no-arbitrage prices {(pD, pE) : pD < K, pE > 0}.
There is a unique optimal demand for trader i, given by

xi = τ

(
1
µi
σ2
s

− (g′)
−1

(P )

)

where (g′)−1 : R2 → R2 is the inverse of the gradient g′ ( y1y2 ) ≡
(

∂
∂y1

g

∂
∂y2

g

)
.

Proof. (Lemma 6) From Lemma 5, we can compute the trader’s conditional expected utility

given an arbitrary demand xi as

Ei
[
− exp

{
−1

τ
x′i (V − P )

}
|si, sp

]
= − exp

{
1

τ
x′iP + g

(
1
µi
σ2
s

− 1

τ
xi

)
− g

(
1
µi
σ2
s

)}
.

Letting g′ =

(
∂

∂y1
g

∂
∂y2

g

)
denote the gradient of g, the FOC is

0 = g′
(
1
µi
σ2
s

− 1

τ
xi

)
− P. (38)

Note that the Hessian matrix g′′ ≡

(
∂2

∂y21
g ∂2

∂y1∂y2
g

∂2

∂y1∂y2
g ∂2

∂y22
g

)
is necessarily positive definite, owing

to the fact that it is the matrix of 2nd derivatives of the cumulant generating function of

V , which is strictly convex. It follows that the optimum, if it exists, is unique and the FOC

in (38) is sufficient to characterize it. Hence, it suffices to show that there exists a demand

xi ∈ R2 that satisfies eq. (38).

Due to the positive-definiteness of g′′ it follows that the gradient g′ is injective and

therefore invertible on its range. Hence, if we can establish that the range is the set of

no-arbitrage prices {(pD, pE) : pD < K, pE > 0}, the existence and characterization of the

optimal demand will follow immediately from rearranging the FOC in eq. (38).
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Let S = {(vD, vE) : vD < K, vE = 0}∪{(vD, vE) : vD = K, vE > 0} denote the support of

the payoff vector (VD, VE). We claim that the range of g′ is the closed convex hull of S, which

is precisely the set of no-arbitrage prices. This follows from the following. First, because the

CGF g is defined on all of R2, and furthermore because R2 is open, the exponential family

described by the CGF is necessarily “regular” as defined by Barndorff-Nielsen (2014). It

follows from Theorem 8.2 of Barndorff-Nielsen (2014) that the exponential family is “steep”

and therefore from Theorem 9.2 in Barndorff-Nielsen (2014) that the gradient g′ maps R2

onto the interior of the closed convex hull of the support S. This set, int conv(S) = {(x, y) :
x < K, y > 0}, is the set of candidate prices in which the debt price is less than the face

value K and the equity price is greater than zero, which is precisely the set of prices that do

not admit arbitrage.

Proposition 6. There exists an equilibrium in the financial market. The vector of equilib-

rium asset prices takes the form

P = g′
(
1

∫
µj dj

σ2
s

− 1

τ
(κ1− z)

)
. (39)

where the function g′ : R2 → R2 is given in closed-form in eqs. (45)–(46) the proof. This

equilibrium is unique within the generalized linear class.

1. If Σz is invertible, then the equilibrium price vector is

P = g′
(

1

σ2
s

(
1m+ σ2

s

(
I
1

σ2
ε

+ 11′Σ−1
p

1

ρ

)
sp −

σ2
s

τ
1κ

))
(40)

where the equilibrium price signals coefficient matrix is diagonal B =

(
σ2
ε

τ
0

0 σ2
ε

τ

)

2. If Σz is singular and of the form Σz = 11′σ2
z (i.e., liquidity trade is identical in the two

markets, zE = zD = ζ for ζ ∼ N(0, σ2
z)), then the equilibrium price vector is

P = g′
(

1

σ2
s

(
1m+ 1σ2

s

(
1

σ2
ε

+
1

ρσ2
p

)
sp −

σ2
s

τ
1κ

))
(41)

where sp = s + bζ is one-dimensional, σ2
p ≡ 1−ρ2

ρ2
σ2
θ +

b2

ρ2
σ2
z with b = σ2

ε

τ
, and σ2

s =(
1
σ2
θ
+ 1

σ2
ε
+ 1

σ2
p

)−1

.

3. If ρ < 1, and Σz is singular and not of the form Σz = 11′σ2
z (i.e., liquidity trade

is perfectly positively correlated but with different variances, or is perfectly negatively

correlated, or at least one of the zj is constant), then the equilibrium price vector is
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given by

P = g′
(

1

σ2
s

(
1m+ σ2

s

(
I
1

σ2
ε

+
1

ρσ2
p

1a′
)
sp −

σ2
s

τ
1κ

))
(42)

where B =

(
σ2
ε

τ
0

0 σ2
ε

τ

)
, σ2

p ≡
1−ρ2
ρ2
σ2
θ , σ

2
s =

(
1
σ2
θ
+ 1

σ2
ε
+ 1

σ2
p

)−1

, and the vector a ∈ R2 is

defined in the proof.

4. If ρ = 1, and Σz is singular and not of the form Σz = 11′σ2
z , then there exists a

fully-revealing equilibrium in which PD = min{V , K} and PE = max{V −K, 0}.

Proof. (Proposition 6) Using the expression for trader demand from Lemma 6, the market

clearing condition yields∫
xjdj + z = 1κ

⇔
∫
xjdj + z − µz = 1κ− µz

⇔τ

(
1

∫
µjdj

σ2
s

− (g′)
−1

(P )

)
+ z − µz = 1κ− µz

⇔P = g′
(
1

∫
µjdj

σ2
s

+
1

τ
(z − µz)−

1

τ
(1κ− µz)

)
. (43)

Because the vector of the liquidity trade z enters explicitly multiplied only by a scalar, we

can conclude that in any equilibrium it suffices to consider only diagonal coefficient matrices

B with identical elements on the diagonal. That is, B = bI for b ∈ R still to be determined.

A closed-form expression for the gradient g′ ( y1y2 ) follows from computing the partial

derivatives of the function g as defined in Lemma 5:

∂g

∂y1
=

σ2
sy1 − σs

ϕ
(
K−σ2

sy1
σs

)
Φ
(
K−σ2

sy1
σs

)
 exp{ 1

2σ2
sy

2
1}Φ

(
K−σ2

sy1
σs

)

exp{ 1
2σ2

sy
2
1}Φ

(
K−σ2

sy1
σs

)
+exp{(y1−y2)K+1

2σ2
sy

2
2}
(
1−Φ

(
K−σ2

sy2
σs

)) (44)

+K
exp{(y1−y2)K+1

2σ2
sy

2
2}
(
1−Φ

(
K−σ2

sy2
σs

))

exp{ 1
2σ2

sy
2
1}Φ

(
K−σ2

sy1
σs

)
+exp{(y1−y2)K+1

2σ2
sy

2
2}
(
1−Φ

(
K−σ2

sy2
σs

)) (45)

∂g

∂y2
=

σ2
sy2 + σs

ϕ
(
K−σ2

sy2
σs

)
1− Φ

(
K−σ2

sy2
σs

) −K

 exp{(y1−y2)K+1
2σ2

sy
2
2}
(
1−Φ

(
K−σ2

sy2
σs

))

exp{ 1
2σ2

sy
2
1}Φ

(
K−σ2

sy1
σs

)
+exp{(y1−y2)K+1

2σ2
sy

2
2}
(
1−Φ

(
K−σ2

sy2
σs

)) .

(46)

To complete the proof and derive the explicit expressions in the Proposition, it is convenient
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to separately consider the cases of positive definite Σz and singular Σz.

If Σz is positive definite, then we can write the conditional moments explicitly as

µi = E [V|si, sp] = m+ σ2
s

(
si
σ2
ε

+ 1′Σ−1
p

1

ρ
sp

)
, and (47)

σ2
s = V (V|si, sp) =

(
1

σ2
θ

+
1

σ2
ε

+ 1′Σ−1
p 1

)−1

(48)

where Σp ≡ 1−ρ2
ρ2
σ2
θ11

′ + 1
ρ2
BΣzB

′. Because Σz is assumed positive definite, it follows that

BΣzB
′ is positive definite. Furthermore, Σp, being a sum of a positive definite and positive

semidefinite matrix is itself positive definite and therefore invertible, where it is understood

that we take Σ−1
p = 0 and Σ−1

p
1
ρ
= (ρΣp)

−1 = 0 in the above expressions when ρ→ 0.

Substituting the explicit expression for µi in the argument of g′ in eq. (43) and grouping

terms yields

1

∫
µjdj

σ2
s

+
1

τ
(z − µz)−

1

τ
(1κ− µz)

= 1
1

σ2
s

(
m+ σ2

s

1

σ2
ε

s+ σ2
s1

′Σ−1
p

1

ρ
sp

)
+

1

τ
(z − µz)−

1

τ
(1κ− µz)

=
1

σ2
s

(
1m+ σ2

s

(
11′Σ−1

p

1

ρ
sp +

1

σ2
ε

(
1s+

σ2
ε

τ
(z − µz)

))
− σ2

s

τ
(1κ− µz)

)
.

Matching coefficients on the initial conjecture sp = 1s + B(z − µz), with B = bI as

derived above, requires b = σ2
ε

τ
. The previous expression now simplifies to

1

σ2
s

(
1m+ σ2

s

(
I
1

σ2
ε

+ 11′Σ−1
p

1

ρ

)
sp −

σ2
s

τ
(1κ− µz)

)
which, upon plugging back into g′, matches the expression in the Proposition. Because there

is a unique coefficient matrix B that satisfies the initial conjecture, this equilibrium price

function is the unique one within the generalized linear class.

If Σz is singular, then the matrix Σp that appears above is not invertible and the above

expressions for beliefs do not apply directly.25 Intuitively, in this case there is only a single

shock to liquidity trading and so the vector of price-signals sp collapse to an informationally-

equivalent one-dimensional signal.

If Σz is of the form 11′σ2
z (i.e., liquidity trade is perfectly positively correlated, with iden-

tical variance in both markets, as in the baseline model), then the price statistics themselves

25The cases can be handled in a unified way by re-representing the above expressions for the conditional
moments in forms involving pseudo-inverses of Σp. However, to avoid tedious technical complications, we
choose to treat the case of singular Σz separately. Details of the unified treatment are available on request.
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are necessarily identical across both markets (i.e., sp1 = sp2). Abusing notation to let sp ∈ R
denote this common price statistic and ζ = zD − µzD = zE − µzE ∈ R denote the common

liquidity trade shock realization, the expressions for the conditional moments become

µi = E [V|si, sp] = m+ σ2
s

(
si
σ2
ε

+
1

ρσ2
p

sp

)
, and (49)

σ2
s = V (V|si, sp) =

(
1

σ2
θ

+
1

σ2
ε

+
1

σ2
p

)−1

(50)

where σ2
p ≡ 1−ρ2

ρ2
σ2
θ +

1
ρ2
b2σ2

z and it is understood that we take 1
σ2
p
= 0 and 1

ρσ2
p
= 0 in the

above expressions when ρ = 0.

Substituting this explicit expression for µi in the argument of g′ in eq. (43) (recalling

that ζ ∈ R denotes the common liquidity trade realization in this case) and grouping terms

yields

1

∫
µjdj

σ2
s

+
1

τ
1ζ − 1

τ
(1κ− µz)

= 1
1

σ2
s

(
m+ σ2

s

1

σ2
ε

s+ σ2
s

1

ρσ2
p

sp

)
+ 1

1

τ
ζ − 1

τ
(1κ− µz)

=
1

σ2
s

(
1m+ 1σ2

s

(
1

ρσ2
p

sp +
1

σ2
ε

(
s+

σ2
ε

τ
ζ

))
− σ2

s

τ
(1κ− µz)

)
.

Matching coefficients on the initial conjecture sp = s + b(z − µz), with B = bI as derived

above, requires b = σ2
ε

τ
. The previous expression now simplifies to

1

σ2
s

(
1m+ 1σ2

s

(
1

σ2
ε

+
1

ρσ2
p

)
sp −

σ2
s

τ
(1κ− µz)

)
which, upon plugging back into g′, matches the expression in the Proposition.

If Σz is singular but not of the form 11′σ2
z (i.e., the liquidity trade is perfectly positively

correlated but has different variances in the two markets, or is perfectly negatively correlated,

or is constant in at least one of the markets), then price statistics sp = (sp1, sp2) can be

combined to solve for s. That is, there exists a vector a ∈ R2 such that s = a′sp.
26 Hence,

the conditional moments for trader i are

µi = E [V|si, sp] = m+ σ2
s

(
si
σ2
ε

+
1

ρσ2
p

a′sp

)
, and

26It can be shown that a =
( V(zE)

V(zE)−C(zD,zE)

V(zD)

V(zD)−C(zD,zE)

)
when the correlation is ±1, which is finite given

the form of Σz under consideration in this case. If V(zD) = 0 or V(zE) = 0, one can take a = (1, 0) or
a = (0, 1), respectively.
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σ2
s = V (V|si, sp) =

(
1

σ2
θ

+
1

σ2
ε

+
1

σ2
p

)−1

,

where σ2
p ≡

1−ρ2
ρ2
σ2
θ is strictly positive since ρ < 1 and it is understood that we take 1

σ2
p
= 0

and 1
ρσ2

p
= 0 in the above expressions when ρ = 0.

Substituting this explicit expression for µi in the argument of g′ in eq. (43) and grouping

terms yields

1

∫
µjdj

σ2
s

+
1

τ
(z − µz)−

1

τ
(1κ− µz)

= 1
1

σ2
s

(
m+ σ2

s

(
si
σ2
ε

+
1

ρσ2
p

a′sp

))
+

1

τ
(z − µz)−

1

τ
(1κ− µz)

=
1

σ2
s

(
1m+ σ2

s

(
1

1

ρσ2
p

a′sp +
1

σ2
ε

(
1s+

σ2
ε

τ
(z − µz)

))
− σ2

s

τ
(1κ− µz)

)
.

Matching coefficients on the initial conjecture sp = s + B(z − µz), with B = bI as derived

above, requires b = σ2
ε

τ
. The previous expression now simplifies to

1

σ2
s

(
1m+ σ2

s

(
I
1

σ2
ε

+
1

ρσ2
p

1a′
)
sp −

σ2
s

τ
(1κ− µz)

)
(51)

which, upon plugging back into g′, matches the expression in the Proposition. Because there

is a unique matrix B satisfying the initial conjecture, we again have that this price is unique

within the generalized linear class.

Finally, if ρ = 1 in the previous case, then in equilibrium traders can directly infer

θ = s = a′sp from the vector of asset prices. Because payoffs are riskless given observation of

θ, the equilibrium prices must then be PD = min{m+ θ,K} and PE = max{m+ θ −K, 0}
to preclude arbitrage. This set of prices is not of the posited generalized linear form, but it

is now easily confirmed that such fully-revealing prices constitute an equilibrium.

C Equilibrium with multiple firms

In this section we characterize the equilibrium in a multi-asset version of the model in which

there are N firms, each exposed to a systematic risk factor, and each with a potentially

different amount of debt outstanding. Specifically, there are N ≥ 1 firms, indexed by n.

Firm n’s total cash flow per unit/share is

Vn = mn + θn + βnF

52



where mn and βn are constants. The idiosyncratic shocks θn ∼ N (0, σ2
θ) are independent

across firms, and F ∼ N (0, σ2
F ) is a systematic factor.

There is a factor asset with payoff VF = mF + F that is directly tradeable and is in

supply κ ≥ 0. Each firm has both debt and equity outstanding, all in zero net supply, so

that firms are “small” relative to the overall economy. We allow for arbitrary differences

in leverage across firms, with Kn denoting the face value of debt for firm n. To condense

notation, let ψn (Vn) = min {Vn, Kn} denote the payoff function for the debt of firm n. As

in the baseline model, we VnD = ψn (Vn) and VnE = Vn−ψn (Vn) denote the debt and equity

payoffs as random variables, and for completeness we note that the factor asset payoff is

always simply equal to its underlying cash flow VF = VF . We let PnD and PnE denote the

endogenous prices of each firm n’s debt and equity and let PF denote the endogenous price

of the factor asset.

Investors receive private signals about each firm’s cash flow

sin = θn + εin

where εin ∼ N (0, σ2
ε) are mutually independent. As in the main model, we continue to

allow investors to agree to disagree about the information content of one another’s signals.

Specifically, each investor i believes that other investors’ signals are of the form

sjn = ρθn +
√

1− ρ2ξin + εjn

where ξin ∼ N (0, σ2
θ) are mutually independent.

Finally, we assume that there are exogenous liquidity traders who trade to gain exposures

to the idiosyncratic portion of each firm’s cash flow θn. In particular, for a given firm n,

liquidity traders submit demands zn ∼ N (0, σ2
z) in the debt and equity of firm n and

simultaneously submit demand −βnzn in the factor asset. To ensure that liquidity demand

is truly idiosyncratic, we continue to assume that the zn are independent across firms n. We

let zF = −
∑N

n=1 βnzn concisely denote the total liquidity demand in the factor asset.

In the derivation, it will be convenient to use vector/matrix notation. We let objects

without subscripts denote vectors of firm-level objects (i.e., vectors of all firms/assets ex-

cluding the factor asset). For instance, V = (V1, . . . ,VN) is the vector of firm cash flows,

with m = (m1, . . . ,mN)
′ the vector of expected cash flows, β = (β1, . . . , βN)

′ the vector of

cash-flow betas, etc. We let objects with ·⃗ denote vectors augmented with the factor asset

in the last slot. For instance, V⃗ = (V1, . . . ,VN ,VF ) is the overall vector of cash flows, with

m⃗ = (m1, . . . ,mN ,mF )
′ the vector of expected cash flows, and β⃗ = (β1, . . . , βN , 1)

′ the vector

of cash flow betas. In the expressions below, we let Ik denote a k × k identity matrix, 1k

a k-vector of ones, 0k a k-vector of zeros, and 0j×k a j × k matrix of zeros. To eliminate
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notational clutter we will sometimes drop the subscripts that explicitly label the dimensions

of these objects — it should be understood that they are conformable with the expressions in

which they appear (e.g., it will be clear from the context what is the appropriate dimension

of a given identity matrix I, whether 0 represents a vector or a matrix, etc.).

C.1 Beliefs

As in the main model in the text, we consider equilibria of the generalized linear form, in

which there is an N -dimensional vector of price statistics that can be represented in form

sp = s+Bz

where s ≡ (s1, . . . , sN) ≡
(∫

sj1dj, . . . ,
∫
sjNdj

)
is the vector of aggregate signals, and where

B is a nonsingular N × N matrix to be determined, with generic entry bmn in row m and

column n.

We begin by characterizing trader beliefs in an arbitrary generalized linear equilibrium of

the posited form. Under this conjecture, the beliefs in both levered and unlevered versions of

the economy remain conditionally normal though, in principle, they may be associated with

different conditional moments since the matrix B could differ across these economies. Using

standard updating formulas, the conditional distribution of V⃗ for any trader i is conditionally

normal with conditional mean vector and variance matrix given by

µ⃗i ≡ Ei
[
V⃗
]
= ( µi

mf )

µi ≡ Ei [V ] = m+ Vi (θ)

(
1

σ2
ε

si + Σ−1
p

1

ρ
sp

)
Γ ≡ Vi

(
V⃗
∣∣∣∣si, sp) =

(
Vi(θ)+σ

2
F ββ

′ σ2
F β

σ2
F β

′ σ2
F

)
Vi (θ) =

((
1

σ2
θ

+
1

σ2
ε

)
IN + Σ−1

p

)−1

where Σp ≡ 1−ρ2
ρ2
σ2
θI+

1
ρ2
σ2
zBB

′. To condense notation, it is understood that we set Σ−1
p and

Σ−1
p

1
ρ
to 0 in the above expressions when ρ = 0, since traders optimally place zero weight

on prices when updating in this case. Note further that for 0 < ρ ≤ 1, the inverse Σ−1
p is

always well-defined. Because 1−ρ2
ρ2
σ2
θI is positive semidefinite (positive definite if ρ < 1) and

because B is conjectured to be nonsingular and therefore BB′ is positive definite, it follows

that Σp is the sum of a positive semi-definite and positive definite matrix. Hence, Σp is itself

positive definite and therefore invertible.
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C.2 Unlevered economy

We begin by characterizing the equilibrium in the case that all firms are unlevered. As

in the baseline model, the equilibrium price vector in the unlevered economy plays a key

role in the representation of the equilibrium prices in the levered case. Let PnU denote the

unlevered equity price for firm n, with PU = (P1U , . . . , PNU) the vector of such prices, and

P⃗U = (P1U , . . . , PNU , PF ) this vector augmented with the factor asset price.

Lemma 7. Suppose that under each investor’s information set, V⃗ is conditionally normally

distributed with mean µ⃗i and variance matrix Γ. Then, there is a linear equilibrium in which

the vector of equilibrium prices has the representation

P⃗U =

∫
µ⃗idi−

1

τ
Γ (( 0

κ )− z⃗) .

This equilibrium price vector can be written in terms of the underlying random variables and

parameters as

P⃗U =

(
m+Vi(θ)

(
1

σ2
ε
+ 1

σ2
p

1
ρ

)
sp−β 1

τ
σ2
F κ

mF− 1
τ
σ2
F κ

)

where the equilibrium price signal coefficient matrix is diagonal, B = σ2
ε

τ
I, and

σ2
p =

(
1−ρ2
ρ2
σ2
θ +

1
ρ2
σ2
z

(
σ2
ε

τ

)2)
. Consequently, (i) the conditional variance matrix of idiosyn-

cratic cash flow shocks is diagonal:

Vi (θ) = σ2
sI (52)

with σ2
s ≡

(
1
σ2
θ
+ 1

σ2
ε
+ 1

σ2
p

)−1

, and (ii) the overall conditional variance matrix of cash flows is

Γ =
(
σ2
sI+σ

2
F ββ

′ σ2
F β

σ2
F β

′ σ2
F

)
. (53)

Proof. We begin by solving the partial equilibrium demand problem for an arbitrary trader.

Let xin denote investor i’s demand for the unlevered equity of firm n, with xi = (xi1, . . . , xiN)
′

and x⃗i = (xi1, . . . , xiN , xiF )
′. Given the conditional normality of V⃗ , investor i’s expected

utility at the trading stage is

Ei
[
− exp

{
−1

τ

(
x⃗′i

(
V⃗ − P⃗U

)
+ κPF

)} ∣∣∣∣si, sp] = − exp

{
−1

τ

(
x⃗′i

(
µ⃗i − P⃗U

)
+ κPF

)
+

1

2

1

τ 2
x⃗′iΓx⃗i

}
.
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Maximizing over x⃗i yields demand function

x⃗i = τΓ−1
(
µ⃗i − P⃗U

)
.

Aggregating across traders and enforcing the market-clearing condition yields

( 0
κ ) =

∫
τΓ−1

(
µ⃗i − P⃗U

)
di+ z⃗

⇒ P⃗U =

∫
µ⃗idi−

1

τ
Γ (( 0

κ )− z⃗) , (54)

which matches the first representation in the Lemma.

To further characterize the equilibrium B and write the prices in the second form in the

lemma, note that, using the belief expressions from Section C.1, we have∫
µ⃗idi =

(
m+Vi(θ)

(
1

σ2
ε
s̄+Σ−1

p
1
ρ
sp

)
mF

)
and

Γ (( 0
κ )− z⃗)

=
(

Vi(θ)+σ
2
F ββ

′ σ2
F β

σ2
F β

′ σ2
F

)
(( 0

κ )− ( z
−β′z ))

=
(
βσ2

F κ

σ2
F κ

)
−
( Vi(θ)z

0

)
.

Substituting back in to eq. (54) and collecting terms yields

⇒ P⃗U =

(
m+Vi(θ)

(
1

σ2
ε
s̄+Σ−1

p
1
ρ
sp

)
mF

)
−
(

1
τ
βσ2

F κ
1
τ
σ2
F κ

)
+
(

1
τ
Vi(θ)z
0

)
=

(
m+Vi(θ)

(
1

σ2
ε
s̄+Σ−1

p
1
ρ
sp+

1
τ
z

)
−β 1

τ
σ2
F κ

mF− 1
τ
σ2
F κ

)
=

(
m+Vi(θ)

(
1

σ2
ε

(
s̄+

σ2
ε
τ
z

)
+Σ−1

p
1
ρ
sp

)
−β 1

τ
σ2
F κ

mF− 1
τ
σ2
F κ

)
.

Grouping terms, to satisfy the initial conjecture about sp, we must have that the equilibrium

coefficient matrix B satisfies

B =
σ2
ε

τ
I,
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which is diagonal. Hence,

P⃗U =

(
m+Vi(θ)

(
1

σ2
ε
+Σ−1

p
1
ρ

)
sp−β 1

τ
σ2
F κ

mF− 1
τ
σ2
F κ

)

with Vi (θ) =
((

1
σ2
θ
+ 1

σ2
ε

)
I + Σ−1

p

)−1

, and Σp = σ2
pI where σ2

p = 1−ρ2
ρ2
σ2
θ + 1

ρ2
σ2
z

(
σ2
ε

τ

)2
.

Plugging the expression for Σp back into the expression for P⃗U , plugging the expression

for Vi(θ) back into the expression for Γ, and collecting terms yields the expressions in the

Proposition.

C.3 Levered economy

Now, consider the setting in which firms have leverage. Our goal in this section is to establish

the following result.

Proposition 7. There exists an equilibrium in the financial market. The vector of equilib-

rium asset prices has the representation

P = g′

 12e′1
...

12e′N
e′F

Γ−1

(∫
µ⃗idi+

1

τ
Γz⃗ − 1

τ
Γ ( 0N

κ )

) (55)

where en ∈ RN+1 and eF ∈ RN+1 are vectors with ones in the nth and (N + 1)st elements,

respectively, and zeros in all other elements, and the function g′ : R2N+1 → R2N+1 is the

gradient of a function given in closed-form in eq. (61) in the proof.

The equilibrium price vector can be written in terms of the underlying random variables

and parameters as

P⃗ = g′

 12e′1
...

12e′N
e′F

Γ−1P⃗U

 (56)

where P⃗U is the vector of unlevered prices from Lemma 7 in which the equilibrium price signal

coefficient matrix is diagonal B = σ2
ε

τ
I.

Furthermore, this vector of prices can be understood as a vector of risk-neutral expected

payoffs under the joint cash flow distribution

V⃗ ∼Q N
(
P⃗U ,Γ

)
(57)

Under the generalized linear equilibrium conjecture, the N+1 dimensional vector of cash

flows V⃗ is jointly normally distributed with mean vector µ⃗i and variance matrix Γ character-
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ized in Section C.1 above. We can use this fact to derive the conditional distribution of the

overall 2N + 1 dimensional vector of security payoffs V⃗ = ((V1D, V1E) , . . . (VND, VNE) , VF ),

which is the key step in the equilibrium derivation.

Let u⃗ = ((u1D, u1E) , . . . , (uND, uNE) , uF )
′ ∈ R2N+1 be an arbitrary vector and let uE,F =

(u1E, . . . , uNE, uF )
′ ∈ RN+1 be the subvector of elements associated with the equity security

“slots” in u⃗, including the factor security. Explicitly integrating against the joint density of

the cash flows V⃗ ∈ RN+1, the conditional MGF of V⃗ ∈ R2N+1 can be written

Ei
[
exp

{
u⃗′V⃗
}]

=

∫
exp

{
N∑
n=1

unDψn (vn) +
N∑
n=1

unE (vn − ψn (vn)) + uFvF

}

× 1

(2π)−(N+1)/2 |Γ|1/2
exp

{
−1

2
(v⃗ − µ⃗i)

′ Γ−1 (v⃗ − µ⃗i)

}
dv⃗ (58)

=

∫
exp

{(
N∑
n=1

(unD − unE)ψn (vn)

)
+ u′E,F v⃗

}

× 1

(2π)−(N+1)/2 |Γ|1/2
exp

{
−1

2
(v⃗ − µ⃗i)

′ Γ−1 (v⃗ − µ⃗i)

}
dv⃗ (59)

= exp

{
1

2

(
Γ−1µ⃗i + uE,F

)′
Γ
(
Γ−1µ⃗i + uE,F

)
− 1

2

(
Γ−1µ⃗i

)′
Γ
(
Γ−1µ⃗i

)}
×
∫

1

(2π)−(N+1)/2|Γ|1/2
exp

{
(
∑N

n=1(unD−unE)ψn(vn))− 1
2(v⃗−Γ(Γ−1µ⃗i+uE,F ))

′
Γ−1(v⃗−Γ(Γ−1µ⃗i+uE,F ))

}
dv⃗

(60)

where the first equality writes the expectation explicitly as an integral and writes the debt

and equity payoffs as functions of the underlying cash flows, the second equality groups terms

in the exponential, and the final equality completes the square in the exponential.

Let y⃗ = ((y1D, y1E) , . . . , (yND, yNE) , yF )
′ ∈ R2N+1 be an arbitrary vector and let yE,F =

(y1E, . . . , yNE, yF ) ∈ RN+1 denote the subvector associated with the equity security “slots”.

Define the function g : R2N+1 → R by

g (y⃗) = log

(
exp

{
1

2
y′E,FΓyE,F

}
×
∫

1

(2π)−(N+1)/2|Γ|1/2
exp

{∑N
n=1(ynD−ynE)ψn(vn)− 1

2(v⃗−ΓyE,F )
′
Γ−1(v⃗−ΓyE,F )

}
dv⃗

)
(61)

and note that when y⃗ = ((y1, y1) , . . . , (yN , yN) , yF )
′ has the same argument within each pair
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of firm-level slots, we have

g ((y1, y1) , . . . , (yN , yN) , yF ) = log

(
exp

{
1

2
y′E,FΓyE,F

}
∫

1

(2π)−(N+1)/2|Γ|1/2
exp

{
− 1

2(v⃗−ΓyE,F )
′
Γ−1(v⃗−ΓyE,F )

}
dv⃗

)
=

1

2
y′E,FΓyE,F

where the second equality uses the fact that the integral in the first equality is simply the

integral of an N+1 dimensional normal density with mean vector ΓyE,F and variance matrix

Γ over all of RN+1 and hence has a value of one.

Let en ∈ RN+1 and eF ∈ RN+1 be the vectors with ones in the nth and (N+1)st elements,

respectively, and zeros in all other elements. With the above definition of g, we can therefore

write the MGF in eq. (60) as

Ei
[
exp

{
u⃗′V⃗
}]

= exp

g
 (u1Du1E )+12e′1Γ

−1µ⃗i

...
(uND
uNE )+12e′NΓ−1µ⃗i

uF+e′FΓ−1µ⃗i

− g

 12e′1Γ
−1µ⃗i

...
12e′NΓ−1µ⃗i
e′FΓ−1µ⃗i


 .

We record for completeness that, under this representation, g is precisely the cumulant

generating function (CGF) of V⃗ .

Now, using this expression for the conditional MGF, we can write the problem for an

arbitrary investor i as

max
x⃗i

Ei
[
− exp

{
−1

τ

(
x⃗′i

(
V⃗ − P⃗

)
+ κPF

)}]

= max
x⃗i

− exp

g

 12e′1Γ

−1µ⃗i

...
12e′NΓ−1µ⃗i
e′FΓ−1µ⃗i

− 1

τ
x⃗i

− g

 12e′1Γ
−1µ⃗i

...
12e′NΓ−1µ⃗i
e′FΓ−1µ⃗i

+
1

τ
x⃗′iP⃗ − 1

τ
κPF

 .

Given that the CGF g(·) is strictly convex, twice continuously differentiable, and finite on

all of R2N+1, this objective function is twice continuously differentiable, strictly concave, and

defined on all of R2N+1. Hence the first-order condition is necessary and sufficient for an

optimum, and the optimum is unique whenever a solution to the FOC exists. Rearranging

the FOC yields the optimal demand

x⃗i = τ


 1e′1Γ

−1µ⃗i

...
1e′NΓ−1µ⃗i
e′FΓ−1µ⃗i

− (g′)
−1
(
P⃗
)
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where we have used the fact that g is strictly convex to conclude that the gradient g′ is

injective and therefore invertible on its range.

We claim that the range of g′ is the set of no-arbitrage prices. Let

S =

{
(v1D, v1E, . . . , vND, vNE, vF ) ∈ R2N+1 :

(vnD < Kn, vnE = 0) or (vnD = Kn, vnE > 0) ∀n
vF ∈ R

}

denote the support of the overall payoff vector V⃗ . As in the baseline setting, the range of

g′ is the closed convex hull of S. This again follows from results about exponential family

distributions in Barndorff-Nielsen (2014). Because the function g is defined on all of R2N+1

and furthermore because this set is open, the exponential family described by g is “regular”.

Hence, it follows from Theorem 8.2 in Barndorff-Nielsen (2014) that the exponential family

is “steep” and therefore from Theorem 9.2 in Barndorff-Nielsen (2014) that the gradient g′

maps R2N+1 onto the interior of the closed convex hull of S, int conv(S). This set coincides

with the set of candidate prices in which each firm’s debt price is strictly less than its face

value Kn, each firm’s equity price is strictly greater than zero, and the price of the factor

asset can take any value, which is precisely the set of prices that do not admit arbitrage.

We can now enforce the market clearing condition, where we use the fact that liquidity

trade is identical within each firm’s securities, (znD, znE)
′ = 12e

′
nz⃗:(

02

...
02
κ

)
=

∫
x⃗idi+

 12e′1z⃗

...
12e′1z⃗

e′F z⃗


⇒ P⃗ = g′


 12e′1Γ

−1
∫
µ⃗idi

...
12e′NΓ−1

∫
µ⃗idi

e′FΓ−1
∫
µ⃗idi

− 1

τ

( 02

...
02
κ

)
−

 12e′1
...

12e′N
e′F

 z⃗


 (62)

Because

(
02

...
02
κ

)
=


12e′1(0N

κ )
...

12e′N(0N
κ )

e′F (0N
κ )

 =

 12e′1
...

12e′N
e′F

 ( 0N
κ ) we can further write the argument of g′

above as  12e′1Γ
−1

∫
µ⃗idi

...
12e′NΓ−1

∫
µ⃗idi

e′FΓ−1
∫
µ⃗idi

− 1

τ

( 02

...
02
κ

)
−

 12e′1
...

12e′N
e′F

 z⃗


=

 12e′1
...

12e′N
e′F

(Γ−1

∫
µ⃗idi+

1

τ
z⃗ − 1

τ
( 0N
κ )

)

60



=

 12e′1
...

12e′N
e′F

Γ−1

(∫
µ⃗idi+

1

τ
Γz⃗ − 1

τ
Γ ( 0N

κ )

)
.

As in the unlevered case, we obtain that the equilibrium price signal coefficient matrix is

B = σ2
ε

τ
I by plugging in for µ⃗i from the expression in Section C.1 above, grouping terms,

and enforcing the initial linear conjecture on sp.

With this value of B pinned down, we recognize that
∫
µ⃗idi+

1
τ
Γz⃗− 1

τ
Γ ( 0N

κ ) is precisely

the vector of prices from the unlevered economy, P⃗U . Therefore, the equilibrium price vector

in eq. (62) can be written

P⃗ = g′

 12e′1
...

12e′N
e′F

Γ−1P⃗U

 .

Differentiating the expression for g(·) defined above yields, upon inspection, that this ex-

pression is equivalent to representing each security’s price as the expectation of the security’s

payoff under a risk-neutral joint distribution for cash flows given by V⃗ ∼Q N
(
P⃗U ,Γ

)
.

D Limited Liability

Our baseline model can capture the limited liability feature of levered equity (when K ≥ 0).

However, it does not capture the limited liability feature of debt: debt payoffs in the model

are unbounded below. Furthermore, in the case that the firm is unlevered, equity payoffs are

unbounded below. In this section, we alter our baseline model by specifying that firm cash

flows follow a distribution that is bounded below by zero. This ensures that the payoffs on

all securities satisfy limited liability.

In particular, suppose that the firm’s cash flows V follow a truncated N(m,σ2
θ) distribu-

tion, truncated below at zero. The unconditional density of V is

fV(v) =
1{v≥0}

1√
2πσ2

θ

exp
{
−1

2
(v−m)2

σ2
θ

}
1− Φ

(
−m
σθ

) . (63)

We continue to assume that the firm has both debt and equity outstanding. In order to keep

the equilibrium non-trivial, we assume that the face value of debt satisfies K > 0.

We continue to assume that investors observe private signals of the form

si = (V −m) + εi
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where ε ∼ N(0, σ2
ε) and perceive others signal as

sj = ρ (V −m) +
√

1− ρ2ξi + εj (64)

where ξi ∼ N(0, σ2
ξ ) is independent of all other random variables. As in the baseline model,

we also continue to assume that liquidity traders submit identical demands z ∼ N(0, σ2
z) in

both the debt and equity of the firm. Finally, we also consider to search for equilibria in the

generalized linear class, in which security prices depend on the underlying random variable

through a linear statistic

sp = s+ bz (65)

with b an endogenous constant to be determined.

The next proposition characterizes the equilibrium.

Proposition 8. Suppose that the firm cash flow V is unconditionally distributed as a trun-

cated normal, truncated below by zero, with parameters m and σ2
θ . Then there exists a

generalized linear equilibrium, unique within this class. In this equilibrium:

1. Each investor’s conditional distribution of firm cash flow V is truncated normal with

parameters µi and σ
2
s that are identical to those in the baseline model.

2. The equilibrium prices of debt and equity can be represented as the securities’ expected

payoffs under a risk-neutral cash flow distribution. The risk-neutral cash flow distribu-

tion is truncated normal with parameters PU and σ2
s that are identical to those in the

baseline model.27

Proof. The proof takes a similar form to the derivation in the baseline model, and so we

omit some of the algebraic details to focus on the key differences.

Under the generalized linear conjecture, Bayes’ rule implies that the conditional density

for an arbitrary investor i satisfies

fV|si,sp (v|si, sp) ∝ fV (v) fsi,sp|V (si, sp|v)

∝ 1{v≥0} exp

{
−1

2

(v −m)2

σ2
θ

}
exp

−1

2

(si − (v −m))2

σ2
ε

− 1

2

(
sp
ρ
− (v −m)

)2
σ2
p


27Note that for easy comparability of the expressions for equilibrium price and returns, we abuse notation

by continuing to let PU = m + σ2
s

((
1
σ2
ε
+ 1

ρσ2
p

)
(s+ bz)− κ

τ

)
. The actual equity price in the unlevered

version of the truncated normal economy is itself nonlinear and is not equal to PU .
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∝ 1{v≥0} exp

{
−1

2

(
1

σ2
θ

+
1

σ2
ε

+
1

σ2
p

)
v2 +

(
m

σ2
θ

+
m+ si
σ2
ε

+
m+ sp

ρ

σ2
p

)
v

}

∝ 1{v≥0} exp

{
−1

2

(v − µi)
2

σ2
s

}

where σ2
p =

1−ρ2
ρ2
σ2
ξ +

1
ρ2
σ2
zb

2 and where

µi = m+ σ2
s

(
1

σ2
ε

si +
1

σ2
p

1

ρ
sp

)
(66)

σ2
s =

(
1

σ2
θ

+
1

σ2
ε

+
1

σ2
p

)−1

. (67)

Hence, the conditional cash flow distribution remains truncated normal but with parameters

µi and σ
2
s in place of m and σ2

θ . We can use this to derive the conditional MGF of the vector

of security payoffs (VD, VE) = (min {V , K} ,max {V −K, 0}):

Ei [exp {uDVD + uEVE}]

=

∫ K

0

exp {uDv}
1√
2πσ2

s

exp
{
−1

2
(v−µi)2
σ2
s

}
1− Φ

(
−µi
σs

) dv

+

∫ ∞

K

exp {uDK + uE (v −K)}
1√
2πσ2

s

exp
{
−1

2
(v−µi)2
σ2
s

}
1− Φ

(
−µi
σs

) dv

= exp

{
1

2
σ2
s

(
µi
σ2
s

+ uD

)2

− 1

2
σ2
s

(
µi
σ2
s

)2
} Φ

(
K−σ2

s

(
µi
σ2
s
+uD

)
σs

)
− Φ

(
−σ2

s

(
µi
σ2
s
+uD

)
σs

)
1− Φ

(
−µi
σs

)

+ exp

{
(uD − uE)K +

1

2
σ2
s

(
µi
σ2
s

+ uE

)2

− 1

2
σ2
s

(
µi
σ2
s

)2
} 1− Φ

(
K−σ2

s

(
µi
σ2
s
+uE

)
σs

)
1− Φ

(
−µi
σs

) .

Defining the function g : R2 → R as

g

(
yD

yE

)
≡ log

(
exp

{
1

2
σ2
sy

2
D

}(
Φ

(
K − σ2

syD
σs

)
− Φ

(
−σ2

syD
σs

))
(68)

+ exp

{
(yD − yE)K +

1

2
σ2
sy

2
E

}(
1− Φ

(
K − σ2

syE
σs

)))
, (69)
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we can concisely write the MGF as

Ei [exp {u′V }] = exp

{
g

(
u+ 1

µi
σ2
s

)
− g

(
1
µi
σ2
s

)}
,

which is of the exponential family form. It follows that the demand function of investor i is

xi = τ

(
1
µi
σ2
s

− (g′)
−1

(P )

)
. (70)

Imposing the market-clearing condition and rearranging yields equilibrium price vector

P = g′
(
1

∫
µidi+

1
τ
σ2
sz − 1

τ
σ2
sκ

σ2
s

)
. (71)

Plugging in the expression for µi from (66), grouping terms, and imposing the generalized

linear conjecture, we find that there is a unique solution b = σ2
ε

τ
for the price signal coefficient.

Finally, recognizing that with b = σ2
ε

τ
we have

∫
µidi +

1
τ
σ2
sz − 1

τ
σ2
sκ = PU , where PU is as

defined in the baseline model, we can write the equilibrium price vector as

P = g′
(
1
PU
σ2
s

)
. (72)

Differentiating the expression for g above yields, upon inspection, that the debt and equity

prices can be interpreted as expected payoffs under a risk-neutral distribution for the cash

flow V that is truncated normal, with parameters PU and σ2
s , truncated below at zero. To

see this, consider the equity (the expression for debt is analogous). We have

∂

∂yE
g ( yDyE )

∣∣∣∣
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) ,
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which is precisely the expectation of max{0,V −K} for

V ∼ TruncatedNormal

(
PU , σ

2
s

∣∣∣∣V ≥ 0

)
.

This proposition demonstrates that, as in the baseline model, security prices can be

expressed as their expected payoffs under a risk-neutral distribution with mean and variance

parameters PU and σ2
s , respectively. The key difference is that this distribution is now the

truncated normal, truncated below at zero. However, expected returns no longer follow

simple analytical expressions as in the main text. Thus, we next numerically calculate

expected returns to assess whether our main findings are robust.

Figure 7 illustrates the findings, comparing the results under limited liability to our

baseline results. The figure reveals that the qualitative implications of our model continue

to hold: private information quality, liquidity-trading volatility, and default risk impact

expected debt and equity returns similarly to as in our baseline model. However, the lower

right-hand plot reveals that there are two intuitive differences relative to the baseline model.

First, as default risk converges to zero, expected equity returns converge to zero in our

baseline model, but to a strictly negative value under limited liability. The reason is that,

even when the firm is unlevered, limited liability causes the equity payoffs to remain positively

skewed.

Second, for high levels of default risk, debt earns negative expected returns under limited

liability. Intuitively, when the firm is extremely close to default, given limited liability, debt

payoffs resemble those of an equity security, and thus become convex. In particular, debt

has limited downside and large upside in the (unlikely) event that the firm produces high

cash flows. We have confirmed across a range of parameters that this reversal only applies

to firms with default risk that exceeds 50%, which represents an extremely small proportion

of traded stocks, even among those with junk debt (e.g., Hilscher and Wilson (2017)).
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Figure 7: Limited Liability Comparative Statics

This figure compares expected returns under our baseline model to those under the model consid-

ered in this section. The parameters are set to: σ2
θ = σ2

ε = m = τ = K = σ2
z = 1;κ = 0; ρ = 0.5.
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