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Abstract

We study how dynamic research affects information acquisition in financial markets.

In our strategic trading model, the trader performs costly research to generate private

information but does not always succeed. Optimal research activity responds to market

conditions and generates novel empirical and policy implications. First, more frequent

public disclosures can “crowd in” private information acquisition, and increase price

informativeness and harm liquidity, instead of “leveling the playing field.” Second,

measures of research activity may be negatively associated with informed trading.

Finally, policies that improve research effectiveness or increase market participation by

uninformed investors can simultaneously improve price informativeness and liquidity.
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1 Introduction

“I could spend all my time thinking about technology for the next year and I wouldn’t be

the hundredth or the thousandth or the 10,000th smartest guy in the country in looking at

those businesses.”

- Warren Buffet, 1998 Berkshire Hathaway Annual Meeting

Research outcomes are uncertain: spending time and effort researching trading opportu-

nities does not guarantee a profitable strategy, even for Warren Buffet.1 Moreover, research

activity varies over time and with market conditions, as suggested by the recent analysis

of measures like Bloomberg search volume and EDGAR queries.2 Yet, the literature on

information acquisition in financial markets following Grossman and Stiglitz (1980) largely

ignores the uncertainty and dynamics of research. Traditional models treat information

acquisition as a static, deterministic decision — investors make their information choices

before trading begins and are guaranteed to receive payoff relevant information if they pay

an appropriate cost.

Understanding these limitations is especially important for policy analysis. In many mod-

els of static information acquisition, more public disclosure “crowds out” private information

(see Section 2 for further discussion). Consequently, regulators who seek to improve market

liquidity often require more public disclosures in an effort to “level the playing field.” An

important example in practice is Regulation Fair Disclosure (Reg FD) which was introduced

in 2000 to reduce the incidence of selective disclosure.3 Surprisingly, however, the policy may

have had the opposite effect. For instance, Duarte, Han, Harford and Young (2008) show the

probability of informed trading (PIN) for NASDAQ stocks increased after the introduction

of Reg FD.

To better understand how the timing and uncertainty of research affects financial markets,

we develop a strategic trading model where the trader dynamically optimizes her research

activity in response to market conditions. Research activity evolves dynamically, and is

not guaranteed to succeed: conditional on devoting time to research, the trader receives

payoff relevant information with some probability that depends on the effectiveness of her

research technology. When her research is successful, the trader has an uncertain, but

1Not surprisingly, this also applies to academic research!
2For example, see Drake, Roulstone and Thornock (2012), Ben-Rephael, Da and Israelsen (2017), Crane,

Crotty and Umar (2019), and Drake, Johnson, Roulstone and Thornock (2020)
3Specifically, Reg FD mandated that firms could not disclose material information to some investors

unless it was also disclosed publicly. This limited the ability of large, institutional investors to receive and
trade on (effectively private) information before others.

1



limited, window to exploit her private information before a public disclosure at a random

future date eliminates her informational advantage.

We show that accounting for the dynamic and uncertain nature of research has important

implications. First, research activity can increase or decrease with the frequency of public

disclosures.4 As a result, policy efforts to “level the playing field” can be counterproductive

because requiring more public disclosure can “crowd in” private information acquisition,

which increases price impact and harms liquidity. Second, since research success is uncer-

tain, a trader with access to more effective research technology is, counter-intuitively, less

likely to conduct research but (unconditionally) more likely to end up privately informed.

This implies that the empirical relation between research activity (e.g., EDGAR queries,

Bloomberg search volume) and informed trading need not always be positive, but instead

depends on cross-sectional and time-series variation in investor sophistication. Third, when

traders acquire information dynamically, we show that some regulatory changes (e.g., im-

provements to research technology, or increases in the participation of uninformed traders)

can improve both price informativeness and market liquidity at the same time. This sug-

gests that regulators do not always face a tradeoff between price informativeness and market

liquidity, as might be suggested by traditional models.5

Section 3 introduces the model. We augment the standard, continuous-time setting of

Kyle (1985) and Back (1992), with (i) stochastic noise trading volume (e.g., Collin-Dufresne

and Fos (2016), Banerjee and Breon-Drish (2020)), (ii) a random trading horizon (e.g.,

Back and Baruch (2004), Caldentey and Stacchetti (2010)), and most importantly, (iii) en-

dogenous information acquisition via a probabilistic research technology. Stochastic noise

trading volume, first introduced by Collin-Dufresne and Fos (2016) in a different context, is

a tractable and empirically plausible mechanism for generating time-variation in the value

of being informed.6 For instance, Collin-Dufresne and Fos (2015) document that informed

traders strategically trade more aggressively on days when uninformed trading volume is

4As we discuss in Section 2, the channel through which public disclosure can “crowd in” more research
by the trader in our setting is distinct from settings where investors can learn about multiple dimensions
of payoffs (e.g., Goldstein and Yang (2015), Banerjee, Davis and Gondhi (2018), and Goldstein and Yang
(2019)).

5In most static acquisition models, policymakers face a tradeoff between improving price informativeness
and market liquidity: changes that encourage private information acquisition lead to more informative prices,
but also higher adverse selection and lower liquidity. We show that with dynamic research this continues to
be true along some dimensions (e.g., policies that affect the cost of research), but not always.

6Specifically, we assume the instantaneous noise trade to be dZt = νtdWZt, where νt follows a stochastic
process. As we discuss in Section 3, the process νt drives trading activity in the model. For expositional
clarity, we follow Collin-Dufresne and Fos (2016) and refer to νt as “trading volume.” Furthermore, while
we argue that stochastic noise trading volume is a natural driver of the value of being informed, as we
discuss below our results are robust to other mechanisms that generate time-varying value of information
(e.g., time-varying fundamental uncertainty).
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higher. Our analysis suggests that such days are also likely to be associated with more re-

search activity and information acquisition, which is consistent with empirical evidence (e.g.,

Ben-Rephael et al. (2017)). A natural interpretation of the random trading horizon is that

the potential trading opportunity goes away due to an unscheduled, public announcement

that reveals the previously private information. The assumption ensures that the analysis

is tractable, and the interpretation as public disclosure allows us to derive direct empirical

predictions and policy implications of our model.

The key innovation in our paper is to model dynamic, stochastic research in this setting.

We assume that the strategic trader is not endowed with private information, but instead she

must engage in research to acquire it. Specifically, at each instant prior to information arrival,

the trader can optimally choose her research intensity ζ subject to a flow cost C (ζ) dt.7 Given

intensity ζ, a (potentially noisy) signal about the asset value arrives in the next instant with

probability ζ dt. If the signal arrives, the trader optimally begins trading on her information.

This is in contrast to standard models of static, information acquisition in which the trader

is restricted to making a one-time decision, before the market opens, about whether or not

to acquire information, and in which the information arrives with certainty if she pays the

appropriate cost.

We derive the equilibrium in Section 4, characterizing the trader’s optimal research and

trading strategy, as well as the equilibrium pricing rule, in closed form. To see how dynamics

affect the optimal research strategy, it is useful to first consider the optimal static acquisition

strategy in our setting. The trader follows a “threshold” rule: she acquires information at the

beginning of trading if and only if the initial noise trading volume is greater than an optimal

threshold value. Essentially, the trader follows a net present value (NPV) rule because she

only acquires information if the expected trading profits from being informed are higher

than the explicit cost of information. Consistent with the standard results in the literature,

this implies that, all else equal, acquisition occurs when (i) the level of uninformed trading

volume is high, (ii) uncertainty is high, (iii) frequency of public disclosures is low (i.e., the

trading horizon is longer).

With dynamic research, the trader’s optimal research strategy also follows a threshold

rule. However, in addition to trading off the expected value of being informed and the

explicit cost of research, the optimal dynamic research choice also reflects a number of real

options: the option to delay research until trading opportunities are more profitable (i.e., the

level of uninformed trading volume is even higher), and the option to abandon if research

has not been successful. The resulting dynamic research “threshold” is higher than in the

7For tractability and clarity, we focus primarily on the case where the trader faces a proportional cost of
research, C(ζ) = c ζ and is subject to a capacity constraint ζ ∈

[
0, ζ
]
.
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static acquisition (NPV) threshold, i.e., the trader is willing to wait for higher noise trading

volume before engaging in research than in the static acquisition case. More importantly, the

optimal threshold in a dynamic research setting responds differently to changes in market

conditions than the static acquisition threshold. These differences in optimal acquisition,

together with the dynamic and uncertain nature of research itself, yield novel predictions on

the behavior of research activity and the relation between research and informed trading,

which we explore in Section 5.8

First, research activity is stochastic and increases with the volatility of trading volume,

even after controlling for the level of volume. This prediction is consistent with the posi-

tive correlation between abnormal trading volume and research activity documented in the

empirical literature (e.g., Ben-Rephael et al. (2017) show this for Bloomberg search volume

and Google search activity). Moreover, the prediction is in contrast to acquisition in a static

setting, which is unrelated to the volatility of volume and either occurs with certainty prior

to trading, or never occurs. More surprisingly, we also show that the likelihood of research

activity is negatively related to the effectiveness of the research technology (i.e., the research

intensity ζ). Intuitively, a trader with a more effective technology can afford to wait longer

to engage in research because, conditional on performing research, she is very likely to re-

ceive information. That is, with a more effective research technology, the opportunity cost

of waiting to perform research is lower.

Second, the likelihood of conducting research, and the expected time spent in research, is

hump-shaped in the frequency of public disclosures. Intuitively, this is because the frequency

of public disclosures (or the expected length of the trading horizon) has two offsetting effects.

On the one hand, more frequent disclosures decrease the value of acquiring information

since, conditional on receiving information, the trader expects to exploit her informational

advantage over a shorter horizon. This “trading horizon” effect is what leads more frequent

public disclosures to “crowd out” private information in the static acquisition benchmark.

On the other hand, more frequent disclosures also increase the opportunity cost of waiting to

conduct research, by effectively increasing the trader’s “impatience”: she becomes less willing

to wait since she may be pre-empted by the public disclosure. When public disclosures are

rare, the impatience effect dominates — increasing the frequency of disclosures pushes the

trader to conduct research more frequently (i.e., it crowds in private research). However,

when disclosures are sufficiently frequent, the “trading horizon” effect begins to dominate,

8Our model also generates predictions that are largely common to existing static models. For instance,
the likelihood and expected duration of research increases with the investor’s prior uncertainty and the level
of noise trading volume, and decreases in the cost of research. While these are natural, robust and important
implications, they have been explored theoretically and empirically in the existing literature. As such, we
focus our attention on results that are more distinctive to our analysis.
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and further increases in disclosure frequency crowd out private research.

Third, we are also able to pin down the probability that the trader ever successfully

receives information and enters the market (i.e., the joint probability that she ever conducts

research and that the research is ever successful). This probability inherits many of the

properties of the probability of research. However, the relation between research effectiveness

(ζ) and eventual probability of informed trading delivers one of the most striking predictions

from the model. While increases in ζ reduce the probability that the trader ever conducts

research, they increase the unconditional probability that she ever receives information.9

Intuitively, higher-skilled analysts or more efficient information systems may generate more

informed trading activity (and higher profits), even if they do not appear to generate more

research activity.

Overall, these results suggest that, in settings where research takes place dynamically and

need not succeed, one should exercise caution when using measures of research activity to

proxy for information acquisition or informed trading. Moreover, our analysis helps shed light

on why the empirical relation between observed research activity and future performance

varies across different types of investors. For instance, Drake et al. (2020) document that

while EDGAR search activity by institutional investors is predictive of future performance,

similar activity by non-institutional investors is not. Crane et al. (2019) show that increased

reliance on public information by hedge funds leads to higher performance, while Kacperczyk

and Seru (2007) argue that the opposite relation holds for mutual funds. These observations

line up with our model’s predictions about how the relation between research activity and

(informed) trading profits depend on the effectiveness of the research technology and the

sophistication of investors.

Section 6 highlights how accounting for research dynamics can lead to novel policy im-

plications for price informativeness and liquidity (price impact). First, we show that price

informativeness is hump-shaped in disclosure frequency, and so regulatory changes to disclo-

sure requirements can have more nuanced implications than the standard, “crowding out”

effect highlighted by existing models. Second, average price impact (Kyle’s lambda) is hump

shaped in both noise trading volume and frequency of public disclosures. This is in contrast

to the monotone relation in static acquisition settings, and implies that efforts to enhance

liquidity by “leveling the playing field” (e.g., higher public disclosure requirements or facil-

itating access for uninformed traders) may be counterproductive. These results may also

9While it is not surprising that, conditional on conducting research, a trader with better research technol-
ogy is more likely to receive information, we emphasize that this result is an unconditional one. Moreover,
note that variation in the cost of research (or other parameters) would generate a positive relation between
the likelihood of research and eventual success. As such, this result is unique to settings with uncertainty in
research.
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help shed light on the surprising empirical results of Duarte et al. (2008) discussed above.

Finally, the natural tension between price informativeness and liquidity in standard settings

need not always obtain in a dynamic setting. Policies that make research more effective (i..e.,

improve the research technology) or increase uninformed trading activity can sometimes im-

prove both price informativeness and liquidity. Together, these results suggest that insights

about price informativeness and liquidity that are derived from standard, static acquisition

settings need not hold when investors can engage in research dynamically. Consequently,

one should exercise caution when evaluating policy proposals in such settings.

The next section discusses the related literature and our contribution. Section 3 presents

the model and discusses the key assumptions. Section 4 characterizes the trading equilibrium,

and the optimal dynamic research strategy of the strategic trader. Section 5 characterizes

the equilibrium dynamics of research, including the likelihood of engaging in research and the

expected time in research, and the probability of information acquisition. For convenience,

we have collected the empirical implications of our results at the end of this section. Section

6 provides a discussion of how average price informativeness and liquidity behave in our

setting and provides policy implications, and Section 7 concludes. Unless otherwise noted,

all proofs and additional analysis are in the Appendix.

2 Related literature

Our model builds on two strands of the literature. The first involves the continuous-time

Kyle (1985) model with a random horizon (e.g., Back and Baruch, 2004; Caldentey and

Stacchetti, 2010) and stochastic volatility in noise trading (e.g., Collin-Dufresne and Fos,

2016). The second is the large literature that studies information acquisition in financial

markets, following Grossman and Stiglitz (1980) and Verrecchia (1982).

A primary innovation of our model is allowing the strategic trader to dynamically op-

timize her research and information acquisition activities. This stands in contrast to most

of the existing literature on endogenous information acquisition, which restricts investors to

acquire information, or commit to an information acquisition strategy, before trading begins,

even if trading takes place dynamically. For instance, Back and Pedersen (1998) and Holden

and Subrahmanyam (2002) allow investors to commit to receiving signals at particular dates,

while Veldkamp (2006) considers a sequence of one-period information acquisition decisions.

Similarly, Kendall (2018), Dugast and Foucault (2018), and Huang and Yueshen (2018) study

information acquisition with a “time-cost”, but in each of these settings the information ac-

quisition decision is made before trading and therefore the decision is effectively a static

one. As we discuss further in the following sections, our results suggest that allowing for
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dynamics in research has important consequences for both positive and normative analysis

(see Sections 5.4 and 6.1, respectively).

Two recent works that do not make such a restriction are Banerjee and Breon-Drish

(2020) and Han (2019). In Banerjee and Breon-Drish (2020), a companion to the current

paper, we also study dynamic information acquisition by a strategic trader but focus on

differences between different types of “standard” information acquisition technologies in a

setting in which market entry is not detectable by market participants. We contrast settings

in which the trader optimizes the precision of a flow of signals and those in which the trader

must optimize the arrival time of a “lump” of information. We show that when the trader

chooses a flow of information, the optimal signal precision evolves over time with noise trading

activity and leads to novel implications for the dynamic behavior of price informativeness.

In contrast, when the trader can acquire “lumpy” information, we show that there generally

do not exist equilibria with endogenous information acquisition. In contrast, the current

paper studies the empirical and policy implications of uncertain and dynamic research, and

establishes that when market entry is detectable, an equilibrium with endogenous research

can be sustained even with ultimately “lumpy” information arrival.

Han (2019) studies a competitive dynamic trading model based on Hellwig (1980) (par-

ticularly its nonlinear generalization due to Breon-Drish (2015)) in which heterogeneously

informed investors dynamically optimize the allocation of attention in response to the evo-

lution of aggregate uncertainty. Investors naturally allocate more attention and thereby

acquire more precise information when uncertainty is high. However, this endogenously

lowers uncertainty in future periods due to learning from prices, which feeds back into cur-

rent information acquisition decisions. This differs from our setting, in which fundamental

uncertainty is constant over time and research activity is driven by noise trading activity.

Furthermore, in our model, research intensity itself has no direct effect on market maker

(i.e., public) uncertainty, and the rate of public learning after information arrival is con-

stant because the trader smooths her trades over time in order to protect her information

advantage.

Our analysis also speaks to the large literature on how public disclosure affects price

informativeness and real outcomes (see Bond, Edmans and Goldstein (2012), Goldstein and

Sapra (2014), and Goldstein and Yang (2017) for recent surveys). A common insight from

this literature is that public disclosure “crowds out” private information acquisition and can

lead to lower price informativeness (e.g., Diamond (1985), Colombo, Femminis and Pavan

(2014)). Intuitively, the arrival of public information (either before, simultaneously with, or

after related private information) reduces the trader’s anticipated informational advantage

relative to other participants and, therefore, reduces her ex-ante incentive to acquire private
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information. More recently, a number of papers have highlighted how more public disclosure

can “crowd in” additional private learning about fundamentals when investors can learn

about multiple components of payoffs (e.g., Goldstein and Yang (2015) and Goldstein and

Yang (2019)). This “crowding in” can improve price informativeness when investors learn

about other components of fundamentals. However, when public disclosure about fundamen-

tals crowds out learning from more informative signals (e.g., Dugast and Foucault (2018))

or crowds in more learning about other traders (e.g., Banerjee et al. (2018)), it can harm

price informativeness.

Our model highlights a distinct, but related, channel through which public disclosures

can “crowd out” private learning in our setting, which is particularly transparent in the static

acquisition benchmark in Section 4.2. As we show, when the trader is restricted to acquire

information before trading begins, more frequent public disclosures discourage information

acquisition. This is because she anticipates being able to exploit her informational advantage

over a shorter trading horizon (“trading horizon” effect), which reduces her expected benefit

from becoming better informed.

The introduction of research dynamics (Section 4.3) highlights a further novel mecha-

nism by which more frequent public disclosure can “crowd in” learning about fundamentals

by affecting the trader’s incentives to wait to conduct research. Our result is complemen-

tary to the earlier work by Goldstein and Yang (2015) and Goldstein and Yang (2019), but

highlights an economically distinct channel, since the public disclosure and the private infor-

mation acquisition are about the same component of payoffs (indeed, in our model, there is

only one component to the asset payoff). Intuitively, when public disclosures are extremely

rare, the trader is willing to wait a long time before engaging in research, and so information

acquisition and price informativeness are low. Increasing (the frequency of) public disclosure

initially increases the opportunity cost of waiting, which leads to more frequent research and

higher price informativeness. However, when public disclosures are sufficiently frequent, fur-

ther increases reduce the incentive to acquire information since the trader does not expect

to have enough time to exploit her information advantage. This suggests that when recom-

mending policy changes that affect the market’s information environment, regulators should

account for not just the various dimensions along which investors can acquire information,

but also their dynamic incentives to do so.

3 Model

Our framework is similar to Banerjee and Breon-Drish (2020), modified to incorporate dy-

namic research. There are two assets: a risky asset and a risk-free asset with interest rate
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normalized to zero. The risky asset pays off a terminal value V ∼ N (0,Σ0) at random time

T , where T is independently exponentially distributed with rate r.10 We assume that all

market participants have common priors over the distribution of payoffs and signals.

There is a single, risk-neutral strategic trader. Let Xt denote the cumulative holdings of

the trader, where we normalize her initial position to X0 = 0. We consider only absolutely

continuous trading strategies, dXt = θtdt, so that the optimal trading problem reduces to

choosing the trading rate θt.
11 In addition to the strategic trader, there are noise traders

whose cumulative holdings Zt follow

dZt = νt dWZt. (1)

In contrast to benchmark strategic trading models, and following Collin-Dufresne and Fos

(2016), the volatility νt of the noise trading process is stochastic. Specifically, we assume

that νt follows a geometric Brownian motion (GBM)

dνt
νt

= µνdt+ σνdWνt. (2)

Since ν drives uninformed “trading volume,” (e.g., see Collin-Dufresne and Fos (2016)),

variation in ν is a natural and empirically relevant channel of introducing time-variation

in the value of conducting research as we shall discuss in more detail below.12 For ease of

exposition, we will follow Collin-Dufresne and Fos (2016) and refer to ν as trading volume,

µν as the drift in trading volume and σν as the volatility of trading volume in what follows.

In the above specification, WZt and Wνt are independent Brownian motions. Moreover,

we assume that νt is publicly observable to all market participants. This is without loss since

νt is positive and enters all relevant equilibrium expressions only through ν2
t , which is the

10While we consider the case of a fixed asset value V for simplicity, there is no difficulty in accommodating
an asset value that evolves over time as a Gaussian process dVt = (a− bVt)dt+ σV dWV t for constants a, b,
and σV , and independent Brownian motion WV t. Furthermore, none of our results differ qualitatively in
such a setting. While the random date T is important for tractability, we do not expect our results to differ
qualitatively in a setting with fixed T . However, such a model will generally be difficult to solve because
the optimal research problem effectively reduces to stopping problem on a finite horizon. Such problems
(e.g., the optimal exercise policy for a finite-maturity American option) are well-known to be analytically
intractable.

11Back (1992) shows that such trading strategies are optimal.
12For some intuition, consider a discrete time analogue of the continuous time setting with length h

between periods. Noise trade each period is Zt+h − Zt = νt
√
hεt+h for εt+h ∼ N (0, 1). This implies

(expected) trading volume per unit of time is Et[|Zt+h−Zt|]
h =

νt
√

2
π h

h = νt

√
2
hπ , which is linear in νt. It is

a well-known artifact of continuous time settings (h → 0) in which positions follow diffusions that trading
volume is infinite. However, squared volume per unit of time is well-defined and equal to the quadratic

variation of the noise trade process,
Et[(Zt+h−Zt)2]

h = ν2t , which is consistent with our treatment of νt as a
natural measure of trading activity.
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equilibrium order flow volatility and can be inferred perfectly from the realized quadratic

variation of order flow. Moreover, we require that −∞ < µν < r in order to ensure existence

of equilibrium, which we discuss in more detail below.

In contrast to the existing literature, the strategic trader is not endowed with private

information but must engage in research. Specifically, the strategic trader can pay a flow

cost C (ζ) dt to search for information with intensity ζ. That is, conditional on engaging in

research at with intensity ζt at time-t, information arrives in the next instant with probability

ζt dt. Formally, the information arrival process is a doubly-stochastic Poisson process with

rate ζt ≥ 0 optimally chosen by the trader. Let τR denote the time that the trader first

engages in research. Conditional on successful research (i.e., signal arrival) she privately

obtains a potentially noisy signal S = V +ε, where ε ∼ N (0, σ2
ε) is independently distributed.

Furthermore, at the time of information arrival the trader (optimally) enters and begins

trading in the financial market. Denote the time of entry by τ , with τ = ∞ corresponding

to no entry (e.g., because research was never successful, or the payoff was revealed before

research delivered a signal).13

A competitive, risk neutral market maker sets the price of the risky asset equal to the

conditional expected payoff given the public information set. Let FPt denote the public

information filtration, which is that induced from observing the aggregate order flow process

Yt = Xt+Zt, stochastic trading volume νt, and the entry of the informed trader 1{τ≤t}. Note

that we assume that entry by the strategic trader into the financial market is detectable by

the market maker, but we do not assume that the research intensity is observable by the

market maker.14 The price at time t < T is therefore given by

Pt = E
[
V
∣∣FPt ] . (3)

Let F It denote the augmentation of the filtration σ(FPt ∪ σ(S)). Thus, F It represents the

strategic trader’s information set, post-entry. We require the trader’s research strategy ζt to

be weakly positive and adapted to FPt . we require the trader’s pre-entry trading strategy

be adapted to FPt and her post-acquisition strategy be adapted to F It . In order to eliminate

doubling-type strategies that accumulate unbounded losses followed by unbounded gains, we

also require the following, standard, admissibility condition on trading strategies

13Treating no entry as an infinite realization for the stopping time, τ = ∞, is standard for arrival /
stopping problems. See, e.g., the discussion of the first passage time of a Brownian motion with drift on
p.196 of Karatzas and Shreve (1998), or more concretely, the discussion of the exercise time of an American
option on p.341 of Shreve (2004) for applications.

14In fact, because entry is detectable and the market maker’s pricing problem depends only on entry and
not the research intensity, the equilibrium is identical regardless of whether or not the market maker correctly
conjectures (or observes) the trader’s chosen intensity.
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E
[∫ ∞

0

e−ruθ2
udu

]
<∞.

Our definition of equilibrium is standard, but modified to account for endogenous entry.

Definition 1. An equilibrium is (i) an admissible research strategy ζt and trading strategy

Xt for the trader and (ii) a price process Pt, such that, given the trader’s strategy the price

process satisfies (3) and, given the price process, the research strategy and trading strategy

maximize the expected profit

E
[∫ T

0

(V − Pu) θudu
]

= E
[∫ ∞

0

e−ru (V − Pu) θudu
]
. (4)

Let V̂ ≡ E [V |S] and Ω ≡ var (V |S) denote the conditional beliefs about V given obser-

vation of the signal S. Let Ψt ≡ var

(
V̂

∣∣∣∣FPt ) denote the market maker’s uncertainty about

V̂ , and, using the law of total variance, let Σt = Ψt + Ω denote her uncertainty about the

payoff itself. Then, given the information structure, we have:

V̂ =
Σ0

Σ0 + σ2
ε

S, (5)

Ω =
Σ0σ

2
ε

Σ0 + σ2
ε

, (6)

and for all times 0 ≤ t ≤ τ , prior to information arrival, we have

Ψt = Ψ0 ≡ Σ0
Σ0

Σ0 + σ2
ε

, t ∈ [0, τ ].

The dynamics of Ψt after the trader observes information will be pinned down as part of the

equilibrium, as the market maker learns about S from observing the order flow. Finally, by

the Law of Iterated Expectations, the market-maker’s conditional expectation of the asset

value can be reduced to her conditional expectation of V̂ :

Pt = E
[
V̂
∣∣FPt ] . (7)

One can interpret Ψ as a measure of the trader’s informational advantage over the market,

in the event that her research succeeds. If the signal is completely uninformative, σ2
ε →∞,

Ψt → 0. Conversely, when the signal is perfectly informative (as in, e.g., Kyle, 1985), we

have Ψt = Σ0 prior to information arrival, so that the market maker’s uncertainty about the

value estimate reduces to her uncertainty about the value itself.
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3.1 Discussion of Assumptions

We interpret T as the date of an unscheduled, value-relevant public disclosure or announce-

ment, which eliminates the trader’s informational advantage. It is not critical that the asset

pays off or that trading stops at T , but only that the trader’s informational advantage dis-

appears. We shall refer to the rate r as the rate, or frequency, of public disclosure. The

assumption that T is exponentially distributed is made for tractability, because it makes

the trader’s problem time-stationary. In contrast, a deterministic horizon would be a more

appropriate specification for scheduled, periodic disclosures (e.g., earnings announcements)

and could generate interesting deadline effects for the trader’s research and trading decisions.

However, the introduction of an additional state variable (calendar time) makes the trader’s

optimal research problem analytically intractable, so we leave this analysis for future work.

Allowing for stochastic variation in uninformed trading volume (i.e., stochastic ν) pro-

vides a natural, empirically relevant channel through which the value of becoming informed

and entering the market evolves over time. For instance, Collin-Dufresne and Fos (2015)

show that activist investors, who are plausibly informed, time their trades during periods of

high liquidity. Intuitively, conducting research and trading on acquired information is more

attractive when there is more trading by liquidity or sentiment traders, which improves

market liquidity. We expect similar trade-offs to arise in other settings with a directly time-

varying value of private information e.g., in which the asset value V has (publicly observable)

stochastic volatility. It is also straightforward to generalize to a general continuous process

for νt, but at the expense of closed-form solutions to the optimal research problem in most

cases.

Because the trader begins without an informational advantage and without any additional

motives for trade, her expected profit from following any trading strategy before information

arrival is zero. Hence, without loss, we assume that she refrains from trading prior to

receiving information.15 Moreover, due to the impatience induced by the stochastic horizon,

it is optimal for the trader to begin trading immediately upon information arrival instead

of waiting to enter the financial market. These features help maintain tractability and

allow us to cleanly study the interaction between research dynamics and market outcomes.

In practice, there are many reasons for why investors, especially sophisticated institutions,

might trade before acquiring information (e.g., to provide liquidity, make markets, hedge

existing positions, etc.) or not trade after acquiring information (e.g., to time their trading

around scheduled announcements, etc.). An analysis of how these forces interact with the

incentives to conduct research, though interesting, are beyond the scope of the current paper

15No trade would be strictly optimal if trading involved even an arbitrarily small trading cost, either
explicit or implicit, prior to information arrival.

12



and left for future work.

We assume that the strategic trader’s entry decision is detected by the market maker.

This is motivated by theoretical and empirical considerations. First, as Banerjee and Breon-

Drish (2020) show in a related setting with dynamic information acquisition, when there is

a fixed component to the cost of information acquisition, there does not exist an equilibrium

when entry is not observable by the market maker. Intuitively, in this case, the strategic

trader can always deviate from any conjectured equilibrium strategy by either pre-emptively

entering or delaying entry. Second, in practice, entry by large investors into new markets

is publicly scrutinized by the financial media. The addition of star traders, portfolio man-

agers, and executives also garners significant media attention. Even if not covered by the

popular press, participation by large traders is often known to other market participants.16

Third, many institutional investors are subject to regulatory reporting requirements, and

disclosures about trading positions and capital adequacy can provide (potentially noisy)

information about trading activity. Finally, it is worth noting that if given the choice, a

trader might prefer to strategically disclose the extent of her informational advantage and

the timing of her entry. For instance, Xiong and Yang (2020) show that in a setting with

static information acquisition and immediate entry, a strategic trader may prefer to publicly

disclose the precision of her private signal (which they refer to as “overt acquisition”) rather

than keeping this choice private (“secret acquisition”).

4 Equilibrium

In this section we construct an overall equilibrium of the model by working backwards. In

Section 4.1, we characterize the financial market equilibrium given an entry time τ . In 4.2,

we solve for the benchmark static research problem in which the trader commits whether or

not to conduct research at time t = 0. Finally, in Section 4.3, we characterize the optimal,

dynamic research strategy of the trader.

4.1 Preliminary analysis

In the following result, we characterize the financial market equilibrium, conditional on an

arbitrary acquisition time.

16For instance, major broker-dealers that provide block trading services (or “upstairs trading desks”)
directly observe trading demand from institutional investors, and so can detect “entry” or increased partici-
pation. Similarly, prime brokers observe the cash and securities positions of their clients, and counter-parties
in OTC derivative transactions disclose their interests to each other through ISDA agreements.
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Proposition 1. Fix an information arrival time τ ∈ T and for t ≥ τ let Gt = e−2r(t−τ)

2(r−µν)
ν2
t .

As long as µν < r, there exists a post-entry equilibrium (i.e., for t ∈ [τ, T )) in which the

price of the risky asset follows dPt = λtdYt and optimal trading rate follows dXt = θtdt =

βt

(
V̂ − Pt

)
dt, where

λt = e−r(t−τ)

√
Ψt

Gt

= e−(r−µν)(t−τ)

√
2 (r − µν) Ψ0

ν2
t

, βt =
λtν

2
t

Ψt

(8)

the market maker’s conditional variance of the trader’s valuation Ψt ≡ var
(
V̂ |FPt

)
is given

by:

Ψt = e−
∫ t
τ e

−2r(s−τ) ν
2
s
Gs
dsΨ0 = e−2(r−µν)(t−τ)Ψ0, (9)

and the trader’s value function is given by

J
(
V̂ , Pt,Ψt, λt

)
=

1

2λt

((
V̂ − Pt

)2

+ Ψt

)
. (10)

The unconditional, gross expected trading profit from becoming informed at any time t prior

to information arrival is

J̄ (·) ≡ E
[
J
(
V̂ , Pt,Ψ0, λτ

) ∣∣FPt ] =

√
Ψ0

2 (r − µν)
νt. (11)

Proof. This is a corollary of Theorem 1 in Banerjee and Breon-Drish (2020), after recogniz-

ing: (i) due to risk-neutrality and the fact that the trader is strictly better-informed than the

market maker, we can use the trader’s value estimate V̂ in place of the asset value, (ii) the

market-maker’s uncertainty about this estimate, Ψt, therefore takes the place of her uncer-

tainty about the asset value itself Σt in the relevant expressions, and (iii) in continuous-time

Kyle-Back models in which the trader observes a fixed amount of Gaussian private informa-

tion, the precise timing of information arrival is irrelevant for the optimal trading strategy

and market liquidity (see, e.g., Back and Pedersen (1998) or the discussion in Banerjee and

Breon-Drish (2020)).

A few comments about the result are in order. First, the restriction µν < r is required in

order to guarantee existence of equilibrium. If it did not hold, the expected growth in noise

trading would cause the trader to optimally refrain from trading in order to wait for a noisier

market in the future. In such an equilibrium, the market maker would optimally set price

impact to zero, since she does not face any informed trading. However, this cannot be an

equilibrium, since the informed trader could profitably deviate from her prescribed strategy
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and trade against the unresponsive pricing rule. Second, both price impact λt and trading

aggressiveness βt take intuitive forms. Price impact is higher (trading aggressiveness lower)

if the trader’s informational advantage is stronger (i.e., Ψt is higher) or there is less noise

trade (i.e., νt is lower). Third, if the public announcement never arrives, T = ∞, all of

the trader’s information is incorporated into the price in the limit, i.e., Ψt → 0 as t → ∞.
Finally, the expected gross trading profits conditional on information arrival, J , is what

drives the trader’s research activity. The above result highlights that the value of observing

the signal S increases with its informativeness (i.e., Ψ), uninformed trading volume (i.e., νt),

the drift in trading volume (i.e., µν) and decreases in the frequency of public disclosure (i.e.,

r) which captures the expected duration of the trader’s information advantage.

4.2 Benchmark: Static information choice

As a benchmark for comparison, we first characterize the optimal information acquisition

choice when it is a one-shot, static decision. Specifically, suppose the strategic trader chooses

whether or not to pay a fixed cost C to immediately acquire signal S at time zero. The

following result characterizes the optimal acquisition strategy in this case.

Corollary 1. (Static Information Acquisition) Suppose the investor chooses whether to pay

a fixed, lump cost C to immediately acquire signal S at date zero. Then, she chooses to

acquire information if and only if ν0 ≥ νS, where

νS = C

√
2 (r − µν)

Ψ0

. (12)

The optimal acquisition boundary νS increases in C and r, decreases in µν and Ψ0, and is

invariant to σν.

The above result is intuitive and follows immediately from comparing the expected ben-

efit of acquiring information in Eq.(11) at time zero to the cost C. The trader acquires

information only when uninformed trading volume is sufficiently high, and the acquisition

threshold νS increases in the cost C and the disclosure rate r, but decreases in the trader’s

informational advantage Ψ0 and the drift of trading volume µν . Intuitively, the optimal strat-

egy is analogous to following the net present value (NPV) rule - only acquire information if

the expected value of being informed is higher than the expected cost.

The volatility of trading volume σν has no affect on static information acquisition. Be-

cause increases in σν symmetrically increase the likelihood of high and low noise trade activ-

ity, it does not affect the expected trading profit, and therefore does not affect the trader’s
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acquisition decision. As we will see, this contrasts with our dynamic setting, in which the

volatility of trading volume plays an important role in the value of conducting research.

Moreover, note also that with static acquisition, increasing the rate of public disclosures r

reduces the ability of the trader to exploit his informational advantage because the (expected)

trading horizon is shorter and therefore tends to discourage information acquisition. This

is consistent with the standard intuition from models with static information acquisition,

where more public disclosure “crowds out” private learning by investors. As we show below,

this monotonic relation between information acquisition and trading horizon does not hold

when the trader can choose the timing of her research activity.

4.3 Optimal research strategy

In this section, we characterize the optimal research strategy of the trader. The trader’s

research intensity problem is:

JU ≡ sup
{ζs}

Et

[
1{τ<T}J̄ (ντ )−

∫ min{τ,T}

0

C (ζs) ds

]
. (13)

That is, the trader dynamically optimizes her research intensity, ζt, to maximize the expected

gross trading profit, which she enjoys if and only if information arrives before the payoff is

revealed, τ < T . However, she also pays a flow research cost C(ζ), which depends on the

chosen intensity, up to the point that information arrives or the payoff is revealed, whichever

comes first. The corresponding HJB equation, which is the PDE that characterizes the

trader’s value function JU conditional on still being uninformed (i.e., on not yet having

observed a signal nor the payoff being revealed), is given by:

0 = sup
ζ≥0

r
(
0− JU

)
+ ζ

(
J̄ − JU

)
− C (ζ) +DJ. (14)

where DJ = µννJν + 1
2
σ2
νν

2Jνν is the generator of the ν process, applied to the function J .

Conditional on not being informed, over the next instant, either the trader’s value becomes

zero with probability rdt (if the value is publicly disclosed), or she acquires information with

probability ζdt if she is currently conducting research (i.e., if ζ > 0) by paying flow cost

C (ζ) dt.

In principle, given a cost specification, one proceeds by jointly characterizing (i) the

optimal choice ζ∗, and (ii) the uninformed trader’s value function JU . For instance, if we

assume C (·) is strictly increasing, strictly concave, twice continuously differentiable and has

C (0) = C ′ (0) = 0, then we can characterize the optimal intensity ζ∗ using the first order
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condition:

C ′ (ζ∗t ) =
(
J̄ − JU

)
. (15)

Since C (·) is strictly convex, we can define the inverse cost f (·) = [C ′]−1 (·). Then, plugging

in the optimality condition above yields:

0 = sup
ζs≥0

r
(
0− JU

)
+ f

(
J̄ − JU

) (
J̄ − JU

)
− c

(
f
(
J̄ − JU

))
+DJ, (16)

which characterizes a partial differential equation for JU .

Unfortunately, an analytical solution for JU (·) is not available for arbitrary cost specifica-

tions. For tractability, we focus on the special case of a proportional cost of research. Specifi-

cally, suppose the trader can choose research intensity ζ ∈
[
0, ζ̄
]

at a flow cost C (ζ) dt = cζdt,

where c > 0 is the cost of each unit of intensity.17 In this case, we show that the optimal

research strategy takes a particularly transparent, intuitive form. The trader engages in

research if and only if trading volume exceeds a threshold ν∗, as characterized by the next

result.

Proposition 2. (Optimal research intensity) Suppose that the investor chooses research

intensity ζ ∈
[
0, ζ̄
]

at a flow cost C (ζ) dt = cζdt. Then, the optimal research strategy is

characterized by a threshold: the trader engages in research at rate ζ if and only if uninformed

trading volume νt ≥ ν∗ and does not engage in research otherwise, where

ν∗ =
β1

β1 − 1

β2

β2 − 1

r + ζ̄ − µν
r + ζ̄

c

√
2 (r − µν)

Ψ0

, (17)

β1 =
1

2
− µν
σ2
ν

+

√(
1

2
− µν
σ2
ν

)2

+
2r

σ2
ν

, and (18)

β2 =
1

2
− µν
σ2
ν

−

√(
1

2
− µν
σ2
ν

)2

+
2
(
r + ζ̄

)
σ2
ν

. (19)

The optimal threshold ν∗ is increasing in c, ζ̄, σν, and µν, decreasing in Ψ, and U-shaped in

r. Moreover, trader’s value function, prior to the arrival of the signal, is given by

JU (νt) =


cζ̄β2

(β1−1)(β2−β1)(r+ζ̄)

(
νt
ν∗

)β1 when νt < ν∗

cζ̄β1
(β2−1)(β2−β1)(r+ζ̄)

(
νt
ν∗

)β2 + ζ̄νt
r−µν+ζ̄

√
Ψ0

2(r−µν)
− cζ̄

r+ζ̄
when νt ≥ ν∗

. (20)

17One could also interpret this as a first order approximation to more flexible cost functions that are
well-behaved, as earlier described. Due to the linear cost function, our equilibrium is also isomorphic to one
that would arise in a model with a single available research intensity ζ.
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The optimal threshold ν∗ reflects the two sources of optionality embedded in research:

(i) the option to delay and, (ii) the option to abandon. To gain some intuition, it is useful

to compare the expression for ν∗ to the threshold for static information acquisition νS and

to the threshold for a hypothetical, infinite intensity research technology (i.e., the threshold

as ζ̄ → ∞) under which the signal arrives with probability one the instant that the trader

engages in research.

The static information acquisition threshold νS = C
√

2(r−µν)
Ψ0

, characterized in Corollary

1, reflects the fact that the trader has neither the ability to delay research nor the ability

to abandon it, once started. Specifically, this is the threshold that the trader would op-

timally choose when she must make a one-shot decision to immediately acquire or never

acquire information. Next, consider the threshold that the trader would optimally choose

if she had access to a dynamic research technology with infinite intensity. In this case, the

trader has the option to delay conducting research, but when she chooses to do so, informa-

tion arrives immediately with probability one, with no opportunity to abandon or reverse

the research decision. The following corollary characterizes the optimal threshold for such

dynamic information acquisition.

Corollary 2. Suppose the investor can pay a fixed, lump cost C to immediately acquire

signal S at a time of her choosing. Then, the optimal information acquisition strategy is

characterized by a threshold: the trader acquires information if and only if uninformed trading

volume νt ≥ ν∗∞, where

ν∗∞ =
β1

β1 − 1
C

√
2 (r − µν)

Ψ0

, and β1 =
1

2
− µν
σ2
ν

+

√(
1

2
− µν
σ2
ν

)2

+
2r

σ2
ν

. (21)

The optimal threshold ν∗∞ is increasing in C, σν, and µν, decreasing in Ψ, and U-shaped in

r.

The “infinite intensity” dynamic acquisition threshold can be written as ν∗∞ = β1
β1−1

νS,

which differs from the static acquisition threshold νS by a coefficient β1
β1−1

> 1. The coefficient

reflects the trade-off embedded in the option to delay: at any moment, the trader can acquire

information now and begin exploiting her informational advantage, or wait until the value of

information increases (when νt increases). The value of this option to wait leads to an optimal

acquisition threshold that is higher than in the case of static acquisition (i.e., ν∗∞ > νS): the

higher threshold reflects not only the expected value of acquiring information (as in the

“NPV” decision rule), but also the additional real option value of being able to wait and

acquire at a later date. Intuitively, the trader optimally waits past the threshold at which the

“naive” expected value of being informed is equal to the explicit cost of information because
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acquiring information involves the additional opportunity cost of giving up the option to

wait longer. Naturally, she waits until the “all in” expected payoff, accounting for this

opportunity cost, is weakly positive.

The value of the option to wait, and therefore the threshold, increases with both the drift

µν and volatility σν of uninformed trading volume. These results are intuitive. A higher

drift µν implies future trading volume is likely to be higher, which increases the option value

of waiting.18 Similarly, a higher volatility σν of trading volume makes the option to wait

more valuable. These results stand in contrast to the static benchmark, in which there is

no optionality in the information acquisition decision, and therefore the optimal acquisition

threshold (i.e., νS) decreases with the drift and does not depend on the volatility of trading

volume.

The optimal threshold with dynamic information acquisition is non-monotonic in the

frequency of public disclosure r. This is in contrast to the static acquisition case, where

the marginal effect of increasing the frequency of public disclosure is to reduce the expected

duration of the trader’s information advantage and, consequently, increase the acquisition

threshold. We refer to this as the “trading horizon” effect. An additional, novel effect of

changes in public disclosure emerges with dynamic acquisition. Intuitively, the marginal

effect of a higher disclosure frequency (higher r) is to increase the cost of waiting to engage

in research because it increases the likelihood that the information is publicly revealed before

the investor has a chance to acquire and trade on it. This effect tends to push the acquisition

threshold downwards because it incentivizes the trader to conduct research sooner. We refer

to this as the “impatience” effect.

The shape of the overall relation between disclosure frequency and optimal research

threshold depends on the relative magnitudes of these two marginal effects. When the dis-

closure frequency is very low, the “impatience” effect dominates — an increase in r leads

to a decrease in the threshold because the value of waiting grows more rapidly than the

conditional expected trading profits shrink. However, when the disclosure frequency is suf-

ficiently high, the “trading horizon” effect dominates and further increases in r increase the

threshold.

The “infinite intensity” threshold ν∗∞ reflects the effect of the option to delay, relative to

the static benchmark. The general research technology we consider embeds an additional

option to abandon: if the trader has engaged in research but it has not been successful (i.e.,

the signal has not yet arrived), she can always choose to stop conducting research at any

point in time. The option to abandon reduces the expected cost of initiating research, and

18A higher µν also increases the expected trading profit, conditional on information arrival, which tends
to reduce the threshold, but this effect is dominated by the opportunity cost effect.
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consequently, lowers the optimal threshold. That is, knowing that she can walk away from

research at any time, the trader’s incentive to wait is lower than in the infinite intensity case.

To see why, note that the expected total cost of conducting research (at the time the

trader first initiates research τR) is equal to19

E

[∫ min{τ,T}

τR

cζ̄1{νs≥ν∗}ds

∣∣∣∣∣ ντR = ν∗

]
=

β2

β2 − β1

cζ̄

r + ζ̄
. (22)

That is, the trader pays flow cost cζ̄ at any time s that she conducts research νs > ν∗, as long

as information has not yet arrived and the asset value has not been disclosed, s < min {τI , T}.
Here, cζ̄

r+ζ̄
is the total expected flow cost of conducting research without the option to abandon

(i.e., if the trader would have to pay a flow cost of cζ̄dt at all times after initiating research

until it was either successful or the value was publicly realized). The coefficient 0 < β2
β2−β1 < 1

reflects the effect of the option to abandon.20 Intuitively, the expected total cost of starting

research is lower because the trader can choose to stop conducting research at a time of her

choosing.

Finally, note that as the research intensity becomes arbitrarily large, the total expected

cost of research is

lim
ζ̄→∞

β2

β2 − β1

cζ̄

r + ζ̄
= c, (23)

and the optimal research threshold approaches the “infinite intensity” one from below, i.e.,

lim
ζ̄→∞

ν∗ (c) =
β1

β1 − 1
c

√
2 (r − µν)

Ψ0

= ν∗∞ (c) . (24)

This implies that the “infinite intensity” technology of Corollary 2 is the limit of the general

research technology as we make the research intensity arbitrarily high, but keep fixed the per

unit flow cost, c, of research intensity. The above also implies that for any finite intensity

research technology with identical per-unit flow cost, the additional option to abandon lowers

the optimal research threshold i.e.,

ν∗(c) =
β2

β2 − 1

r + ζ̄ − µν
r + ζ̄

ν∗∞(c) ≤ ν∗∞(c). (25)

The extent to which ν∗(c) is lower than ν∗∞(c) is driven by the maximal research intensity ζ̄:

19This expression follows from Proposition 4 below.
20More precisely, it reflects the option to abandon and then restart research at any point in time. If the

abandon decision was irreversible (i.e., if we do not allow the trader to resume research if she has abandoned
it once), then the multiplier would instead be β2

β2−1 , which, naturally, is smaller as the expected cost is lower
if she can never re-initiate research.
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as research intensity is higher, ν∗(c) increases and approaches ν∗∞(c). At first glance, it may

appear surprising that when the trader has a more effective research technology, she actually

waits for more extreme noise trading before engaging in research. However, the intuition

follows directly from the discussion above. When ζ increases the option to abandon becomes

less valuable. That is, as ζ increases, in the event that the trader initiates research, it

becomes more likely that information will arrive before she has a chance to abandon. Figure

1 plots the threshold ν∗ as a function of the maximum intensity ζ for various values of the

disclosure frequency r.

Figure 1: Total expected cost of research β2
β2−β1

cζ̄
r+ζ̄

and dynamic research threshold ν∗ as

function of maximum intensity ζ
This figure plots the expected total cost of research β2

β2−β1
cζ̄
r+ζ̄

and the dynamic research

threshold ν∗ as a function of the maximum research intensity ζ. Unless specified, other
parameters are set to µ = 0.05, Ψ0 = 1, c = C = 1, r = 0.2, and σν = 0.1.
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(a) Expected total cost of research vs. ζ (b) ν∗ vs. ζ

Figure 2 provides an illustration of the various thresholds and how they depend on

some of the underlying parameters. Specifically, the left panels plot the static information

acquisition threshold νS as a function of the drift µν and volatility σν of uninformed trading

volume, and the frequency of public disclosure r, while the right panels plot the corresponding

dynamic information acquisition threshold ν∗∞ and the dynamic research thresholds ν∗ for

various values of research intensity (ζ̄ ∈ {0.25, 1, 4}). Consistent with Lemma 1, the optimal

static acquisition threshold is decreasing in µν , independent of σν , and increasing in r. In

contrast, allowing for dynamic information acquisition implies that the acquisition threshold

is increasing in µν , increasing in σν and U -shaped in r, as established in Theorem 2 and

Corollary 2. As discussed above, these qualitative differences arise due to the dynamic

nature of the information acquisition and research decisions, and reflect the effect of the
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Figure 2: Optimal static acquisition threshold νS and dynamic research threshold ν∗

The figure plots the optimal, static acquisition threshold νS and the optimal, dynamic
research threshold ν∗ as a function of public disclosure frequency (i.e., r), and the drift (i.e.,
µν) and volatility (i.e., σν) of trading volume. Unless specified, other parameters are set to
µ = 0.05, Ψ0 = 1, c = C = 1, r = 0.2, and σν = 0.1.
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trader’s ability to delay acquiring research. Finally, note that the threshold is increasing in

the research intensity parameter ζ̄, which reflects the effect of the secondary option embedded

in research, namely the trader’s ability to abandon at a time of her choosing.

5 Dynamics of research

In this section, we characterize the dynamics of research and information arrival. In the first

subsection, we begin by studying the properties of the time that the trader first engages in

research, and show that if the initial level of noise trading is sufficiently low, there is positive

probability that she never engages in research. In Section 5.2, we study the expected total

amount of time that the trader devotes to research, and establish novel predictions that are

not easily captured by standard models of static acquisition. Finally, Section 5.3 properties

of the information arrival time (i.e., the time that research is successful, if ever) and the

likelihood that the trader ever becomes informed, and Section ?? outlines some testable

implications of the model and highlights connections to the empirical literature on research

and informed trading.

5.1 Time to first research

We begin with a characterization of τR, which is the first time that the trader initiates

research.

Proposition 3. Let τR = inf {t ∈ (0, T ) : νt ≥ ν∗} be the first time that the trader initiates

research, with τR =∞ denoting no research. Supposing that ν0 < ν∗ so that the trader does

not begin research immediately, the probability density of τ is

P(τR ∈ dt) = e−rt
log(ν∗/ν0)

σν
√

2πt3
exp

{
− 1

2t

(
log(ν∗/ν0)−

(
µν − 1

2
σ2
ν

)
t
)2

σ2
ν

}
. (26)

For any initial trading volume ν0, the probability that the trader ever engages in research is

P (τR <∞) =


(
ν0
ν∗

)β1 0 ≤ ν0 < ν∗

1 ν0 ≥ ν∗
. (27)

In standard, static models of information acquisition, the trader engages in research with

probability one or zero. In contrast, unless initial trading volume is sufficiently high to

trigger immediate investment in research (i.e., ν0 ≥ ν∗), the trader engages in research with

a probability that is strictly between zero and one in our dynamic setting. We illustrate the
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implications of the above result in Figure 3, which plots the probability that the trader ever

conducts research as a function of underlying parameters. Panel (a) plots the probability

as a function of the initial level of noise trading ν0 for different values of maximal research

intensity ζ̄, while panel (b) plots the probability as a function of disclosure frequency r.

Figure 3: Probability that trader conducts research P (τR <∞)
The figure plots the unconditional probability that the trader ever conducts research as a
function of initial noise trading (i.e., ν0), public disclosure frequency (i.e., r) and maximum
research intensity (i.e., ζ). Unless specified, other parameters are set to µν = 0.05, Ψ0 = 1,
c = C = 1, r = 0.2, ζ = 1 and σν = 0.1.

ζ=0.25 ζ=1 ζ=4

1 2 3 4
ν0

0.2

0.4

0.6

0.8

1.0

Pr(τR<∞)

ζ=0.25 ζ=1 ζ=4

0.2 0.4 0.6 0.8 1.0
r

0.2

0.4

0.6

0.8

1.0

Pr(τR<∞)

(a) P (τR <∞) vs. ν0 (b) P (τR <∞) vs. r

ζ=0.25 ζ=1 ζ=4

0.2 0.4 0.6 0.8 1.0
σν

0.5

0.6

0.7

0.8

0.9

1.0

Pr(τR<∞)

ζ=0.25 ζ=1 ζ=4

0.2 0.4 0.6 0.8 1.0
σν

0.20

0.25

0.30

0.35

0.40

0.45

Pr(τR<∞)

(c) P (τR <∞) vs. σν , low costs (c = 1) (d) P (τR <∞) vs. σν , high costs (c = 2)

Panel (a) shows that the likelihood of initiating research increases with initial trading

volume ν0. This is intuitive: the higher is ν0 , the more likely noise trade is to reach the

research threshold ν∗. Panel (b) shows that the probability of initiating research is hump-

shaped in r. The research probability inherits the non-monotonicity of the research threshold

ν∗ due to the “trading horizon” and “impatience” effects. For low disclosure frequencies,

the impatience effect dominates and increases in r increase the probability that the trader
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conducts research, while for high values of r, the trading horizon effect dominates and further

increases in r reduce the probability that she conducts research. These results stand in

contrast to those from a static model, in which only the trading horizon effect operates, and

increases in disclosure frequency r always weakly decrease the probability of information

acquisition. Intuitively, this is the “crowding out” effect of public information on private

information acquisition and research.

Panels (c) and (d) plot the likelihood of research as a function of the volatility of unin-

formed trading volume, σν , for both low- and high-costs of research. There are two effects

of increasing σν . First, it it increases the threshold ν∗, as discussed above, which tends

to reduce the likelihood of conducting research. We refer to this as a “threshold” effect.

However, when the volatility of νt increases, it increases the likelihood that trading volume

hits any given level, which tends to increase the likelihood of research. We refer to this as

the “volatility” effect. As can be seen in Panel (c), for sufficiently low costs, the volatility

effect dominates, which generates an unambiguously negative relation between σν and the

probability of research. However, for sufficiently high costs, the threshold effect dominates

for low σν and the volatility effect dominates for high σν , which generates a hump-shaped

relation with the likelihood of research.21 These patterns are in sharp contrast to research

in a static setting, where neither effect is present and the information acquisition does not

depend on the volatility of trading volume.

Finally, note that all four panels imply that, holding other parameters fixed, higher

research intensity can decrease the likelihood of engaging in research. This follows from the

behavior of the research threshold ν∗ as a function of ζ: increases in ζ increase the threshold,

which decreases the probability that noise trade ever hits the threshold and triggers research

activity. Note that these implications are distinctive consequence of the dynamic nature of

research.

5.2 Expected time conducting research

Next, we study the amount of time that the trader expects to devote to research. Define

R(ν) = E
[∫ min{τ,T}

t
1{νs≥ν∗}ds | νt = ν

]
as expected amount of time devoted to research from

time t onward. Due to time-stationarity, this quantity does not explicitly depend on t, only

the value of νt. The following Proposition characterizes the function R as a function of the

current level of uninformed trading volume.

Proposition 4. Suppose that information has not yet arrived and the asset value has not

21There is a similar tension between “threshold” and “drift” effects that arises when one studies changes
in the drift, µν , of trading volume.
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yet been revealed, t < min {τ, T} . Then, the expected amount of time devoted to research

from time-t onward is

R(ν) =


β2

β2−β1
1
r+ζ

(
ν
ν∗

)β1 0 ≤ ν < ν∗

1
r+ζ
− β1

β1−β2
1
r+ζ

(
ν
ν∗

)β2 ν ≥ ν∗
(28)

We can relate the unconditional expected research time to the probability of conducting

research by writing

R(ν0) = P (τR <∞)E

[∫ min{τ,T}

t

1{νs≥ν∗}ds | τR <∞

]

= P (τR <∞)×


1
r+ζ

β2
β2−β1 0 ≤ ν0 < ν∗

1
r+ζ

(
1− β1

β1−β2

(
ν
ν∗

)β2) ν0 ≥ ν∗
.

Hence, the expected time devoted to research is the product of the probability of research

and the expected time devoted to research conditional on conducting research. Figure 4

illustrates the unconditional expected time devoted to research as a function of key underly-

ing parameters. Not surprisingly, the effects of parameters on the expected time in research

closely track those on the likelihood of initiating research. Specifically, as the plots sug-

gest, the expected time in research is increasing in the initial uninformed trading volume ν0,

hump-shaped in disclosure frequency r, and decreasing in the quality of research technology

as measured by the maximal research intensity ζ̄.

The implications for disclosure frequency and research intensity are distinctive implica-

tions of the dynamic nature of research. If the investor were restricted to make a one-shot,

“research or not” decision at the beginning and forced to commit to conducting research un-

til acquiring information, we would expect that expected time conducting research would be

(i) decreasing in disclosure frequency, and (ii) decreasing in the maximal research intensity

ζ̄. These results highlight the importance of accounting for the dual optionality embedded

in the research decision.

5.3 Time to information arrival

We now characterize properties of the information arrival time τ in the following Proposition.

Proposition 5. The unconditional probability that the trader ever receives information is

P(τ <∞) =


ζ

r+ζ

β2
β2−β1

(
ν0
ν∗

)β1 0 ≤ ν0 < ν∗

ζ

r+ζ

(
1− β1

β1−β2

(
ν0
ν∗

)β2) ν0 ≥ ν∗
(29)
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Figure 4: Expected time devoted to research R(ν0) = E
[∫ min{τ,T}

0
1{νs≥ν∗}ds | ν0

]
The figure plots the unconditional expected time devoted to research as a function of
initial trading volume (i.e., ν0), public disclosure frequency (i.e., r) and maximum research
intensity (i.e., ζ). Unless specified, other parameters are set to µ = 0.05, Ψ0 = 1, c = C = 1,
r = 0.2, ζ = 1 and σν = 0.1.
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Figure 5 illustrates the unconditional probability that information arrives. Information

arrival is driven by two effects: the probability that the trader engages in research, and the

probability that the trader receives information, conditional on ever engaging in research

P (τ <∞) = P (τR <∞)P (τ <∞ | τR <∞) (30)

= P (τR <∞)×


ζ

r+ζ

β2
β2−β1 0 ≤ ν0 < ν∗

ζ

r+ζ

(
1− β1

β1−β2

(
ν0
ν∗

)β2) ν0 ≥ ν∗
. (31)

Hence, the effects of parameter changes on the probability of information arrival are partially

driven by the research probability, illustrated in Figure 3 above. Differences in behavior

from the probability of engaging in research are driven by the conditional probability of

information arrival P (τ <∞ | τR <∞).

Panel (a) plots the effect of changing the initial trading volume ν0. In this case, the

conditional probability of information arrival, given research, operates in the same direction

(weakly) as the probability of research. If the trader is not initially engaged in research (i.e.,

ν0 < ν∗), then the only effect of increasing ν0 is to increase the probability that she ever

conducts research, and the information arrival probability is increasing in ν0. As ν0 increases

above ν∗, the probability of ever conducting research is one, but the probability of remaining

in the research region, and therefore of information arrival, strictly increases. The overall
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Figure 5: Probability that trader receives information P (τ <∞)
The figure plots the unconditional probability that the trader ever receives information
as a function of initial trading volume (i.e., ν0), public disclosure frequency (i.e., r) and
maximum research intensity (i.e., ζ). Unless specified, other parameters are set to µ = 0.05,
Ψ0 = 1, c = C = 1, r = 0.2, ζ = 1 and σν = 0.1.
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effect is an unambiguous positive relation between ν0 and the probability of information

arrival.

Panel (b) plots the probability of information arrival as a function of the disclosure

frequency r. In all cases, the probability is hump-shaped, an effect that is driven by the

hump shape of the probability of ever conducting research. Indeed, one can demonstrate

that the conditional probability of information arrival P (τ <∞ | τR <∞) decreases in r in

all cases. Intuitively, conditional on conducting research, an increase in disclosure frequency

increases the probability that the payoff information will be publicly revealed before the

trader’s research activity bears fruit. However, the hump-shaped relation between research

probability and disclosure frequency dominates, and the information arrival probability is
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also hump-shaped.

Panels (c) and (d) plot the probability of information arrival as a function of the volatility

of trading volume σν . These effects are largely inherited from the effects of σν on the

probability of research; however, there is an additional effect that, conditional on conducing

research, more volatile trading volume tends to make it more likely that νt will drop below

the research threshold at times, which tends to reduce the probability of information arrival.

Similarly to how σν affects the probability of research in Figure 3, for sufficiently low costs,

there is an unambiguously negative relation between σν and the probability of information

arrival. However, for sufficiently high costs, the fact that that highly volatile volume makes

it more likely that the trader will abandon research can lead to a negative relation, even

though the analogous relation between research activity and σν was hump-shaped.

Finally, note that across the panels, the probability of information arrival increases with

the maximum research intensity ζ. This is in sharp contrast to the earlier results, which im-

plied that the likelihood of initiating research (and the expected time conducting research)

were decreasing in ζ̄. Intuitively, the result is driven by the fact that conditional on conduct-

ing research, a higher research intensity increases the probability that information arrives.

This effect is sufficiently strong to overcome the fact that the probability of conducting

research P(τR <∞) is decreasing, as illustrated in Figure 3 above.

Combined with the observations from the previous sections, this implies that higher

likelihood of research initiations and higher average time in research do not necessarily

correspond to higher likelihood of information acquisition or informed trading. As we discuss

next, this has potentially important implications for how we interpret existing empirical

evidence and suggests novel testable hypotheses.

5.4 Empirical Predictions

Empirically testing our model predictions is challenging because it may be difficult for an

econometrician to measure research by traders or detect market entry, even when these are

detectable by other market participants.22 A growing empirical literature suggests that one

may be able to directly proxy for research activity using search activity or downloads of

regulatory filings, e.g., Bloomberg queries (Ben-Rephael et al. (2017)), online requests to

the EDGAR system (e.g., DeHaan, Shevlin and Thornock (2015), Loughran and McDonald

22Importantly, note that our model and consequently, the implications we discuss below, presume only
that other market participants can detect entry / increased participation by large investors, not necessarily
that outside econometricians can do so. Our model makes no assumptions at all about the detectability of
research activity. As we discussed in Section 3.1, market participants can often detect entry or increased
participation by others (e.g, market makers, prime brokers, and OTC counter-parties observe trading demand
from institutional investors).
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(2017)), and even Google or Yahoo Finance searches (e.g., Da, Engelberg and Gao (2011),

Drake et al. (2012), Lawrence, Ryans and Sun (2017)). To the extent that increased demand

for such public information is accompanied by private research activity (or essentially repre-

sents private information generation via more effective processing / interpretation of public

releases), these measures provide a noisy proxy for research activity. Other, less directly vis-

ible research activity could include FOIA requests for regulatory filings (Gargano, Rossi and

Wermers (2016)); increased access to corporate management through investor conferences

(Bushee, Jung and Miller (2011), Bushee, Jung and Miller (2017)), private analyst/investor

days (Kirk and Markov (2016)), or roadshows (Bushee, Gerakos and Lee (2018)); or even

easier access to headquarters locations through flight or high-speed rail introductions (Ellis,

Madureira and Underwood (2019), Xu (2019)). Finally, a number of recent papers (e.g.,

Gargano and Rossi (2018), Fedyk (2019)) are able to directly link individual investor level

proxies of news consumption to trading behavior.

One could similarly use regulatory filings to proxy for the entry and participation of

large investors in the financial market. For instance, Schedule 13D filings can be used to

identify trading by large investors who have acquired more than 5% of any class of securities

of a publicly traded company (e.g., as in Collin-Dufresne and Fos (2015) and Brav, Jiang,

Partnoy and Thomas (2008)). Similarly, changes in the panel of quarterly Schedule 13F

filings (required for any institution with at least $100m under management) can be used to

estimate large position changes associated with information acquisition by large institutional

investors such as hedge funds (e.g., Griffin and Xu (2009), Agarwal, Jiang, Tang and Yang

(2013)), and one can use Thomson and CRSP data to do the same for mutual funds (e.g.,

Wermers (2000)). Further, by distinguishing between initiation of new positions and changes

in existing holdings, such filings allow one to, at least partially, separate entry from changes

in trading intensity.

Our model’s predictions about research activity and information arrival are of one of

two types. One category consists of predictions that are common to existing, static models

of information acquisition. For instance, the likelihood and duration of research activity

increases with uninformed trading volume and prior uncertainty, and decreases with the cost

of conducting research. This implies research can be triggered by public news that increases

uncertainty about the payoff of the risky asset or induces more trading by retail or other

uninformed investors. Moreover, shocks that make research more costly, either directly or

indirectly, are likely to reduce the incidence and duration of research. Given that much of

the existing theoretical literature has focused on variants of static information acquisition,

existing empirical work has largely focused on these types of predictions.

The other category of predictions are a consequence of dynamics, and so help distinguish
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our analysis from earlier work. First, depending on the relative cost of research, the likelihood

of research is either decreasing or hump-shaped in the volatility of trading volume, after

controlling for the level of trading volume itself. This is a consequence of the trader’s ability

to wait to acquire information, and is absent from models of static information acquisition.

Second, sorting stocks on the frequency of (unscheduled) disclosures, should reveal a non-

monotonic relation with research activity: stocks with the fewest or the most disclosures per

year should be associated with less research by investors than those in the middle. This is

in contrast to settings with static acquisition, where a higher frequency of public disclosures

should be associated with less research activity. Standard models predict that when public

disclosures provide information about the same component of payoffs that traders can learn

about, more public disclosure “crowds out” information acquisition. Our analysis character-

izes conditions under which more frequent disclosures can “crowd in” information acquisition

by changing the dynamic incentives to engage in research. Notably, this channel is distinct

from the effect in settings where there are multiple components of payoffs that investors

can learn about (e.g., Goldstein and Yang (2015), Banerjee et al. (2018), and Goldstein and

Yang (2019)), and in which more public disclosure along one dimension can endogenously

can “crowd in” information acquisition along another dimension. It is also different from the

observation that in some cases, public disclosures can increase (and not decrease) uncertainty

and, therefore trigger more research.23

Third, a particularly stark prediction of our model is that higher likelihood or duration

of research activity driven by changes in research technology (ζ) need not be associated with

higher likelihood of informed trading. This is easily seen by contrasting Figure 3 (or Figure 4)

with Figure 5. This implication helps us better understand the conflicting empirical results

about the research activities of mutual funds and hedge funds. For instance, Kacperczyk and

Seru (2007) suggest that for mutual funds, reliance on information from public sources tends

to be associated with low performance, while Crane et al. (2019) demonstrate the opposite is

true for hedge funds. Our model can help reconcile these findings if we assume that mutual

funds access to relatively less effective research technology (i.e., lower ζ̄ technology) relative

to hedge funds. In this case, the model predicts that while mutual funds should be more

likely to conduct research, it is less likely that their research will succeed. Similarly, Drake

et al. (2020) find that research by sophisticated investors predicts future firm performance,

but not research by less sophisticated investors. Overall, our model suggests caution when

using measures of research activity to proxy for information acquisition. In a setting in

which research takes place dynamically and need not succeed, simply observing research

23In some models, more information can increase uncertainty (e.g., Veronesi (1999)) about fundamentals,
and this could generate more information acquisition.
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activity (e.g., EDGAR searches, Bloomberg queries) does not necessarily imply that traders

are better-informed. However, research activity followed by evidence of trading / information

arrival does do so.

6 Price informativeness and market liquidity

In this section, we turn our attention to the consequences of dynamic research for market

quality, focusing on price informativeness and market liquidity. These are important quan-

tities of interest to regulators, who have the ability to influence reporting frequency (i.e., r)

and at least indirectly, the cost and effectiveness of conducting research (i.e., c and ζ) by

altering disclosure rules.

We measure price informativeness by the fraction of total information that the market

has learned about the asset by date t

PIt =
Σ0 − Σt

Σ0

(32)

and liquidity by price impact λt. Supposing that the regulator has an explicit discount rate

ρ ≥ 0 (the case of no discounting, ρ = 0 is allowed), we are interested in studying the

discounted average price informativeness and price impact24

PI = E
[
(r + ρ)

∫ T

0

e−ρsPIsds

]
(33)

λ = E
[
(r + ρ)

∫ T

0

e−ρsλsds

]
(34)

Note that the multiplicative r+ρ term in these expressions ensures that the discount factors,

both explicit (due to ρ) and implicit (due to r), integrate to one so that these expressions

behave as averages rather than sums (e.g., for a constant k, we have E
[
(r + ρ)

∫ T
0
e−ρsk ds

]
=

k). While both expressions are available in closed form, they are rather complicated, so we

relegate the expressions to Proposition 7 in the Appendix and here focus only on the key

economic forces.

Figure 6 illustrates how price informativeness varies with key parameters. Note that we

24It may seem more natural to use market depth 1/λt as our liquidity measure. However, because depth
is infinite before the strategic trader enters the market, defining a summary measure of average or expected
depth becomes difficult.
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Figure 6: Expected discounted price informativeness PI
The figure plots the discounted, expected price informativeness PI as a function of the
initial trading volume (i.e., ν0), public disclosure frequency (i.e., r), maximum research
intensity (i.e., ζ), and flow cost of research (i.e., c). Unless specified, other parameters are
set to µ = 0.05, Ψ0 = 1, Ω = 1/2, c = C = 1, r = 0.2, σν = 0.1, and ρ = 1.
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can decompose it into pre- and post-information arrival terms

PI = E

[
(r + ρ)

∫ min(τ,T )

0

e−ρsPIsds

]
+ E

[
(r + ρ)

∫ T

min(τ,T )

e−ρsPIsds

]
(35)

= E
[
(r + ρ) e−ρmin(τ,T )

∫ T

min(τ,T )

e−ρ(s−min(τ,T ))PIsds

]
(36)

where the first equality splits the integral at the information arrival time (or the disclosure

date, if it occurs first), and the second equality uses the fact that price informativeness is zero

prior to information arrival to set the first term to zero and rearranges the discount factor in

the second term. This expression shows that two forces drive average price informativeness:
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(i) the arrival of information and its timing, captured by the discount factor e−ρmin(τ,T ),

and (ii) the average price informativeness between information arrival and the disclosure

date
∫ T

min(τ,T )
e−ρ(s−min(τ,T ))PIsds. Hence, (i) any change in parameters that increases the

likelihood or speed of information arrival tends to increases the average price informativeness,

and (ii) any change in parameters that incentivizes the trader to trade more aggressively

when she is informed, and thereby speed up the incorporation of her information into prices,

also tends to increase average price informativeness. Intuitively, as the trader becomes more

impatient in either research or trading, price informativeness increases. This is illustrated in

Figure 6, which plots PI as a function of initial noise trade, disclosure frequency, maximum

research intensity, and the flow cost of research. The effects of changes in these parameters

is qualitatively similar to their effects on the probability of information arrival (see, e.g.,

Figure 5 above).

Figure 7 illustrates how expected discounted price impact varies with parameters. As

with price informativeness, we can decompose λ into pre- and post-arrival terms and express

it as

λ = E
[
(r + ρ) e−ρmin(τ,T )

∫ T

min(τ,T )

e−ρ(s−min(τ,T ))λsds

]
(37)

which indicates that we can also interpret average price impact as due to the likelihood and

timing of information arrival, and the average price impact conditional on arrival. However,

changes in trader impatience can have opposite effects on these two terms, and so the overall

effect on price impact can be more subtle. Consider Panel (a), which plots average price

impact as a function of the initial amount of noise trade. An increase in ν0 has two effects: (i)

it makes it more likely that the trader conducts research and therefore that a signal arrives

(and arrives quickly), which tends to increase average price impact, but (ii) it increases the

expected amount of volume during the post-arrival stage, which tends to reduce price impact.

For low values of ν0, the first effect dominates, while for high values of ν0 the second effect

dominates, leading to a hump-shaped relation between λ and initial noise trade.

Similarly, consider Panel (b), which plots λ against the maximum research intensity ζ.

As discussed above, an increase in ζ: (i) tends to make the trader wait longer to conduct

research (and therefore tends to delay information arrival, all else equal), which tends to

reduce average price impact, but (ii) conditional on initiating research it tends to speed up

information arrival, which tends to increase average price impact. For low values of ζ the

second effect dominates, and for high values of ζ the first effect may (but need not) dominates.

This produces either a hump-shaped or monotonically-increasing relation between research

intensity and price impact.
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Figure 7: Expected discounted price impact λ
The figure plots the discounted, expected price impact λ as a function of the initial trading
volume (i.e., ν0), public disclosure frequency (i.e., r), maximum research intensity (i.e., ζ),
and flow cost of research (i.e., c). Unless specified, other parameters are set to µ = 0.05,
Ψ0 = 1, Ω = 1/2, c = C = 1, r = 0.2, σν = 0.1, and ρ = 1.
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Note that for both price informativeness and price impact, the non-monotonic relation

with disclosure frequency r remains (panels (c) in Figures 6 and 7). This is again due

to tension between the “trading horizon” and “impatience” effects. The impatience effect

dominates for low values of r, while the trading horizon effect dominates for high values of

r, leading to hump-shaped relations between disclosure frequency and price informativeness

PI and price impact λ.

6.1 Policy implications

Our analysis of price informativeness and market liquidity above highlights a number of

important implications from a policy perspective.
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First, the non-monotonic relation between the frequency of public disclosures (i.e., r)

and price informativeness highlights a novel channel through which changes to disclosure

requirements can affect price informativeness. As discussed above, in settings where the

public disclosure pertains to the component of fundamentals that investors can learn about,

the existing literature usually documents a “crowding out” effect, whereby more public

disclosure decreases private information acquisition and lowers price informativeness. Our

analysis highlights that this is a consequence of restricting attention to static information

acquisition, and that the impact of public disclosures can be more nuanced in settings where

research is dynamic and information can be acquired over time.25 This result also sheds

light on how regulatory changes that are intended to reduce information asymmetry by

requiring more public disclosure (e.g., Regulation Fair Disclosure, or Reg FD, in 2000) may

end up being counterproductive. For instance, our results are consistent with the empirical

evidence in Duarte et al. (2008), who document that the introduction of Reg FD was actually

associated with higher likelihood of informed trading (as measured by the Easley, Hvidkjaer

and O’hara (2002) PIN measure), especially for NASDAQ stocks.

Second, note that unlike conventional wisdom, increasing the frequency of public disclo-

sures (i.e., increasing r) or encouraging more trading (i.e., increasing ν0 by making it easier

for retail / uninformed investors to trade) need not improve liquidity. The standard intu-

ition (from many static settings) is that greater public disclosure “levels the playing field” by

reducing adverse selection between informed and uninformed investors, thereby improving

liquidity. Similarly, increasing access for liquidity traders tends to lower price impact in Kyle

(1985) and related settings. However, with endogenous research and dynamic information

acquisition, these types of changes can have the opposite effect on liquidity, as suggested by

panels (a) and (c) of Figure 7.

Finally, the analysis underscores the inherent tension between price informativeness and

market liquidity that is common to other settings with asymmetrically informed traders.

Specifically, consider a regulator who would like to improve both price informativeness and

market liquidity. On the one hand, to improve price informativeness, the regulator would

like to encourage research and information acquisition by the trader. On the other hand,

doing so harms market liquidity since it increases the extent of adverse selection. As a result,

regulatory changes that improve price informativeness will have a negative impact on market

liquidity and vice versa.

This is generally true in our setting as well. Comparing Figures 6 and 7, note that changes

25For example, Figure 2 implies that when the trader is restricted to static information choice, the acqui-
sition threshold increases in the frequency of disclosure, r, which decreases the likelihood of acquisition and,
consequently, price informativeness.
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in disclosure horizon (i.e., r) and the cost of research (i.e., c) change price informativeness

and market impact in the same direction, and so these changes have opposite effects on

informativeness and liquidity. However, this is not always the case for trading volume (i.e.,

ν0) and the quality of research technology, as measured by the maximal research intensity

ζ̄. Specifically, note that when ν0 is sufficiently high, further increases in trading volume

can lead to higher price informativeness and higher liquidity (panel (a) in the two plots).

Similarly, while improving research technology (i.e., making ζ̄ higher) always increases price

informativeness (panel (b) in Figure 6), it can sometimes also improve liquidity by lowering

the price impact (panel (b) of Figure 7). As discussed above, these features are a consequence

of the dynamic nature of research and information acquisition, and so are likely to be missing

from analysis that focuses on information acquisition as a static choice.26 To the extent that

research and information gathering are inherently dynamic activities, our analysis implies

that policy changes that affect the level of retail trading volume or the ability of investors

to conduct research can have more nuanced impact on price informativeness and liquidity

than previous work suggests.

7 Concluding Remarks

We develop a model of research by a strategic trader that captures two important features:

research is dynamic and probabilistic. As a result, the optimal choice of information acqui-

sition embeds a number of real options: the option to delay research, the option to abandon

research if unsuccessful, and the option to restart when trading opportunities improve. Rel-

ative to traditional settings in which information acquisition is a static choice, we show

that incorporating these features has important consequences for our understanding of how

markets produce and reflect information.

First, the likelihood and duration of conducting research is increasing in the volatility of

trading volume, even after controlling for the level of volume. Second, an increase in the

frequency of public disclosures can “crowd in” or “crowd out” private information acqui-

sition: when the initial frequency is low, an increase encourages more research, but if the

initial frequency is sufficiently high, it has the opposite effect. Finally, our analysis recom-

mends caution in interpreting empirical evidence of research activity (e.g., Bloomberg search

26Avdis and Banerjee (2019) derive a related result in the context of a multi-trader, strategic trading
model. They show that an increase in “clarity” (or a decrease in receiver specific noise) leads to higher
correlation in the private information across traders, which leads to more aggressive trading via competition,
and consequently, greater liquidity. While our result is complementary to theirs, the forces that underlie the
positive relation between liquidity and price informativeness in our model are distinct because they are not
driven by competition across traders (we have only one trader).
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volume or EDGAR queries) as evidence of information acquisition, since research success is

probabilistic. In fact, we show that when the variation is driven by the effectiveness of

traders’ research technology, more research activity can be negatively related to likelihood

of information acquisition.

Our analysis also highlights important tradeoffs from a policy perspective. Contrary to

the conventional wisdom (derived from static acquisition settings), we show that more fre-

quent public disclosures can crowd increase price informativeness by encouraging research,

even though public disclosures pertain to the same component of payoffs that the trader can

learn about. Second, we show that efforts to improve liquidity by “leveling the field” though

more public disclosure or encouraging trading by uninformed investors can be counterpro-

ductive, because they can encourage research activity and, consequently, lead to higher

equilibrium price impact. Finally, we show that unlike standard settings in which policy

changes tend to have opposite effects on price informativeness and liquidity, improving the

effectiveness of research or encouraging uninformed trading can lead to improvements along

both dimensions in a dynamic setting.

Our paper is an early step in exploring the implications of research and information acqui-

sition dynamics on trading an market behavior, and suggests a number of natural avenues

for future research. A natural direction is to explore other specifications of research and

information acquisition technologies. While we believe that our model captures important,

economically relevant features of research in markets, investors have access to many different

types of information sources and research technologies. For instance, in a companion paper

(Banerjee and Breon-Drish, 2020), we characterize how information acquisition and trading

vary in a setting where the trader can choose the precision of a flow of information. In

that setting, the optimal precision varies stochastically in response to uninformed trading

volume, but price impact and market uncertainty are unaffected by the choice of precision.

It would be interesting to explore the effect of richer information acquisition technologies on

equilibrium market dynamics.

One could also explore alternate assumptions about the timing and nature of public dis-

closures (i.e, about the terminal date T ). We model disclosure as an unscheduled public

announcement, but one could also entertain the notion of a fixed disclosure time correspond-

ing to, e.g., an earnings announcement or other scheduled disclosure.27 While we we expect

there to be a similar tension between “trading horizon” and “impatience” effects in such a

setting, a full exploration could potentially provide richer insights. It would also be inter-

27As we discuss above in Section 3, a model with a fixed terminal date T will generally be intractable
analytically, since the optimal research problem effectively reduces to an optimal stopping problem on a
finite horizon.
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esting to consider the problem of a regulator who endogenously chooses a disclosure policy

to maximize some social objective function, or a firm manager who chooses a firm-level

disclosure policy.

Another important extension would be to consider competition among multiple strategic

traders. In a recent paper, Xiong and Yang (2020) explore the implications of endogenous

precision choice in a static model with multiple strategic traders. We expect the results

from a dynamic model with imperfect competition to share many qualitative features of the

current analysis, as long as private information is not perfectly correlated across traders (see

Foster and Viswanathan (1993) and Back, Cao and Willard (2000) for the effect of imperfect

competition in strategic trading settings), while generating a set of novel implications for

strategic research dynamics. However, extending the analysis to a dynamic setting is quite

challenging, and so we leave it for future work.
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A Proofs

This appendix collects together all of the formal results that are not presented in the main

text.

A.1 A preliminary result

“Discounted expectations” of the form E
[
e−uTJ (a+ bXTJ )|Xt = x

]
for various Poisson jump

times TJ , constants a, b and u, and where Xt is a geometric Brownian motion, play a role in

a number of our key results. In this section, we derive a general expression for expectations

of this form in order to streamline later proofs.

Proposition 6. Fix x∗ ∈ R and let TJ be the first jump time of a doubly-stochastic Poisson

process with piecewise constant intensity

ζ(Xt) = c0 + cL1{Xt<x∗} + cH1{Xt≥x∗}, (38)

where the process Xt is a geometric Brownian motion

dXt = µXtdt+ σXtdWt. (39)

Then, for any a, b ∈ R and u ≥ 0, we have

E
[
e−uTJ (a+ bXTJ )|X0 = x

]
=

 c0+cL
c0+cL+ua+ c0+cL

c0+cL+u−µbx+ALx
γL 0 ≤ x < x∗

c0+cH
c0+cH+ua+ c0+cH

c0+cH+u−µbx+BHx
γH x ≥ x∗

, (40)

where

AL ≡ cH−cL
γH−γL

(
uγH

(c0+cL+u)(c0+cH+u)
a+ (γH−1)(u−µ)

(c0+cL+u−µ)(c0+cH+u−µ)
bx∗
) (

1
x∗

)γL , (41)

BH ≡ cH−cL
γH−γL

(
uγL

(c0+cL+u)(c0+cH+u)
a+ (γL−1)(u−µ)

(c0+cL+u−µ)(c0+cH+u−µ)
bx∗
) (

1
x∗

)γH , (42)
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γL =
1

2
− µ

σ2
+

√
2(c0 + cL + u)

σ2
+

(
1

2
− µ

σ2

)2

, and (43)

γH =
1

2
− µ

σ2
−

√
2(c0 + cH + u)

σ2
+

(
1

2
− µ

σ2

)2

. (44)

Proof of Proposition 6.

We would like to compute E
[
e−uTJ (a+ bXTJ )

]
. Note that we can express it as

E
[
e−uTJ (a+ bXTJ )

]
= E

[
E
[
e−uTJ (a+ bXTJ )

∣∣∣∣{Xt}t≥0

]]
(45)

= E
[∫ ∞

0

P(TJ ∈ ds|{Xt}t≥0)e−us(a+ bXs)

]
(46)

= E
[∫ ∞

0

ζ(Xs)e
−

∫ s
0 ζ(Xr)dre−us(a+ bXs)ds

]
(47)

= E
[∫ ∞

0

e−
∫ s
0 (u+ζ(Xr))drζ(Xs)(a+ bXs)ds

]
(48)

where the first equality uses the law of iterated expectations and conditions on the entire

history of {Xt}; the second equality uses the fact that conditional on the history of {Xt}
the only random variable is TJ , and computing the conditional expectation therefore reduces

to integrating over TJ ; the third equality uses the fact that conditional on {Xt}, the path

of the intensity is {ζt} is known and therefore P(TJ ≥ s|{Xt}) = e−
∫ s
0 ζ(Xr)dr from which

P(TJ ∈ ds|{Xt}) = ζ(Xs)e
−

∫ s
0 ζ(Xr)drds; and the final equality gathers terms.

Define the function

f(t, x) = E
[∫ ∞

t

e−
∫ s
t (u+ζ(Xr))drζ(Xs)(a+ bXs)ds

∣∣∣∣Xt = x

]
(49)

The Feynman-Kac theorem yields a differential equation that f must follow, which,

owing to the time-stationarity of Xt and time homogeneity of ζ(·), is an ordinary differential

equation (ODE) in x

0 = ζ(x) (a+ bx)− (ζ(x) + u)f + µxfx +
1

2
σ2x2fxx. (50)

That is, there is no explicit time dependence in the function f .28 Because the “killing

28Note that by reversing the steps above, it is easily seen that this function characterizes

E
[
e−u(TJ−t) (a+ bXTJ )

∣∣∣∣Xt = x

]
. That is, the discounted conditional expectation, where we discount back

only to time t. Due to time-stationarity of Xt and the fact that TJ is the jump time of a Poisson process,
this expression does not depend on calendar time.
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rate” u + ζ(x) is discontinuous at x∗, the solution to this equation will, in general, be only

continuously differentiable at the point x∗ and twice continuously differentiable elsewhere.29

We now proceed with the solution to the ODE. It naturally splits into two regions,

depending on whether x ≷ x∗.

0 =

(c0 + cL) (a+ bx)− (c0 + cL + u)f + µxfx + 1
2
σ2x2fxx x < x∗

(c0 + cH) (a+ bx)− (c0 + cH + u)f + µxfx + 1
2
σ2x2fxx x ≥ x∗

. (51)

We can solve the ODE by first characterizing the solution within each region and then

ensuring that the resulting function is sufficiently well-behaved across the boundary. Within

each region the ODE is linear, so the solution is equal to the sum of any particular solution

and the general solution to the homogenous version of the equation. Hence, we proceed

by characterizing particular and general solutions in each region, imposing the boundary

conditions to eliminate certain terms, and then conclude by imposing that the overall solution

must be continuously differentiable across the boundary x∗.

It is easy to verify that particular solutions in each region are c0+cL
c0+cL+u

a+ c0+cL
c0+cL+u−µbx x < x∗

c0+cH
c0+cH+u

a+ c0+cH
c0+cH+u−µbx x ≥ x∗

(52)

and general solutions are of the formALxγL+ +BLx
γL− 0 ≤ x < x∗

AHx
γH+ +BHx

γH− x ≥ x∗
(53)

where

γL± =
1

2
− µ

σ2
±

√
2(c0 + cL + u)

σ2
+

(
1

2
− µ

σ2

)2

(54)

γH± =
1

2
− µ

σ2
±

√
2(c0 + cH + u)

σ2
+

(
1

2
− µ

σ2

)2

(55)

29See, e.g., Theorem 4.9 in Chapter 4 of Karatzas and Shreve (1998) which establishes this for the case
where Xt is a standard Brownian motion (and to which one can reduce our case by appropriate transforma-
tions of the Xt process), or the general treatment of Glau (2016).
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The overall solution is therefore of the form

f =

ALxγL+ +BLx
γL− + c0+cL

c0+cL+u
a+ c0+cL

c0+cL+u−µbx 0 ≤ x < x∗

AHx
γH+ +BHx

γH− + c0+cH
c0+cH+u

a+ c0+cH
c0+cH+u−µbx x ≥ x∗

, (56)

where the A’s and B’s are constants to be determined.

Natural boundary conditions for the ODE are

lim
x→0

f = lim
x→0

(
c0 + cL

c0 + cL + u
a+

c0 + cL
c0 + cL + u− µ

bx

)
=

c0 + cL
c0 + cL + u

a (57)

lim
x→∞

fx = lim
x→∞

∂

∂x

(
c0 + cH

c0 + cH + u
a+

c0 + cH
c0 + cH + u− µ

bx

)
=

c0 + cH
c0 + cH + u− µ

b (58)

since in each limit it becomes arbitrarily unlikely that Xt will ever again transition to the

other region. Hence, the discounted conditional expectation should converge to that for a

constant arrival intensity.30

The boundary conditions (57) and (58) imply BL = 0 and AH = 0. Next, the solution

should be continuously differentiable across x∗, which gives two equations to pin down AL

and BH

ALx
γL+ + c0+cL

c0+cL+u
a+ c0+cL

c0+cL+u−µbx = BHx
γH− + c0+cH

c0+cH+u
a+ c0+cH

c0+cH+u−µbx (60)

γL+ALx
γL+−1 + c0+cL

c0+cL+u−µb = γH−BHx
γH−−1 + c0+cH

c0+cH+u−µb (61)

Solving this system yields

AL = cH−cL
γH−−γL+

(
uγH−

(c0+cL+u)(c0+cH+u)
a+ (γH−−1)(u−µ)

(c0+cL+u−µ)(c0+cH+u−µ)
bx∗
)

(x∗)−γL+ (62)

BH = cH−cL
γH−−γL+

(
uγL+

(c0+cL+u)(c0+cH+u)
a+ (γL+−1)(u−µ)

(c0+cL+u−µ)(c0+cH+u−µ)
bx∗
)

(x∗)−γH− (63)

and letting γH = γH− and γL = γL− to condense notation gives us the result.

30In the case of a constant intensity c the time TJ is independently, exponentially distributed with rate c,
and by integrating out TJ the expectation that we desire to compute reduces to

E
[
e−uTJ (a+ bXTJ )

]
= E

[∫∞
0
ce−cse−us(a+ bXs)ds

]
=
∫∞
0

(
ce−(c+u)sa+ ce−(c+u−µ)sbX0

)
ds, (59)

which is a sum of two growing perpetuities. Computing the values of these perpetuities produces the
expressions in the text.

47



A.2 Proofs of main results

Proof of Proposition 1. The post-entry financial market equilibrium is essentially a special

case of the “flow signals” setting of Banerjee and Breon-Drish (2020). Nominally, their result

applies to settings in which (i) the trader can dynamically optimize a flow of signals after

observing her initial signal and (ii) both the trader and market maker learn the true value

in the limit when the economy continues without end (T → ∞). In order to apply their

results, (i) let the cost of ongoing flow signals tend to infinity c(·) ↑ ∞, which implies that

the trader’s only information source is her initial signal, and (ii) use risk-neutrality and the

fact that the market maker has coarser information than the trader to redefine the asset

value V as the conditional expected value given observation of the signal V̂ = E[V |S]. The

equilibrium now follows immediately with the market maker’s conditional variance of V̂ ,

Ψt = var(V̂ |FPt ), taking the place of her variance of the asset value itself.

Proof of Proposition 2. Let J(·) = Kνt, with K ≡
√

Ψ0

r−µν , be the unconditional expected

profit given information arrival at time t. Given an arbitrary strategy {ζs} that is adapted

to σ({νt}), her overall expected profit is

E

[
1{τ<∞}J(ντ )−

∫ min{τ,T}

0

c(ζs)ds

]
. (64)

We would like to express this in a more standard form. To do this, it is helpful to “de-

link” the information arrival time τ and the public disclosure date T . Let TI be the first

jump time of a Poisson process with the posited intensity ζs for all s ≥ 0 (i.e., the arrival time

if one were to follow the strategy {ζs} regardless of whether the disclosure has occurred).

We can express

E
[
1{τ<∞}J(ντ )

]
= E

[
1{TI<T}J(νTI )

]
(65)

= E
[
e−rTIJ(νTI )

]
(66)

= E
[∫ ∞

0

e−
∫ s
0 (r+ζu)duζsJ(νs)ds

]
, (67)

where the second equality uses the fact that T is independently exponentially distributed,

and the last equality follows from steps analogous to those used in the derivation of eq. (48)

above. Similarly,

E

[∫ min{τ,T}

0

c(ζs)ds

]
= E

[∫ min{TI ,T}

0

c(ζs)ds

]
(68)
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= E
[∫ ∞

0

1{s≤min{TI ,T}}c(ζs)ds

]
(69)

= E
[∫ ∞

0

e−
∫ s
0 (r+ζu)duc(ζs)ds

]
, (70)

where the second equality writes the limits of integration using indicator function notation

and the final equality follows from steps analogous to those used in the derivation of eq. (48)

above, using the fact that min{TI , T} is the first jump time of the sum of two independent

Poisson processes, one with intensity ζ that tracks information arrival and one with intensity

r that tracks the public disclosure.

Since the research strategy was arbitrary the above expressions allow us to state the

trader’s research problem in a compact, standard form

JU ≡ sup
{ζs}

E
[∫ ∞

0

e−
∫ s
0 (r+ζu)du(ζsJ(νs)− c(ζs))ds

]
. (71)

We now proceed to characterize the optimal research strategy. We begin by making

use of the usual HJB equation to derive a candidate optimal research strategy and the

corresponding value function. We then verify that the candidate strategy and value function

so constructed do in fact characterize an optimum.

With linear cost function c(ζ) = cζ and constraint ζ ∈ [0, ζ], the HJB equation for this

problem is

0 = sup
ζ∈[0,ζ]

{
r
(
0− JU

)
+ ζ(J − JU) + JUν µνν +

1

2
JUννσ

2
νν

2 − cζ
}
. (72)

We conjecture that the optimal research strategy follows a threshold rule. That is, there

exists some ν∗ ≥ 0, to be determined, such that

ζ∗(ν) =

0 0 ≤ ν < ν∗

ζ ν ≥ ν∗
(73)

We further conjecture that the value function takes the time-homogenous form

JU(ν) =

Aνβ1 0 ≤ ν < ν∗

Bνβ2 + ζ

r−µν+ζ
Kν − cζ

r+ζ
ν ≥ ν∗

(74)

for constants A and B to be determined, and where β1 and β2 are defined in eqs. (18) and

(19).
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It remains to characterize the candidate threshold ν∗ and constants A and B. To do

this, we enforce that the candidate value function should be twice continuously differentiable

across the threshold ν∗. Equating the level and first derivative are analogous to the standard

value-matching and smooth-pasting conditions of optimal stopping. Furthermore, because

the state can transition freely back across the threshold ν∗ (i.e., this is effectively a switching

problem, not a stopping problem), one also requires a “high-contact” condition that the

second derivative be continuous. We emphasize that these conditions, while intuitive, are

simply conjectures for how the value function should behave, and we later verify that the

function so constructed is in fact optimal.

We have

Aνβ1 = Bνβ2 +
ζ

r − µν + ζ
Kν − cζ

r + ζ
(value matching) (75)

β1Aν
β1−1 = Bβ2ν

β2−1 +
ζ

r − µν + ζ
K (smooth pasting) (76)

β1(β1 − 1)Aνβ1−2 = Bβ2(β2 − 1)νβ2−2 (high contact) (77)

Solving for the three unknowns yields

ν∗ =
β1

β1 − 1

β2

β2 − 1

c

K

r + ζ − µν
r + ζ

(78)

A =
cζ

r + ζ

β2

(β1 − 1)(β2 − β1)

1

(ν∗)β1
(79)

B = − cζ

r + ζ

β1

(β2 − 1)(β1 − β2)

1

(ν∗)β2
. (80)

We can now check that the conjectured research intensity in fact achieves the maximum

on the right-hand side of the equation (72) and the conjectured JU solves the HJB equation.

To confirm that the conjectured ζ∗ maximizes the right-hand side of eq. (72), it suffices

to show that J − JU − c is strictly increasing in ν and is equal to zero at ν∗. Given the

constraint on ζ, it will then follow immediately that the posited threshold strategy achieves

the maximum. For ν < ν∗, we have

∂

∂ν
(J − JU − c) = K − Aβ1ν

β1−1 (81)

= K − cζ

r + ζ

β1

β1 − 1

β2

β2 − β1

1

(ν∗)β1
νβ1−1 (82)

> K − cζ

r + ζ

β1

β1 − 1

β2

β2 − β1

1

(ν∗)β1
(ν∗)β1−1 (83)
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= K − cζ

r + ζ

β1

β1 − 1

β2

β2 − β1

1

ν∗
(84)

= K −K ζ

r + ζ − µν
(85)

> 0 (86)

and analogous calculations hold for ν ≥ ν∗. Straightforward, but tedious, algebra also verifies

that J−JU−c = 0 at ν∗. Hence, the conjectured research strategy maximizes the right-hand

side of (72).

Given the research strategy, we can also verify that the conjectured value function satisfies

the HJB equation (72). For instance, for ν < ν∗ we have

r
(
0− JU

)
+ ζ∗(ν)(J − JU) + JUt + JUν µνν +

1

2
JUννσ

2
νν

2 − cζ∗(ν) (87)

= −rJU + JUν µνν +
1

2
JUννσ

2
νν

2 (88)

= −rAνβ1 + Aβ1ν
β1−1µνν +

1

2
Aβ1(β1 − 1)νβ1−2σ2

νν
2 (89)

= Aνβ1
(
−r + µνβ1 +

1

2
σ2
νβ1(β1 − 1)

)
(90)

= 0 (91)

where the last line follows from the fact that β1 solves 0 = −r + µνβ1 + 1
2
σ2
νβ1(β1 − 1) by

construction. A similar calculation confirms that the equation holds for ν ≥ ν∗.

To verify that the conjectured research strategy is, in fact, optimal, consider an arbitrary

strategy {ζ̂s} ∈ [0, ζ] and apply Ito’s Lemma to the function e−
∫ t
0 (r+ζ̂u)duJU(νt)

e−
∫ t
0 (r+ζ̂u)duJU(νt)− JU(ν0) (92)

=

∫ t

0

e−
∫ s
0 (r+ζ̂u)du

(
−(r + ζ̂s)J

U + JUν µνν +
1

2
JUννσ

2
νν

2

)
ds (93)

+

∫ t

0

e−
∫ s
0 (r+ζ̂u)duJUν νσνdWνs (94)

≤ −
∫ t

0

e−
∫ s
0 (r+ζ̂u)duζ̂s

(
J − c

)
ds+

∫ t

0

e−
∫ s
0 (r+ζ̂u)duJUν νσνdWνs (95)

where the inequality follows from eq. (72) and the fact that the strategy ζ̂u is arbitrary.

Rearranging and using the fact that JU(νt) ≥ 0 we have∫ t

0

e−
∫ s
0 (r+ζ̂u)duζ̂s

(
J − c

)
ds ≤ JU(ν0) +

∫ t

0

e−
∫ s
0 (r+ζ̂u)duJUν νσνdWνs (96)
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Because
∣∣∣e− ∫ s

0 (r+ζ̂u)duζ̂s
(
J − c

)∣∣∣ ≤ e−rsζ(Kνs + c) and E
[∫∞

0
e−rsζ(Kνs + c)ds

]
< ∞

(due to µν < r), the dominated convergence theorem implies

E
[∫ ∞

0

e−
∫ s
0 (r+ζ̂u)duζ̂s

(
J − c

)
ds

]
= lim

t→∞
E
[∫ t

0

e−
∫ s
0 (r+ζ̂u)duζ̂s

(
J − c

)
ds

]
(97)

Combined with eq. (96), this implies

E
[∫ ∞

0

e−
∫ s
0 (r+ζ̂u)duζ̂s

(
J − c

)
ds

]
≤ JU(ν0) + lim

t→∞
E
[∫ t

0

e−
∫ s
0 (r+ζ̂u)duJUν νσνdWνs

]
(98)

= JU(ν0) (99)

where the final equality follows from the fact that for each t ≥ 0 we have

E
[∫ t

0

(
e−

∫ s
0 (r+ζ̂u)duJUν νsσν

)2

ds

]
< E

[∫ t

0

e−2rs(Kνsσν)
2ds

]
<∞ (100)

and therefore the stochastic integral is a martingale (see, e.g., Corollary 3 in Ch. II.6 of

Protter (2003)).

Owing to the representation for the expected trading profits of an arbitrary strategy in

eq. (71), it follows from eq. (99) that our candidate value function JU is an upper bound

for expected profit for the trader under any arbitrary strategy {ζ̂t} ∈ [0, ζ] and associated

arrival time τ

JU(ν0) ≥ E

[
1{τ<∞}J(ντ )−

∫ min{τ,T}

0

c(ζ̂s)ds

]
. (101)

It remains to show that the candidate strategy yields expected profit equal to JU(ν0).

Return to eq. (95), in which the inequality now becomes an equality due to the fact that our

candidate strategy attains the maximum in the HJB equation. Rearranging, we have∫ t

0

e−
∫ s
0 (r+ζu)duζs

(
J − c

)
ds = JU(ν0) +

∫ t

0

e−
∫ s
0 (r+ζu)duJUν νσνdWνs − e−

∫ t
0 (r+ζu)duJU(νt)

(102)

Again taking expectations and considering t→∞, in order to demonstrate the optimality

of the strategy it suffices to show lim supt→∞ E
[
e−

∫ t
0 (r+ζu)duJU(νt)

]
= 0 since JU ≥ 0.

However, this follows immediately since

e−
∫ t
0 (r+ζu)duJU(νt) ≤ e−rtJ = e−rtKνt (103)
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where JU ≤ J follows from the fact that J − JU is strictly increasing, as shown above, and

J(0)− JU(0) = 0. Therefore,

lim sup
t→∞

E[e−
∫ t
0 (r+ζu)duJU(νt)] ≤ lim sup

t→∞
Kν

(µν−r)t
0 = 0 (104)

since µν < r, which establishes the optimality of the posited research strategy.

Proof of Proposition 3. Research occurs the first time that ν hits ν∗ from below, as long

as this occurs before time T when the asset payoff is revealed. We begin by characterizing

the distribution of the first hitting time TR = inf{t ≥ 0 : νt ≥ ν∗} and then account for the

possibility that payoff is publicly revealed before this time. Note that

νt ≥ ν∗ ⇔ log νt ≥ log ν∗ (105)

⇔ log(ν0) +

(
µν −

1

2
σ2
ν

)
t+ σνWνt ≥ log(ν∗) (106)

⇔ 1

σν

(
µν −

1

2
σ2
ν

)
t+Wνt ≥

1

σν
log(ν∗/ν0) (107)

so that it is equivalent to find the first time that a standard Brownian motion with drift
1
σν

(
µν − 1

2
σ2
ν

)
hits 1

σν
log(ν∗/ν0). It follows from Karatzas and Shreve (1998) (p.197, eq. (5.12))

that

P(TR ∈ dt) =

∣∣∣ 1
σν

log(ν∗/ν0)
∣∣∣

√
2πt3

exp

{
− 1

2t

(
1

σν
log(ν∗/ν0)− 1

σν

(
µν −

1

2
σ2
ν

)
t

)2
}

(108)

=
log(ν∗/ν0)

σν
√

2πt3
exp

{
− 1

2t

(
log(ν∗/ν0)−

(
µν − 1

2
σ2
ν

)
t
)2

σ2
ν

}
, (109)

where the second equality rearranges some terms and uses the fact that ν∗ ≥ ν0 by assump-

tion, so log(ν∗/ν0) ≥ 0

Furthermore, from Karatzas and Shreve (1998)(p.197, eq. (5.13)) or by integrating the

density above, we have

P(TR <∞) = exp

{
1

σ2
ν

(
µν −

1

2
σ2
ν

)
log(ν∗/ν0)−

∣∣∣∣ 1

σ2
ν

(
µν −

1

2
σ2
ν

)
log(ν∗/ν0)

∣∣∣∣} (110)

= exp

{
1

σ2
ν

((
µν −

1

2
σ2
ν

)
−
∣∣∣∣µν − 1

2
σ2
ν

∣∣∣∣) log(ν∗/ν0)

}
(111)

= (ν∗/ν0)
1

σ2ν
((µν− 1

2
σ2
ν)−|µν− 1

2
σ2
ν|) (112)
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=

(ν∗/ν0)
2

σ2ν
(µµ− 1

2
σ2
ν) µν − 1

2
σ2
ν < 0

1 µν − 1
2
σ2
ν ≥ 0

(113)

Now, accounting for the possibility that the payoff is publicly revealed before νt reaches

ν∗, we can write the first research time as

τR = TR1{TR≤T} +∞× 1{TR>T} (114)

Hence, for t ∈ [0,∞),

P(τR ∈ dt) = P(TR ∈ dt, T ≥ TR) (115)

= P(T ≥ TR|TR ∈ dt)P(TR ∈ dt) (116)

= e−rtP(TR ∈ dt) (117)

which delivers the expression in the Proposition after substituting for P(TR ∈ dt) from above.

Similarly,

P(τR <∞) = P(T > TR) =

∫ ∞
0

P(T > s)P(TR ∈ ds) =

∫ ∞
0

e−rsP(TR ∈ ds), (118)

and the expression in the Proposition now follows from straightforward, but tedious, inte-

gration.

Note that because

P(τR <∞) = P(TR < T ) = E[P(TR < T |TR)] = E[e−rTR ], (119)

one can also derive the expression for P(τR <∞) as a limiting case of Proposition 6, where

a = 1, b = 0, u = r, and the underlying stochastic process Xt ≡ νt. To do this, set

x∗ = ν∗, and allow the arrival intensity to become arbitrarily large for νt ≥ ν∗ and equal

zero elsewhere: c0 = cL = 0 and cH →∞.

Proof of Proposition 4. Let ζs = ζ1{νs≥ν∗} denote the optimal research strategy, and TI

be the jump time for a Poisson process with this intensity for all s ≥ 0 (i.e., the if one were

to follow the strategy regardless of the disclosure date T ). The amount of time devoted to

research can be expressed as

R(ν) = E

[∫ min{TI ,T}

0

1{νs≥ν∗}ds

]
(120)
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= E
[∫ ∞

0

1{s≤min{TI ,T}}1{νs≥ν∗}ds

]
(121)

= E
[
E
[∫ ∞

0

1{s≤min{TI ,T}}1{νs≥ν∗}ds

∣∣∣∣{νt}t≥0

]]
(122)

= E
[∫ ∞

0

e−
∫ s
0 (r+ζu)du1{νs≥ν∗}ds

]
(123)

=
1

ζ
E
[∫ ∞

0

e−
∫ s
0 (r+ζu)duζsds

]
, (124)

where the first equality is the definition of expected research time, the second equality writes

the upper limit of the integral using indicator function notation, and the third equality uses

the law of iterated expectations and conditions on the entire history of {νt}. The fourth

equality uses the fact that min{τ, T} is the first jump time of the sum of two independent

Poisson processes, one with intensity ζ that tracks the information arrival date and one with

intensity r that tracks the disclosure date. The final equality simply multiplies and divides

by ζ and uses the definition of the research intensity process ζs.

We can now evaluate the expectation as a special case of Proposition 6 with a = 1, b = 0,

u = r, and the underlying stochastic process Xt ≡ νt. To do this, set x∗ = ν∗, and set the

intensity parameters as c0 = cL = 0 and cH = ζ.

Proof of Proposition 5. As in the previous proof, let ζs = ζ1{νs≥ν∗} denote the optimal

research strategy, and TI be the jump time for a Poisson process with this intensity for all

s ≥ 0 (i.e., the if one were to follow the strategy regardless of the disclosure date T ). The

probability of information arrival can be expressed as

P(τ <∞) = P(TI < T ) (125)

= E[P(TI < T |TI)] (126)

= E[e−rTI ]. (127)

The explicit expression in the statement of the Proposition now follows as a special case

of Proposition 6 with a = 1, b = 0, u = r, and the underlying stochastic process Xt ≡ νt.

To do this, set x∗ = ν∗, and set the intensity parameters as c0 = cL = 0 and cH = ζ.

A.3 Expressions for price informativeness and market liquidity

This subsection derives expressions for discounted expected price informativeness and price

impact that are used for the plots in Section 6. As in earlier proofs, we let ζs = ζ1{νs≥ν∗}

denote the optimal research strategy and let TI denote the first jump time of a Poisson

process with intensity ζs for all s ≥ 0. We formalize the results in the following Proposition:
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Proposition 7. The discounted, expected price informativeness is:

PI ≡ E
[
(r + ρ)

∫ T

0

e−ρsPIsds

]
(128)

=
Ψ0

Ψ0 + Ω

2(r − µν)
r + ρ+ 2(r − µν)

E
[
e−(r+ρ)TI

]
, (129)

where E
[
e−(r+ρ)TI

]
can be evaluated as a special case of Proposition 6 with a = 1, b = 0, u =

r + ρ and Xt ≡ νt, with x∗ = ν∗, c0 = cL = 0, and cH = ζ.

And the discounted, expected price impact is

λ ≡ E
[
(r + ρ)

∫ T

0

e−ρsλsds

]
(130)

=
√

2 (r − µν) Ψ0
1

2r + ρ− σ2
ν

E
[
e−(r+ρ)TI

1

νTI

]
, (131)

where E
[
e−(r+ρ)TI 1

νTI

]
can be evaluated as a special case of Proposition 6 with a = 0, b =

1, u = r + ρ and Xt ≡ 1
νt

, with x∗ = 1
ν∗

, c0 = cH = 0, and cL = ζ.

Proof of Proposition 7.

Consider first price informativeness. Note that prior to information arrival, t ≤ min{TI , T},
we have PIt = 0, so it suffices to compute

E
[
(r + ρ)

∫ T

0

e−ρsPIsds

]
= (r + ρ)E

[
1{TI≤T}

∫ T

TI

e−ρsPIsds

]
(132)

= (r + ρ)E
[∫ ∞

0

1{TI≤T}1{TI≤s}1{s≤T}e
−ρsPIsds

]
(133)

= (r + ρ)E
[∫ ∞

0

1{TI≤s}1{s≤T}e
−ρsPIsds

]
(134)

= (r + ρ)E
[∫ ∞

0

1{TI≤s}e
−(r+ρ)sPIsds

]
(135)

= (r + ρ)E
[∫ ∞

0

1{TI≤s}e
−(r+ρ)sPIsds

]
(136)

Recall that PIs = Σ0−Σs
Σ0

and

Σt = Ω + Ψt (137)

=

Ω + Ψ0 0 ≤ t < τ

Ω + e−2(r−µν)(t−τ)Ψ0 t ≥ τ
(138)
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=

Ω + Ψ0 0 ≤ t < min{T, TI}

Ω + e−2(r−µν)(t−TI)Ψ0 t ≥ TI , if TI ≤ T
. (139)

Hence

(r + ρ)E
[∫ ∞

0

1{TI≤s}e
−(r+ρ)sPIsds

]
(140)

= (r + ρ)
Ψ0

Σ0

E
[∫ ∞

TI

e−(r+ρ)s
(
1− e−2(r−µν)(s−TI)

)
ds

]
(141)

= (r + ρ)
Ψ0

Σ0

E
[
e−(r+ρ)TI

∫ ∞
TI

e−(r+ρ)(s−TI)
(
1− e−2(r−µν)(s−TI)

)
ds

]
(142)

= (r + ρ)
Ψ0

Σ0

E
[
e−(r+ρ)TI

2 (r − µν)
(r + ρ)(r + ρ+ 2 (r − µν))

]
(143)

=
Ψ0

Σ0

2 (r − µν)
r + ρ+ 2 (r − µν)

E
[
e−(r+ρ)TI

]
(144)

Consider now discounted price impact E
[
(r + ρ)

∫ T
0
e−ρsλsds

]
. Recall that

λt =

0 0 ≤ t < τ

e−(r−µν)(t−τ)
√

2(r−µν)Ψ0

ν2t
t ≥ τ

(145)

=

0 0 ≤ t < min{T, TI}

e−(r−µν)(t−TI)
√

2(r−µν)Ψ0

ν2t
t ≥ TI , if TI ≤ T

. (146)

We have

E
[∫ T

0

e−ρsλsds

]
= E

[
1{TI≤T}

∫ T

TI

e−ρsλsds

]
(147)

=
√

2 (r − µν) Ψ0E
[
1{TI≤T}

∫ T

TI

e−ρse−(r−µν)(s−TI) 1

νs
ds

]
(148)

=
√

2 (r − µν) Ψ0E
[∫ ∞

0

1{TI≤T}1{TI≤s}1{s≤T}e
−ρse−(r−µν)(s−TI) 1

νs
ds

]
(149)

=
√

2 (r − µν) Ψ0E
[∫ ∞

0

1{TI≤s}e
−(r+ρ)se−(r−µν)(s−TI) 1

νs
ds

]
(150)

=
√

2 (r − µν) Ψ0E
[
e−(r+ρ)TI

∫ ∞
TI

e−(r+ρ+(r−µν)(s−TI)) 1

νs
ds

]
. (151)
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The process 1
νt

is a geometric Brownian motion

d

(
1

νt

)
=
(
σ2
ν − µν

) 1

νt
dt− σν

1

νt
dWνt, (152)

so, for s ≥ TI ,

1

νs
=

1

νTI
e(σ

2
ν−µν− 1

2
σ2
ν)(s−TI)−σν(Wνs−WνTI ), (153)

and therefore

E
[
e−(r+ρ)TI

∫ ∞
TI

e−(r+ρ+(r−µν)(s−TI)) 1

νs
ds

]
(154)

= E
[
e−(r+ρ)TI

1

νTI

∫ ∞
TI

e−(r+ρ+(r−µν)(s−TI))e(σ2
ν−µν)(s−TI)ds

]
(155)

=
1

2r + ρ− σ2
ν

E
[
e−(r+ρ)TI

1

νTI

]
. (156)
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