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a b s t r a c t

We develop a model where some investors are uncertain whether others are trading on
informative signals or noise. Uncertainty about others leads to a nonlinear price that
reacts asymmetrically to news. We incorporate this uncertainty into a dynamic setting
where traders gradually learn about others and show that it generates empirically
relevant return dynamics: expected returns are stochastic but predictable, and volatility
exhibits clustering and the “leverage” effect. The model nests both the rational expecta-
tions (RE) and differences of opinions (DO) approaches and highlights a link between
disagreement about fundamentals and uncertainty about other traders.
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1. Introduction

As early as Keynes (1936), it has been recognized that
investors face uncertainty not only about fundamentals,
but also about the underlying characteristics and trading
motives of other market participants. Asset pricing models
have focused primarily on the former, taking the latter as
common knowledge. For instance, in Grossman and
Stiglitz (1980), uninformed investors know the number
of informed investors in the market and the precision of
their signals. Similarly, each investor in Hellwig (1980) is
certain about both the number of other investors and the
distribution of their signals. Arguably, this requires an
unrealistic degree of knowledge about the economy — it
seems unlikely that investors who are uncertain about
fundamentals, know, with certainty, whether other inves-
tors are privately informed.
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We develop a framework in which rational uninformed
traders are uncertain whether others trade on informative
signals or noise. This uncertainty generates an equilibrium
price that is nonlinear in the information about funda-
mentals, and reacts more strongly to bad news than to
good news. When risk considerations are large enough,
the price may even decrease with additional good news.
We incorporate this uncertainty into a dynamic environ-
ment in which uninformed traders gradually learn
whether others are informed by observing prices and
dividends. Return dynamics are also asymmetric — future
return moments are more sensitive to lagged returns for
negative realizations. The combination of uncertainty and
learning generates predictability in expected returns, and
can lead to volatility clustering, in which large absolute
return realizations are followed by higher expected
returns and volatility.

In order to explain the intuition for these results, a brief
overview of the model is useful. There is a risky asset in
fixed supply that pays a stream of dividends, and there are
two groups of investors in the market at any given time.
The first group of traders (θ) may be one of two types.
They are either informed investors (θ¼ I), such as institu-
tions, who trade on a signal that is informative about next
period's dividend. Or, they are noise traders (θ¼N), such
as retail investors, who trade on a spurious signal that they
(incorrectly) believe to be informative.1 The second group
consists of uninformed rational traders (U), such as hedge
funds or liquidity providers, who do not have private
information and are uncertain about the type of other
investors in the market. All agents have mean–variance
preferences and trade competitively in a centralized mar-
ket by submitting limit orders.

Our benchmark model is static: uninformed traders
face uncertainty about whether θ traders are informed but
they do not learn about them. In equilibrium, the price and
residual demand reveals the signal of the θ investors to
uninformed traders, but they are uncertain whether it is
informative. Because of this, a surprise in the signal (in
either direction) increases the uninformed traders' poster-
ior variance about fundamentals. As a result, the equili-
brium price is (i) nonlinear in the signal, and (ii) depends
on the probability that uninformed traders assign to θ
investors being informed.

An immediate implication is that the price reacts
asymmetrically to information about fundamentals.2

Because they are uncertain whether it is informative, a
surprise in the signal increases the uninformed investors'
posterior variance about fundamentals. A negative sur-
prise also lowers their expectation about fundamentals

and both effects lead to a decrease in the price. A positive
surprise increases their conditional expectation, but is
offset by the increase in uncertainty. As a result, the price
is more sensitive to negative surprises than to positive
surprises. When the overall risk concerns are sufficiently
large, the effect of the additional uncertainty dominates
and the price decreases following additional good news
about fundamentals. This occurs despite the fact that with
good news, θ investors demand strictly more of the asset
at any price.

We extend the benchmark model to a dynamic setting.
The asymmetry in price reactions to news about funda-
mentals leads to an asymmetry in return dynamics. Using
simulated data, we find that the sensitivity of future return
moments to lagged returns is larger for negative realiza-
tions of lagged returns. This is consistent with the so-
called “leverage” effect, though the mechanism in our
model underlying this prediction does not rely on lever-
age.3 Rather, it is driven by uninformed traders' uncer-
tainty about others, which causes return changes
associated with negative realizations of the θ investor's
signal to be larger than the changes corresponding to
positive realizations of the same magnitude.

An additional feature of the dynamic setting is that,
over time, uninformed traders update their beliefs about
whether others are informed using realized prices and
dividends. The endogenous evolution of their beliefs
(combined with (i) and (ii) above) implies that expected
returns and volatility are stochastic, but predictable, and
vary with uninformed traders' beliefs about others. Learn-
ing about whether others are informed also naturally gives
rise to volatility clustering.4 Since uninformed traders form
their conditional expectations of next period's dividends
based on their inference about other traders' signal, a
dividend realization that is far from their conditional
expectation (i.e., a large dividend surprise) leads them to
revise downward the probability of others being informed.
In other words, large dividend surprises, which are accom-
panied by large absolute return realizations, reduce the
likelihood that θ investors are informed. This can increase
uninformed traders' overall uncertainty and, therefore,
leads to higher volatility and higher expected returns in
future periods.

Our framework bridges the gap between two common
approaches to modeling belief heterogeneity and disagree-
ment across investors: rational expectations (RE) and
difference of opinions (DO). In DO models, disagreement
arises due to heterogeneous priors, while in RE models, it
is due to differences in information. Both are nested within
our framework — when the probability that other inves-
tors are informed is one (zero), our model is a standard RE

1 DeLong, Shleifer, Summers, and Waldmann (1990), Hirshleifer,
Subrahmanyam, and Titman (2006), and Mendel and Shleifer (2012)
use similar specifications for noise (or sentiment) traders.

2 Asymmetric price reactions have been well documented in the
empirical literature. For instance, Campbell and Hentschel (1992) docu-
ment asymmetric price reactions to dividend shocks at the aggregate
stock market level. At the firm level, using a sample of voluntary
disclosures, Skinner (1994) documents that the price reaction to bad
news is, on average, twice as large as that for good news. Skinner and
Sloan (2002) document that the price response to negative earnings
surprises is larger, especially for growth stocks.

3 The leverage effect, which refers to the negative correlation
between lagged returns and future volatility, has also been widely
documented empirically (e.g., Black, 1976; Christie, 1982; Schwert,
1989; Glosten, Jagannathan, and Runkle, 1993; Andersen, Bollerslev,
Diebold, and Ebens, 2001; Bollerslev, Litvinova, and Tauchen, 2006).

4 Since Mandelbrot (1963), a large number of papers have documen-
ted the phenomenon of volatility clustering for various asset classes, and
at different frequencies. See Bollerslev, Chou, and Kroner (1992) for an
early survey.
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(DO) model. In general, the nature of the uncertainty about
whether others are informed, which is inherently missing
from RE and DO models, affects the degree of disagree-
ment across investors. When there is a high probability of
other investors being informed, all investors agree that the
signal is informative and disagreement is low. When there
is a low probability of others being informed, disagree-
ment is high since θ investors think the signal is informa-
tive while uninformed traders believe it is noise.

Furthermore, the model predicts that the relation
between uninformed investors' beliefs about others tra-
ders and returns is nonmonotonic and varies over time as
uninformed traders' beliefs evolve. This dependence of
disagreement and returns on the likelihood of informed
trading has been overlooked in the existing literature. As a
result, the standard empirical approach, which assumes a
stable, monotonic relation between disagreement and
returns, may be misspecified.5 Importantly, our analysis
suggests that in order to empirically uncover the under-
lying relationship, one must condition on the likelihood
that investors assign to others being informed.

Our noise trader specification — as investors who trade
on noise as if it were information — is different from the
typical noisy supply approach (e.g., Grossman and Stiglitz,
1980). In Section 6, we explore the robustness of our
results by considering a setting in which N investors know
they are uninformed, but the aggregate supply of the asset
is noisy. We show that this alternative specification gen-
erates qualitatively similar results to our benchmark
model. From this analysis, we conclude that the positive
implications of our theory are not driven by a particular
specification of noise trading. Rather, the key feature is
that some investors face uncertainty about whether other
investors are informed.

The rest of the paper is organized as follows. We
discuss the related literature in the next section. In
Section 3, we solve the benchmark model, which allows
us to highlight the intuition for many of our results
transparently in a static setting. Section 4 extends the
analysis to a dynamic setting, which allows us to focus on
the effects of learning, and Section 5 discusses the impli-
cations of the model. In Section 6, we study robustness
under an alternative specification in which the supply of
the asset is noisy. Section 7 concludes. Proofs and supple-
mentary analysis are located in the Appendices.

2. Related literature

A small number of recent asset-pricing models consider
the effects of uncertainty about other traders. Easley,
O'Hara, and Yang (2014) study a single-period economy
in which ambiguity-averse investors face uncertainty
about the effective risk tolerance of other traders and
show that reducing ambiguity decreases expected returns.

Gao, Song, and Wang (2013) also explore a static environ-
ment where risk-averse, uninformed traders are uncertain
whether the proportion of informed traders is either low
or high.6 They show that in addition to the fully revealing
equilibrium, a continuum of partially revealing rational
expectations equilibria can exist. One advantage of our
benchmark model relative to theirs is that we obtain a
unique equilibrium, which facilitates a sharper set of
predictions. More generally, by analyzing a dynamic set-
ting, we contribute to this literature by exploring the
effects of learning about others on return dynamics.

Our paper is also related to a subset of the market
microstructure literature that studies environments where
investors face multiple dimensions of uncertainty. Gervais
(1997) considers a static Glosten and Milgrom (1985)
model in which the market maker is uncertain about the
precision of informed trader's signal. Romer (1993) and
Avery and Zemsky (1998) consider models in which the
proportion of informed traders is uncertain (but is not
learned over time). Li (2012) and Back, Crotty, and Li,
(2013) consider generalizations of the continuous-time,
Kyle-model of Back (1992) that allow for uncertainty about
whether the strategic trader is informed or not. While
these papers focus on the market microstructure implica-
tions in settings with risk-neutral agents (e.g., market
depth, insider's profit), we analyze a setting with risk-
averse investors and focus on the implications for risk-
premia and volatility (e.g., predictability, clustering).7

While the majority of the rational expectations litera-
ture has focused on linear equilibria in an exponential-
normal setting, a number of papers, including most
recently Breon-Drish (2012) and Albagli, Hellwig, and
Tsyvinski (2011), have explored the effects of relaxing the
assumption that fundamental shocks and signals are
normally distributed in static environments.8 Our paper
contributes to this literature in two ways. First, we develop
a model in which a nonlinear price function arises because
of the composition of traders in the market and the
information structure rather than the distribution of pay-
offs.9 Second, we explore the implications of the nonli-
nearity on return dynamics.

5 The empirical evidence on how returns vary with disagreement
and information quality is inconclusive. For instance, Diether, Malloy, and
Scherbina (2002) and Johnson (2004) document a negative relation
between disagreement (as proxied by analyst forecast dispersion) and
expected returns, but Qu, Starks, and Yan (2004) and Banerjee (2011)
document a positive relation.

6 In a less closely related environment, Stein (2009) explores market
efficiency in a setting where arbitrageurs are uncertain about the total
arbitrage capacity in the market.

7 In a series of papers, Easley, O'Hara and co-authors analyze the
probability of informed trading (PIN) in a sequential trade model similar
to Glosten and Milgrom (1985) (e.g., Easley, Kiefer, and O'Hara, 1997a,b;
Easley, Hvidkjaer, and O'Hara, 2002). In these papers, the risk-neutral
market maker updates her valuation of the asset based on whether a
specific trade is informed or not, but does not face uncertainty about the
presence of informed traders in the market. In contrast, the uninformed
investors in our model must update their beliefs, not only about the value
of the asset, but also about the probability of other investors being
informed, which leads to nonlinearity in prices.

8 Earlier papers in this literature include Ausubel (1990), Foster and
Viswanathan (1993), Rochet and Vila (1994), DeMarzo and Skiadas
(1998), Barlevy and Veronesi (2000), and Spiegel and Subrahmanyam
(2000).

9 Specifically, even though shocks to fundamentals and signals are
normally distributed in our model, since the uninformed investor is
uncertain whether other investors are informed, her beliefs about the
price signal are given by a mixture of normals distribution.
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A related nonlinearity arises in the incomplete infor-
mation, regime-switching models of David (1997),
Veronesi (1999), David and Veronesi (2013, 2014), and
others, in which a representative investor updates her
beliefs about the current macroeconomic regime using
signals about fundamental shocks (e.g., dividends). In
these models, the nonlinearity in the representative inves-
tor's filtering problem leads to time-variation in uncer-
tainty and, therefore, variation in expected returns and
stochastic volatility. Stochastic volatility also arises in
noisy rational expectations models, like Collin-Dufresne
and Fos (2012), in which noise trader volatility is stochastic
and persistent. These features arise endogenously in our
model even though shocks to both fundamentals and news
are independent and identically distributed (i.i.d.)

Cao, Coval, and Hirshleifer (2002) show that limited
participation can also generate stochastic volatility, as well
as large price movements in response to little, or no,
apparent information.10 Because of participation costs,
sidelined investors update the interpretation of their
private signals based on what they learn from prices, and
only enter the market once they are sufficiently confident.
In our model, the friction is purely informational —

uninformed investors trade less aggressively because they
are uncertain about the trading motives of other investors,
and consequently, the informativeness of the price.

Finally, our model contributes to the differences of
opinion (DO) literature, which has been important in
generating empirically observed features of price and
volume dynamics (e.g., Harrison and Kreps, 1978; Harris
and Raviv, 1993; Kandel and Pearson, 1995; Scheinkman
and Xiong, 2003; Banerjee and Kremer, 2010). With the
exception of Banerjee, Kaniel, and Kremer (2009), the DO
models in the literature have largely ignored the role of
learning from prices, since investors agree to disagree
about fundamentals, and therefore find the information
in the price irrelevant.11 In our model, investors may
exhibit differences of opinion (since all θ investors believe
their signals are payoff relevant), but uninformed investors
still condition on prices to update their beliefs about
fundamentals.

3. The benchmark model

This section presents the analysis for the (two-date)
benchmark model. This simple setting will allow us to
isolate the effects of uncertainty about other traders from
the effects of learning about them, which obtain in the
dynamic setting of Section 4. The static model also allows
us to solve for equilibrium prices in closed form and
develop the underlying intuition more transparently.

Agents: There are three different groups of traders in
the model. Traders within each group are identical and
behave competitively.

# Informed traders (I): I traders are rational agents who
receive a private and informative signal about the
dividend (e.g., institutional investors).

# Noise/sentiment traders (N). N traders are irrational
agents who observe and trade on a signal that they
believe is informative, but is purely noise (e.g., retail
investors).

# Uninformed traders ðUÞ. U traders are rational agents
who receive no private signal about fundamentals but
update their beliefs by observing prices and quantities
(e.g., hedge funds or liquidity providers).

The key feature we want to capture in the benchmark
model is that uninformed traders are uncertain about who
they are trading against. To this end, we assume that either
I or N traders are present in the market but not both, and
further, U traders do not know which type of other traders
they are facing. We let θAfI;Ng denote the random
variable that represents the type of other traders that are
present in the market.12

Securities: There are two assets: a risk-free asset and a
risky asset. The gross risk-free rate is normalized to
R& 1þr41. At date 1, the risky asset pays a dividend
D¼ μþd, where μ40 and d'N ð0;σ2Þ. The aggregate
supply of the risky asset is constant and equal to Z. At
date 0, the risky asset is traded in a competitive market.
Let P denote the market clearing price and Q &D(RP
denote the excess (dollar) return per share of the
risky asset.

Information and beliefs: The θ traders are either
informed traders (i.e., θ¼ I) or noise traders (i.e., θ¼N),
where the prior probability of being informed is
π0 & Prðθ¼ IÞ. Prior to submitting their order, θ investors
receive a signal Sθ of the form:

Sθ ¼
dþε if θ¼ I
uþε if θ¼N;

(

where ε'N ð0;σ2
εÞ, u is distributed identically to d, and

ðε;u; dÞ are mutually independent.13 Conditional on θ¼ I,
the informativeness of the signal is captured by the signal-
to-noise ratio:

λ&
cov½SI ; d*
var½SI *

¼
σ2

σ2þσ2
ε
:

10 Other papers that study the informational effects of limited
participation include Romer (1993), Lee (1998), Hong and Stein (2003),
and Alti, Kaniel, and Yoeli (2012).

11 In the DO model of Banerjee, Kaniel, and Kremer (2009), investors
agree to disagree but use the price to update their beliefs about higher
order expectations, which is useful for them to speculate against
each other.

12 One could also consider a setting in which all three types of
traders are present in the market, and uninformed traders are uncertain
about the proportion of informed traders vs. noise traders they face. We
discuss such a setting in Section 7.

13 As we shall see, the assumption that u and d are identically
distributed implies that the optimal demand for θ investors is also
identically distributed across types, and consequently, uninformed tra-
ders do not learn about θ from the price and residual demand. If we relax
the assumption, uninformed traders would learn about θ even in a static
setting. We maintain the assumption in order to separately characterize
the effects of uncertainty about others in the benchmark model and the
effects of learning about others that arise in the dynamic setting of
Section 4.
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Noise traders (θ¼N) behave as if their signal has the same
information content as that of I investors (i.e., that the
signal-to-noise ratio of SN is λ), when in fact it is uncorre-
lated with dividends.

Preferences: Traders have mean-variance preferences
over terminal wealth, and trade competitively (i.e., are
price takers). In particular, each trader belonging to group
iAfI;N;Ug submits a limit order, xi, such that

xi ¼ arg max
x

Ei WiRþxQ½ *(
α
2
vari WiRþxQ½ *: ð1Þ

We use Ei½+* and vari½+* to denote the conditional expecta-
tion and variance given the trader's information set, Wi

denotes investor i's wealth, and α represents the degree of
risk aversion. Given these preferences, investor i's optimal
demand for the risky asset is given by

xi ¼
Ei½Q *

α vari½Q *
¼
Ei D½ *(RP
α vari D½ *

: ð2Þ

The (reduced-form) specification for investor preferences
in Eq. (1) facilitates tractability, since it leads to optimal
demand of the conventional form given by Eq. (2).

3.1. Remarks on the model

The two standard approaches to modeling belief het-
erogeneity are nested in our framework. On the one hand,
when π0 ¼ 1, investors have common priors over the joint
distribution of payoffs and signals, as in a rational expec-
tations equilibrium. On the other hand, when π0 ¼ 0,
investors “agree to disagree” about the distribution of Sθ
and d, and so exhibit a difference of opinion.14

In our benchmark model, noise trading arises from
investors who trade on a spurious signal and we consider
the extreme case in which their signal is not informative.
This specification is in line with models of utility-
maximizing traders that are subject to sentiment shocks
(e.g., DeLong, Shleifer, Summers, and Waldmann, 1990;
Hirshleifer, Subrahmanyam, and Titman, 2006; Mendel
and Shleifer, 2012).15 However, it differs from the typical
assumptions made in the noisy RE literature (e.g., aggre-
gate supply shocks). In Section 6, we consider a setting in
which the aggregate supply of the asset is noisy, and
derive qualitatively similar results to our benchmark
model: the price remains nonlinear in the I investors
information, which leads to asymmetric price reactions.
This analysis suggests that our results are robust to the
particular specification of noise trading that is assumed
and the key feature for our conclusions pertains to the
uncertainty that U investors face about whether θ inves-
tors are informed.

Our noise trader specification offers several advantages
over the noisy supply approach. First, it allows us to

encapsulate both the RE and DO models as extreme cases,
and facilitates the interpretation of disagreement that
would not obtain in a reduced-form specification. Second,
it isolates the effects of uncertainty about other traders
from the effects of learning about them. While both forces
are important, we find it pedagogically easier to first
explain the effects of uncertainty and then incorporate
learning. Finally, this specification also allows us to derive
closed-form solutions for the nonlinear price in the static
model, which facilitates analytic comparative statics and
clearly illustrates the role of uncertainty about others.16

One can interpret the behavior of noise traders in our
model as a form of overconfidence (e.g., Daniel, Hirshleifer,
and Subrahmanyam, 1998; Odean, 1998), which has been
shown to have important implications for trading behavior
in financial markets (e.g., Odean, 1999; Barber and Odean,
2000; Grinblatt and Keloharju, 2000). Our results remain
qualitatively the same if, instead, noise traders receive an
informative signal about the asset, but overestimate its
informativeness. In particular, suppose the θ¼N investor
receives a signal

SN ¼ψdþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1(ψ2
" #q

uþε; ð3Þ

for some ψA 0;1ð Þ, but believes she observes a signal
SN ¼ dþε. In this case, the true informativeness of her
signal is given by

cov SN ; d
$ %

var SN½ *
¼

ψσ2

σ2þσ2
e
¼ψλ; ð4Þ

while she believes the informativeness of the signal is λ. As
mentioned earlier, we focus on the extreme case in which
ψ ¼ 0 for ease of exposition.

As is common in the literature on asymmetric informa-
tion in financial markets, we consider a model with a
single risky asset (e.g., Grossman and Stiglitz, 1980; Kyle,
1985; Wang, 1993). This assumption is made primarily for
expositional purposes. Given that there is empirical evi-
dence for many of our predictions for both portfolio and
individual asset returns (e.g., asymmetric price reactions,
time-varying expected returns, volatility clustering), the
mechanism that we highlight may be applicable at both
the aggregate-level and the firm-level (due to limits to
arbitrage or other frictions). One could interpret the risky
asset in the model as an industry-level portfolio, which
bears aggregate risk, and about which investors may have
private information.

As we will show below, in the unique equilibrium of
the benchmark model, the θ investors signal is perfectly
revealed to U investors through prices and quantities.
Thus, the implications of the benchmark model remain
unchanged if we instead assume that Sθ is a public signal,
and U traders face uncertainty about whether it is infor-
mative about fundamentals. This equivalence facilitates an
alternative interpretation of Sθ as public news. In14 See Morris (1995) for a discussion of the implications of relaxing

the common prior assumption.
15 One difference from DeLong, Shleifer, Summers, and Waldmann

(1990), Hirshleifer, Subrahmanyam, and Titman (2006), and Mendel and
Shleifer (2012) is that, in our model, noise traders are not present in all
states (e.g., when θ¼ I). That is, we have introduced the minimal amount
of noise trading necessary to avoid trivial outcomes. Of course, one could
introduce additional noise trading across all states if desired.

16 Our specification is also arguably closer to Black's (1986) notion of
noise traders than aggregate supply shocks: “Noise trading is trading on
noise as if it were information… Perhaps they think the noise they are
trading on is information.” It also appears to have empirical relevance (see,
e.g., Shleifer and Summers, 1990; Hirshleifer, 2001).
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alternative specifications (e.g., in a model with supply
shocks as in Section 6), equilibrium prices and quantities
need not fully reveal the signal. The advantage of our
benchmark setting relative to this alternative specification
is that it allows us to isolate the effects of uncertainty
about the quality of the information (Sections 3.2– 3.4)
from learning about that quality (Section 4). Both of these
forces are present in the static model with supply shocks
(Section 6).

3.2. Equilibrium characterization

An equilibrium consists of a price function for the risky
asset, P, and investor demands, xi, such that: (i) investor i's
demand are optimal, given their beliefs and information,
(i.e., satisfy Eq. (2)) and (ii) the market for the risky asset
clears i.e.,

xUþxθ ¼ Z: ð5Þ

Since there are no additional sources of noise, one expects
that in equilibrium, uninformed traders will be able to
infer Sθ from the price and the aggregate residual supply
and use this to update their beliefs about the dividend. As
we will see, because the equilibrium price is nonmono-
tonic in Sθ , observing the price alone does not necessarily
reveal the signal Sθ . We follow Kreps (1977) and allow the
U traders to condition their order on both price and
quantity.17

Definition 1. An equilibrium is signal-revealing, if the
equilibrium price and allocations reveal Sθ , but not θ, to
U traders. Formally, that Sθ is measurable with respect to
U's information set but θ is not.

Because U is uncertain about θ, a signal-revealing
equilibrium differs from a fully revealing equilibrium in
which both Sθ and θ are revealed. Below we show that the
unique equilibrium is signal-revealing.

Regardless of type, a θ investor believes that her signal
is informative about dividends. This implies that the
conditional beliefs of θ investors are symmetric across
θAfI;Ng and are given by

Eθ½d* ¼ λSθ and varθ½d* ¼ σ2ð1(λÞ: ð6Þ

In a signal-revealing equilibrium, U traders face uncer-
tainty about θ and their beliefs will generically differ from
those of a θ investor. Conditional on inferring the signal,
Sθ , U's beliefs about d are given by

EU ½d* ¼ π0EU ½djθ¼ I*þð1(π0ÞEU ½djθ¼N*

¼ π0λSθ ð7Þ

and

varU ½d* ¼ π0σ2ð1(λÞþð1(π0Þσ2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
expected conditional variance

þ π0ð1(π0ÞðλSθÞ2:|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
variance of conditional expectation

ð8Þ

Eq. (8) highlights the key novel force of the benchmark
model: U traders' conditional variance depends on the
realization of the signal Sθ . If U traders are certain that θ is
informed (i.e., π0 ¼ 1), then their conditional expectation
of d depends on Sθ . If U traders are certain that θ is not
informed (i.e., π0 ¼ 0), then their conditional expectation is
identical to their prior and is unaffected by Sθ . In either
case, since they are certain about θ, their conditional
variance is independent of Sθ . When U traders are uncer-
tain about θ, the variance of their conditional expectation
is (generically) not zero, and this leads to additional
uncertainty about dividends. Furthermore, this additional
uncertainty is increasing in the magnitude of the signal:
larger realizations of the signal are further from the
signal's unconditional mean (recall E½Sθ* ¼ 0), and there-
fore will increase the disparity between the expected
dividend conditional on θ¼ I and the expected dividend
conditional on θ¼N.18 As we shall see, this dependence of
U traders' conditional variance on the realization of the
signal plays an important role in our results.

The following result characterizes the equilibrium of
the benchmark model.

Proposition 2. In the benchmark model, there exists a unique
equilibrium. This equilibrium is signal-revealing and the price
is given by

P ¼
1
R
μþ κþ 1(κð Þπ0ð ÞλSθ(κασ2 1(λ

" #
Z

" #
; ð9Þ

where the weight κ is given by

κ &
varU d

$ %

varU d
$ %

þvarθ d
$ %

¼
σ2ð1(π0λÞþπ0ð1(π0ÞðλSθÞ2

σ2ð1(λÞþσ2ð1(π0λÞþπ0ð1(π0ÞðλSθÞ2
A

1
2
;1

' (
:

ð10Þ

The equilibrium price can be decomposed into a market
expectations component and a risk-premium component,
since

P ¼
1
R

μþκEθ d
$ %

þð1(κÞEU d
$ %

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
expectations

(κασ2ð1(λÞZ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
risk premium

0

B@

1

CA: ð11Þ

The market expectations component is a weighted average
of investors' conditional expectations of future dividends,
where the weight on θ investors is given by the relative
precision of their beliefs, as measured by κ. Intuitively,17 As in one of the examples in Kreps (1977), an equilibrium fails to

exist if we do not allow U traders to condition on both price and quantity.
To see this, suppose the price is signal-revealing; then, as we show in the
paper, it must be nonmonotonic in Sθ , which is a contradiction. Suppose,
instead, the price is not signal-revealing. Then the uninformed investor
demands the same amount at the same price, but the θ investor demands
different amounts, which means the price must be different. Again, this is
a contradiction.

18 That some realizations increase uncertainty has a similar flavor to
Nimark (2014), in which the presence of an exogenous public signal
indicates that extreme events are more likely. In our model, uninformed
investors always observe the price, but more extreme prices increase
their uncertainty about future dividends.
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when U investors are relatively more uncertain (κ closer to
1), the expectations component reflects the conditional
expectation of θ investors more. The risk-premium com-
ponent is increasing in κ — higher uncertainty for U
investors implies a larger price discount.

Clearly, κ plays an important role in determining the
equilibrium price. Fig. 1 provides an illustration of how κ
depends on the signal Sθ and the prior π0. Since the
(perceived) uncertainty of θ investors is weakly less than
that of U investors, κZ1

2. When π0Af0;1g, κ is indepen-
dent of the signal since U investors are certain about
whether the signal is informative. When the realization
of Sθ is zero, κ decreases linearly in π0 — the more likely θ
investors are to be informed, the lower the conditional
variance of U investors, and consequently, the lower is κ.
When Sθ is nonzero, recall that the conditional variance of
U investors is increasing in S2θ and hump-shaped in π0, and
consequently, so is κ. Importantly, κ, and hence the
equilibrium price, depends nonlinearly on Sθ . This

distinguishes our model from standard RE and DO models
as illustrated by Corollary 3.

Corollary 3. When U investors face no uncertainty about
other traders, the price is a linear function of Sθ . More
specifically,

(i) When π0 ¼ 1, the price corresponds to a fully revealing,
rational expectations equilibrium and is given by

P ¼
1
R

μþλSθ(
1
2
ασ2 1(λ

" #
Z

) *
: ð12Þ

(ii) When π0 ¼ 0, the price corresponds to a difference of
opinions model and is given by

P ¼
1
R
μþκ0λSθ(κ0ασ2 1(λ

" #
Z

" #
; ð13Þ

where κ0 ¼ σ2=ðσ2þσ2 1(λ
" #

Þ is a constant.

Returning to expression (11), we see that the risk
aversion coefficient, α, and the aggregate supply of the
asset, Z, scale the risk-premium component, but not the
expectations component. Thus, the product, αZ, deter-
mines the relative role of each component in the price.
When risk aversion is low or the aggregate supply of the
asset is small, the price is primarily driven by the expecta-
tions component. On the other hand, when risk aversion is
high, or the aggregate supply of the asset is large, the risk-
premium component drives the price. As such, it is useful
to characterize separately how each component of the
price behaves. The prior belief, π0, is the key parameter of
interest; comparative statics with respect to π0 help
develop the intuition for the dynamic model, in which πt

evolves over time.

Proposition 4.

(i) The expectations component of the price is increasing in
Sθ , increasing in π0 for Sθ40, and decreasing in π0 for
Sθo0.
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Fig. 1. This figure plots how the relative precision of investors' beliefs, κ,
depends on the signal Sθ and the prior π0.
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(ii) The risk-premium component of the price is hump-
shaped in Sθ around zero, and U-shaped in π0 around
1
2 1( σ2

λS2θ

) *
.

Fig. 2 presents an illustration of these results. Intui-
tively, the comparative statics for the expectations com-
ponent follow because it is a weighted average of
investors' conditional expectations, which are increasing
in Sθ . The risk-premium component of prices depends
(negatively) on the uncertainty faced by the θ investor (i.e.,
σ2ð1(λÞ) scaled by the weight κ. As a result, comparative
statics for the risk-premium termwith respect to π0 and Sθ
are the same as those for κ — it decreases in S2θ , for
π0Að0;1Þ, and is U-shaped in π0.

3.3. Asymmetric price reaction to news

The overall effect of Sθ on the price distinguishes our
model from linear price functions in RE and DO models
that are standard in the literature. While the expectations
component of price is monotonic in Sθ , the risk-premium
component is hump-shaped in Sθ around zero. This
implies that the two components of the price reinforce
each other when there is negative information (Sθo0),
but offset each other when there is positive information
(Sθ40).

Corollary 5. The equilibrium price reacts asymmetrically to
information about fundamentals: it decreases more with bad
news than it increases with good news. For any s40,

d
dSθ

P sð Þo d
dSθ

P (sð Þ:

Since the risk-premium component is bounded, the
expectations component dominates when jSθj is large
enough. However, for Sθ small enough, the risk-premium
component dominates. This means that the price can
actually decrease with additional good news, as documen-
ted by the following proposition.

Proposition 6. For any two signal realizations s1; s2 such that
0os1os2, there exists a γ40 such that if αZ4γ, the
equilibrium price is strictly greater when s1 is realized than
it is when s2 is realized.

Intuitively, if the overall risk concerns in the market (as
measured by αZ) are large enough, more positive news
about fundamentals can have a bigger impact on prices
through the uncertainty it generates for uninformed
investors than through its effect on the market's expecta-
tions about future dividends.

The mechanism through which the asymmetry in
prices arises in our model differs from those in the
regime-switching models of Veronesi (1999) and others.
Specifically, in Veronesi (1999), the asymmetry in price
reaction is driven by uncertainty about whether the
underlying state of the economy is good or bad. The
representative investor “over-reacts” to bad news only if
he believes with sufficiently high probability that the

current state is good, and “under-reacts” to good news
only if he believes that the current state is bad, because
these are the instances in which the realization of the
news increases uncertainty about the underlying state.
Thus, these regime-switching models predict the nature of
the asymmetry is related to the business cycle. In contrast,
the asymmetry in our model is not state-dependent: the
price is more sensitive to bad news even in the absence of
any learning about θ.19 This is because the asymmetry is
driven by uncertainty about the informativeness of the
price signal, not the underlying fundamentals.20

3.4. Expected returns and volatility

We now turn to investigating the moments of returns.
The decomposition in expression (11) implies that excess
returns can be expressed as

Q ¼ d(ðκEθ½d*þð1(κÞEU ½d*Þþκασ2ð1(λÞZ: ð14Þ

Return moments are computed based on the information
set of the U investor, since she has rational expectations.
This also corresponds to the information set of an econo-
metrician who observes the price and quantity of executed
trades as well as dividends. We refer to conditional
expected returns as the expected returns conditional on
all information prior to the realization of the dividend (i.e.,
conditional on the price and residual demand, and conse-
quently, Sθ). Unconditional returns are computed from an
ex ante perspective.

Proposition 7. The conditional expected return and volatility
are given by

E½Q jP; xθ* ¼ (ð1(π0ÞλκSθþκασ2ð1(λÞZ and ð15Þ

var½Q jP; xθ * ¼ σ2ð1(π0λÞþπ0ð1(π0ÞðλSθÞ2: ð16Þ

The unconditional expected return and volatility are given by

E½Q * ¼ E½κ*ασ2ð1(λÞZ and ð17Þ

var½Q * ¼ σ2ð1(π2
0λÞþð1(π0Þ2λ

2var½κSθ*
þðσ2ð1(λÞαZÞ2var½κ*: ð18Þ

19 Though, of course, the magnitude of the asymmetry depends on
π0 and disappears in the extremes (i.e., π0Af0;1g). Note that in the
dynamic version of our model, the uninformed investor updates her
beliefs based on realizations of fundamentals, but this is not what drives
the asymmetric reaction of prices to signals.

20 As discussed in Section 3.1, given the unique equilibrium is signal-
revealing, our model has an alternate interpretation in which Sθ is a
public signal. Under this interpretation, a natural benchmark to consider
is a setting in which there is a representative U investor who is uncertain
about the quality of the signal. In the representative agent benchmark,
the price will still be a nonlinear function of Sθ and several of our results
in the benchmark model will continue to hold (e.g., asymmetric price
reaction). However, alternative specifications will yield different implica-
tions. One difference, highlighted in Section 6, is that uninformed traders
can learn about the signal quality even without observing dividends by
conditioning on prices and residual order flow. In the benchmark with a
representative investor, the price will not convey any incremental
information about the quality of the signal. Moreover, a representative
investor model does not lend itself to predictions about disagreement
across investors, and how these relate to expected returns.
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To gain some intuition for the expressions in
Proposition 7, we note that the expectation of Q (in Eq.
(14)) with respect to an arbitrary information set I can be
decomposed into the following two components:

E½Q jI * ¼ E κðEU ½d*(Eθ½d*ÞjI
$ %
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

expectations

þE½κασ2ð1(λÞZjI *|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
risk(premium

: ð19Þ

As noted earlier, because the U investor is uncertain about
the interpretation of Sθ , her conditional variance about d
depends on both π0 and Sθ . This means that κ and, as a
result, the risk-premium component of expected returns
also depend on both π0 and Sθ .

The expression for the unconditional volatility of
returns given in Eq. (18) can be decomposed into three
terms, each of which captures a different source of risk,

var½Q * ¼ σ2ð1(π2
0λÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

fundamental

þð1(π0Þ2λ
2var½κSθ*|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

expectations

þðσ2ð1(λÞαZÞ2var½κ*|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
risk premium

: ð20Þ

The first term is the expectation of the conditional var-
iance in returns and so captures the volatility in returns
due to uncertainty about next period's fundamental divi-
dend shock d. The second term in Eq. (20) reflects the
volatility in returns due to variation in the expectations
component of conditional expected returns. Finally, the
third term is volatility due to variation in the risk-premium
component of conditional expected returns. As in the case
of expected returns, each of these components depends on
π0. In the next section, we will see that this dependence on
π0 gives rise to expected returns and volatility that are
stochastic but predicted by the beliefs of uninformed
traders. For the interested reader, we explore these
components in greater detail and discuss comparative
statics on return moments in the benchmark model in
Appendix B.

4. The dynamic model

In this section, we extend our analysis to a dynamic,
overlapping generations (OLG) model in which the key
state variable is the belief about θ investors. Two key
considerations distinguish the dynamic setting from the
benchmark model. First, the price is affected not only by
investors' beliefs about fundamentals and other traders,
but also their beliefs about future prices. Second, unin-
formed investors' beliefs about other traders change over
time as they learn from realized prices and dividends.

We retain the main features of the benchmark model
as described in Section 3 with the following natural
extensions.

Agents: As before, there are three groups of traders:
uninformed traders (U), informed traders (I), and noise/
sentiment traders (N). In each generation, U traders are
uncertain about which type of other traders they face, and
θtAfI;Ng denotes the random variable that represents the
type of these other traders at date t, where π0 ¼ Prðθ0 ¼ IÞ.
We allow θ to vary over time, and consider two specifica-
tions: (i) θt is i.i.d. over time with Prðθt ¼ IÞ ¼ π0 for all t,
and (ii) θt exhibits serial correlation according to a Markov

switching process. These cases together allow us to model
the composition of traders in the market quite generally.

Securities: In date t, the risky asset pays a dividend Dt,
which evolves according to an ARð1Þ process:

Dtþ1 ¼ ð1(ρÞμþρDtþdtþ1; ð21Þ

where dtþ1 'N 0;σ2" #
, and ρo1. The excess dollar return

at time t on a share of the risky asset is given by
Qt & PtþDt(RPt(1.

Preferences: Each generation of investors lives for two
dates, and has mean–variance preferences over terminal
wealth. An investor i, who is born in date t and consumes
in date tþ1, has optimal demand for the risky asset given
by

xi;t ¼
Ei;t Ptþ1þDtþ1

$ %
(RPt

αvari;t Ptþ1þDtþ1
$ % : ð22Þ

Information and beliefs: In addition to the information
structure described in Section 3, each generation of inves-
tors can observe the history of dividend realizations,
prices, and trades. The noise terms in the signals (i.e., εt)
are independent of other random variables and identically
distributed over time.

4.1. General characterization

We begin with a characterization of the price in any
signal-revealing equilibrium that extends the results from
the previous section.

Proposition 8. In any signal-revealing equilibrium, investor
beliefs are given by

EU;t ½Dtþ1* ¼ ð1(ρÞμþρDtþπtλSθ;t ; ð23Þ

Eθ;t ½Dtþ1* ¼ ð1(ρÞμþρDtþλSθ;t ; ð24Þ

varU;t ½Dtþ1* ¼ σ2ð1(πtλÞþπtð1(πtÞðλSθ;tÞ2; ð25Þ

varθ;t ½Dtþ1* ¼ σ2ð1(λÞ; ð26Þ

and the price of the risky asset is given by

Pt ¼
1
R

Et ½Ptþ1þDtþ1*|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
expectations

(ακtvarθ;t ½Ptþ1þDtþ1*Z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
risk premium

0

B@

1

CA; ð27Þ

where Et ½+* & κtEθ;t ½+*þð1(κtÞEU;t ½+*, and κt is given by

κt ¼
varU;t ½Ptþ1þDtþ1*

varU;t ½Ptþ1þDtþ1*þvarθ;t ½Ptþ1þDtþ1*
: ð28Þ

The decomposition of the price is familiar from the
benchmark model (see Eq. (11)). It is a weighted average of
investors' conditional expectations about future payoffs,
adjusted for a risk-premium. In contrast to linear equilibria
in standard models, both components of the price are
nonlinear functions of the signal Sθ;t and beliefs πt .

As in the benchmark model, we proceed by first
presenting the limit cases in which uninformed traders
are not uncertain about whether θ investors are informed.
This will help to illustrate our main results are driven by
U's uncertainty about θt and subsequent learning (when θt
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is serially correlated), neither of which are present in these
limit cases. We then reintroduce the uncertainty by con-
sidering the two different specifications for investor com-
position dynamics: Section 4.3 considers the case in which
the distribution of θt is i.i.d. and Section 4.4 allows for
serial correlation in θt .

4.2. When there is no uncertainty about other investors

In this subsection, we briefly discuss the two limit cases
of the dynamic model in which there is no uncertainty
about other traders. When θt investors are informed and U
traders are certain about this (i.e., πt ¼ 1), the model is
analogous to a standard RE environment. When θt inves-
tors are uninformed and U traders are certain about this
(i.e., πt ¼ 0), the model is analogous to a typical DO model.

In both cases, without uncertainty about other traders,
the model's predictions are standard — the equilibrium
price is linear, return volatility is constant, and expected
returns are either constant or i.i.d. The following proposi-
tion summarizes these findings.

Proposition 9. If π0Af0;1g, then there exists a unique, linear
stationary equilibrium. The equilibrium price is signal-
revealing, expected returns are affine in the signal, and
return volatility is constant.

When investors do not face uncertainty about other
traders, we obtain a unique equilibrium. This is in contrast
to standard (linear) OLG models (e.g., Spiegel, 1998) which
generally exhibit two equilibria. In these models, the price
is exposed to two types of shocks: fundamental shocks and
noise shocks. The multiplicity in equilibria arise due to
multiplicity in self-fulfilling beliefs about the price sensi-
tivity to noise shocks. Generically, there is a low volatility
equilibrium (when investors believe prices are not very
sensitive to noise) and a high volatility equilibrium (when
investors believe prices are sensitive to noise). In the two
limit cases of our model, the price is a function of a single
shock (Sθ;t) and the price sensitivity of this shock is pinned
down by the traders' beliefs of its informativeness.

4.3. When the distribution of types is i.i.d.

When the distribution of other traders' type (i.e., the
distribution of θt) is independent and identical across
generations, there exists a stationary equilibrium of the
dynamic model which closely resembles the equilibrium
of the benchmark model. Moreover, this stationary equili-
brium is the limit of the unique equilibrium of a finite
horizon (T-period) version of the model in which the price
is normalized to zero at date T.

Proposition 10. Suppose αZo ðR(ρÞ=ð2σÞ and the distribu-
tion of θt is i.i.d. Then, there exists a stationary equilibrium,
which is signal-revealing and the price is given by
Pt ¼ AμþBDtþpðSθ;tÞ, where A& Rð1(ρÞ=ððR(1ÞðR(ρÞÞ,
B& ρ=ðR(ρÞ,

p Sθ;t
" #

&
1
R

ð1þBÞðκtþð1(κtÞπ0ÞλSθ;tþm

(ακtðð1þBÞ2σ2ð1(λÞþvÞZ

 !
; ð29Þ

κt &
ð1þBÞ2ðσ2ð1(π0λÞþπ0ð1(π0ÞðλSθ;tÞ2Þþv

ð1þBÞ2ðσ2ð1(π0λÞþπ0ð1(π0ÞðλSθ;tÞ2Þþð1þBÞ2σ2ð1(λÞþ2v
;

ð30Þ

and where (m,v) are characterized implicitly by the solution
to

m¼ E pðSθ;tÞ
$ %

and v¼ var½pðSθ;tÞ*: ð31Þ

Moreover, there exists a solution to the system of equations
given in (31) such that the price above corresponds to the
limit of the unique equilibrium price of the T-period model, as
T-1.

As in other OLG models (e.g., Spiegel, 1998), the
sufficient condition for existence αZoðR(ρÞ=ð2σÞ ensures
that the aggregate risk in holding the risky asset is not too
large. Intuitively, when risk considerations (αZ) or funda-
mental volatility (σ) increase, the risk-premium compo-
nent of the current price grows and becomes more
sensitive to shocks (in κt), which in turn increases the
risk-premium in the previous period. As a result, if αZ + σ is
too large, the risk-premium terms may explode and a
stationary equilibrium may not exist.

Note that the equilibrium price in Proposition 10
depends not only on beliefs about current dividends and
whether others are informed, but also on investors' beliefs
about the price next period. However, because the dis-
tribution of the type of other traders is i.i.d., uninformed
traders do not learn about θ over time. The effect of
learning about θ on the equilibrium price is the focus of
the next subsection.

4.4. When the distribution of types is serially correlated

Next, suppose that θt follows a symmetric Markov
switching process with transition probability 1(q, i.e.,
Prðθtþ1 ¼ Ijθt ¼ IÞ ¼ Prðθtþ1 ¼Njθt ¼NÞ ¼ q. In this case,
prices and dividends at date t are informative about the
composition of traders in the market at date tþ1.

Uninformed traders' beliefs about other investors
change over time. We denote their beliefs about whether
others are informed at date t by πt & PrU;tðθt ¼ IÞ. Following
the realization of Dtþ1, the posterior probability that
uninformed traders assign to θt ¼ I, is given by

Pr θt ¼ I Sθ;t ; dtþ1
++ #"

¼
πtPrðSθ;t jθt ¼ I; dtþ1Þ

πtPrðSθ;t jθt ¼ I; dtþ1Þþð1(πtÞPrðSθ;t jθt ¼N; dtþ1Þ
ð32Þ

¼

πt

σε
ϕ

Sθ;t(dtþ1

σε

) *

πt

σε
ϕ

Sθ;t(dtþ1

σε

) *
þ

1(πtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2þσ2

ε
p ϕ

Sθ;t(0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2þσ2

ε
p
 !; ð33Þ

where ϕð+Þ is the probability distribution function for a
standard normal random variable.

Accounting for the likelihood of a transition, the prob-
ability that uninformed traders assign to θtþ1 ¼ I at date
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tþ1 is given by

πtþ1 ¼ qPrðθt ¼ IjSθ;t ; dtþ1Þþð1(qÞð1(Prðθt ¼ IjSθ;t ; dtþ1ÞÞ

ð34Þ

πtþ1 ¼ 1(qð Þþ
2q(1ð Þ

πt

σε
ϕ

Sθ;t(dtþ1

σε

) *

πt

σε
ϕ

Sθ;t(dtþ1

σε

) *
þ

1(πtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2þσ2

ε
p ϕ

Sθ;t(0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2þσ2

ε
p

 !:

ð35Þ

Uninformed traders' belief about other traders serves as
a state variable that evolves stochastically and leads to
predictability and time-variation in return moments. Note
that in the extreme case that q¼1, so that θt ¼ θtþ1 ¼ θ for
all t, uninformed traders will eventually learn whether θ
investors are informed. On the other hand, for qAð0;1Þ, πt

is bounded between ð1(q; qÞ and does not converge to a
degenerate belief even as t-1.

Our solution technique is motivated by the equilibrium
of a finite horizon version of the model, which is char-
acterized in the following result.

Proposition 11. In the T-period model, there exists at most
one signal-revealing equilibrium. The corresponding equili-
brium price is of the form Pt ¼ AtμþBtDtþptðSθ;t ;πtÞ, where
pT & 0, AT & 0, BT & 0, At & ð1=RÞðAtþ1þð1(ρÞð1þBtþ1ÞÞ,
Bt & ðρ=RÞð1þBtÞ,

pt Sθ;t ;πt
" #

&
1
R

Et 1þBtþ1ð Þdtþ1þptþ1ðSθ;tþ1;πtþ1Þ
$ %

(ακtvarθ;t 1þBtþ1ð Þdtþ1þptþ1ðSθ;tþ1;πtþ1Þ
$ %

Z

( )

;
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and Ei;t +½ * & κtEθ;t +½ *þð1(κtÞEU;t +½ *.

We solve for the (stationary) equilibrium price function
numerically, by using a recursive procedure to compute
the limit of the finite horizon model. We initialize k¼1 and
PT ¼ 0 and compute PT(kðSθ;t ;πÞ over a grid of signals and
beliefs using Eq. (27). We iterate this procedure over k
until the mean squared difference in the price functi-
ons across iterations is negligible. Under the sufficient
parametric restriction given in Proposition 10 (i.e., αZo
ðR(ρÞ=ð2σÞ), we find that the price function converges for
a wide range of parameters.21

As Fig. 3 illustrates, the components of the equilibrium
price are similar to those in the benchmark model: the
expectations component increases in Sθ;t , while the risk-
premium component is hump-shaped. For negative Sθ;t
these two effects reinforce each other, while for positive

Sθ;t , the effects offset each other. As before, this leads to the
asymmetric reaction of the price to Sθ;t .

5. Implications of the dynamic model

To explore the implications of the model, we focus on
the dynamic model with serial correlation in investor
types since it provides a richer environment than the i.i.
d. case. Since the model does not permit closed-form
solutions, we explore its implications numerically. While
the analysis in the earlier sections has focused on char-
acterizing properties of dollar returns per share,
Qtþ1 ¼ Ptþ1þDtþ1(RPt , we will now characterize proper-
ties of the excess rate of return, Re;tþ1 & Qtþ1=Pt , in order
to highlight the robustness of the results and to facilitate
comparisons to the broader literature. Unless otherwise
specified, we use the parameters in Table 1. For these
parameter values, the expected excess return on the risky
asset is 7.5% and the volatility is 22%, when evaluated at
πt ¼ 1 and λ¼ 0:75.22

5.1. Predictability in expected returns and volatility

When uninformed traders are uncertain about θt , the
effect of πt on the price generates novel empirical predic-
tions that distinguish our model from linear, dynamic
rational expectations models. In particular, the belief πt

is an endogenous state variable of the model, which
evolves stochastically and is persistent. As a result, in
addition to generating stochastic expected returns and
volatility, these moments are persistent and vary predicta-

bly with πt , despite the fact that shocks to fundamentals
and signals are i.i.d.

As Fig. 4 shows, excess returns are first increasing in πt

but decreasing for larger πt . Both moments are decreasing
in λ for high πt , but are increasing in λ for low πt . The plots
also suggest that the magnitude of the comparative static
results are economically meaningful. For instance, at the
baseline parameters (where πt ¼ 1), an increase in λ from
0.25 to 0.75 implies a decrease in expected returns from
9.2% to 7.5% and a decrease in volatility from 25% to 22%; a
decrease in πt from 1 to 0.5 implies an increase in
expected returns from 7.5% to 10% and an increase in
volatility from 22% to 30% (for λ¼ 0:75).

κt &
varU;t ð1þBtþ1Þdtþ1þptþ1ðSθ;tþ1;πtþ1Þ

$ %

varU;t ð1þBtþ1Þdtþ1þptþ1ðSθ;tþ1;πtþ1Þ
$ %

þvarθ;t ð1þBtþ1Þdtþ1þptþ1ðSθ;tþ1;πtþ1Þ
$ %; ð37Þ

21 We do not have a proof of existence for the infinite horizon case
with persistent types. However, we have verified existence numerically
for a wide range of parameters. We have also established existence in the
dynamic model with i.i.d. types, as well as existence and uniqueness in
the limiting cases where πtAf0;1g.

22 Because we are using normally distributed random variables, the
population moments of Re;tþ1 are not well defined, since prices can be
arbitrarily close to zero, or even negative — see Campbell, Grossman, and
Wang (1993) and Llorente, Michaely, Saar, and Wang (2002) for a
discussion. We adopt the conventional approach and choose Dt large
enough relative to the volatility of dividend shocks (setting Dt¼1 and
σ ¼ 0:06) such that the numerical estimation of these moments is well
behaved.
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5.2. Disagreement, information quality, and returns

In our model, the information quality of Sθ and the
disagreement across investors are linked through their
dependence on the likelihood of informed traders, πt ,
and the Kalman gain of the informed investors' signal, λ.
Specifically, the information quality of the signal, as
measured by its (unconditional) correlation with the
dividend, is given by

corðSθ;t ;Dtþ1Þ ¼ πt

ffiffiffi
λ

p
: ð38Þ

Similarly, to see the effect of πt and λ on disagreement,
note that the absolute difference in dividend forecasts
across investors, conditional on the realization of Sθ;t , is
given by EU;t ½Dt *(Eθ;t ½Dt *

++ ++¼ ð1(πtÞλjSθ;t j. Since Sθ;t has a
half-normal distribution, integrating over signal realiza-
tions gives us a measures of the (expected) disagreement
across investors

1(πtð ÞλE½jSθ;t j* ¼ 1(πtð Þλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2var Sθ;t

$ %

π

s

¼ 1(πtð Þσ
ffiffiffiffiffiffi
2λ
π

r
; ð39Þ

where π denotes the mathematical constant (not to be
confused with uninformed traders' belief).

Therefore, to understand the relation between informa-
tion quality, disagreement, and returns, we return to
comparative statics with respect to πt and λ, which are
illustrated in Fig. 4. When uninformed traders assign a low
probability to others being informed (i.e., πt is low), an
increase in πt increases their uncertainty about others,
which results in higher expected returns and volatility.
Similarly, an increase in λ leads θ investors to trade more
aggressively on their signal, but this simply generates
additional noise in prices from the perspective of unin-
formed traders and, therefore, also results in higher
expected returns and volatility. Next, suppose uninformed
traders believe other investors are very likely to be
informed (i.e., πt is high). In this case, an increase in πt

decreases uncertainty about others and an increase in λ
implies a more informative signal — both lead to a
decrease in expected returns and volatility.

When changes in πt drive disagreement, the intuition is
consistent with the predictions of Banerjee (2011):
expected returns are negatively related to disagreement
in DO models, but positively related to disagreement in RE
models. In our model, when πt is low, investors behave as
if they “agree to disagree,” since U traders do not believe
Sθ;t is informative, but θ traders do. In this case, higher
disagreement (lower πt) is associated with lower uncer-
tainty and lower expected returns. On the other hand,
when πt is high, both groups of investors agree on the
informativeness of Sθ;t , as they would in a rational expec-
tations model. Now, higher disagreement (lower πt)
increases uncertainty, and consequently, expected returns.

These results imply that the relation between disagree-
ment, information quality, and returns is nonmonotonic
and varies over time as πt evolves. How returns vary with
either information quality or disagreement depends on: (i)
whether the variation is primarily driven by λ or πt , and
(ii) whether πt is high or low. The model suggests that
standard empirical specifications in the literature, which
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Fig. 3. The two components of the equilibrium price function as they depend on the underlying state variable and the realization of information. As in the
benchmark model, the sum of these two components reacts asymmetrically to good versus bad news. (a) Expectations component of Ptþ1. (b) Risk
premium component of Ptþ1.

Table 1
The table reports the baseline parameters used in
numerical results and simulations.

Parameter Value

Risk-free rate (r) 3%
Dividend growth rate (μ) 4%
Dividend volatility (σ) 6%
Dividend persistence (ρ) 0.95
Aggregate supply (Z) 1
Risk aversion coefficient (α) 1
Persistence in trader type (q) 0.75
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posit a monotonic relation between returns and these
variables, are misspecified.23 Moreover, when trying to
uncover the underlying empirical relation between these
variables, it is crucial to control for the likelihood that
investors are informed. While developing an empirical
proxy that captures πt is a challenge, existing measures
of informed trading (e.g., PIN and institutional ownership)
may be a useful starting point.

Empirical studies have associated the likelihood of
informed trading (and proxies thereof) as a measure of
the degree of asymmetric information in the market (e.g.,
Easley, Hvidkjaer, and O'Hara, 2002). However, our model
suggests this relationship need not be monotonic. This is
because uncertainty about whether informed traders are
present can serve as the source of the asymmetric informa-
tion. When uninformed traders place a very high (low)
likelihood on informed traders being present, they know
that the price is informative (uninformative) about funda-
mentals and the asymmetric information problem is
mitigated. In our model, the asymmetric information
problem is most severe when uninformed traders are most
uncertain about whether informed traders our present. As
such, data that do not exhibit a clear relation between
expected returns and proxies of the likelihood of informed
trading need not imply that asymmetric information does
not affect expected returns.

5.3. Volatility clustering

The model can generate volatility clustering — return
surprises in either direction are followed by an increase in
both volatility and expected returns. This obtains when θt

is serially correlated and πt is close to one. The intuition
for these predictions follows from how U updates her
beliefs about whether θt is informed. An unanticipated
realization of Dtþ1 leads the U investor to revise her beliefs
about θ being informed downwards (i.e., πtþ1oπt).24 This
revision in beliefs generates additional uncertainty for U
traders, and as a result, leads to higher future volatility and
higher expected returns going forward. Fig. 5 illustrates
this clustering effect. Specifically, the figure plots expected
returns and volatility in period tþ1 as a function of the
current realization of Dtþ1 (scaled by its standard error)
starting from πt close to one. Starting from zero on the x-
axis, increasing the dividend surprise in either direction
implies πtþ1 is closer to 1

2 and therefore U is more
uncertain about θ, which leads to higher expected returns
and volatility. Note that for sufficiently large (and unlikely)
surprises, the posterior, πtþ1, tends to zero and expected
returns and volatility may decrease.

For the baseline parameters, Fig. 5 provides magnitudes
for the volatility clustering effect. For λ¼ 0:75, a one-
standard deviation surprise in dividend realizations pre-
dicts an increase in future expected excess returns of
roughly 60 basis points (from 9% to 9.6%) and an increase
in future volatility of 2% (from 25% to 27%), while a two-
deviation surprise generates increases of 1% in expected
returns and about 7% in volatility. The effect is increasing
in λ — for λ¼ 0:9, a one-standard deviation surprise
corresponds to a 2.5% increase in expected returns and
an 8% increase in volatility. Finally, note that in the limiting
cases without uncertainty about others (i.e., where
πtAf0;1g), these plots are perfectly flat. Thus, even for
small deviations from the standard model (πt ¼ 0:95
instead of πt ¼ 1), the clustering effect can be quite
economically significant.

For πt close to zero, the opposite relationship can obtain:
returns in line with expectations cause the U investor to
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Fig. 4. This figure plots the expected excess rate of return and volatility as a function of πt and λ. The parameters are set to the following baseline values
unless otherwise specified: r ¼ 3%, μ¼ 4%, ρ¼ 0:95, σ ¼ 6%, Z¼1, α¼ 1, and q¼0.75. (a) Expected excess rate of return. (b) Volatility of rate of return.

23 See footnote 5 for a discussion of the mixed evidence on the
disagreement-return relation. Similarly, while some papers document a
negative relation between information quality and expected returns (e.g.,
Easley, Hvidkjaer, and O'Hara, 2002; Francis, LaFond, Olsson, and
Schipper, 2005; Francis, Nanda, and Olsson, 2008), others find either
limited or no evidence of a relation (e.g., Core, Guay, and Verdi, 2008;
Duarte and Young, 2009).

24 This follows from the evolution of πt in (35), q being close to one,
and πt being large initially.
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revise her belief upwards, which again increases the uncer-
tainty about other traders and hence volatility and expected
returns. In this sense, no news (i.e., little to no surprise in
returns) can either be good news (when πt is close to one)
or bad news (when πt is close to zero). More generally, our
model highlights a channel through which cash-flow news
(i.e., dividend surprises) can affect discount rates (i.e.,
expected returns) in the future through its effect on
uncertainty about other investors.25

5.4. Switching probability

Comparative statics on return moments with respect to
the switching probability also depend on πt . As an
instance, Fig. 6 plots the expected excess rate of return

and volatility as a function of πt and q for the baseline
parameters. The plots suggest that except near the bound-
aries of q¼0 and q¼1, expected returns and volatility are
increasing in q for large πt , but decreasing in q for low πt .
Intuitively, changing q does not change beliefs about next
period's dividends, but it does affect beliefs about future
prices. When the likelihood of other traders being
informed is low in the current period (i.e., πt is low), an
increase in persistence of θ implies that the likelihood of
other traders being informed is lower in future periods. In
contrast, an increase in q when πt is high implies that the
likelihood of other traders being informed is higher in
future periods. Since future prices are more sensitive to
signals, and therefore riskier, when the likelihood of θ¼ I
is higher, expected returns and volatility is increasing in q
for high πt but decreasing in q for low πt .

These results suggest a novel prediction of the model,
which has not been tested in the literature (to the best of
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Fig. 5. The figure plots expected returns and volatility in period tþ1 as they depend on dividend surprises in period t and the quality of the information (in
both figures πt ¼ 0:95). The parameters are set to the following baseline values unless otherwise specified: r¼ 3%, μ¼ 4%, ρ¼ 0:95, σ ¼ 6%, Z¼1, α¼ 1,
πt ¼ 0:95 and q¼0.95. (a) Future excess returns. (b) Future volatility.
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Fig. 6. This figure plots the expected excess rate of return and volatility as a function of πt and q. The parameters are set to the following baseline values
unless otherwise specified: r¼ 3%, μ¼ 4%, ρ¼ 0:95, σ ¼ 6%, Z¼1, α¼ 1, and λ¼ 0:75. (a) Expected excess rate of return. (b) Volatility of rate of return.

25 We thank Karl Diether for this observation.
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our knowledge). Namely, higher variation in ownership
composition (lower q) should be associated with higher
expected returns and volatility when the likelihood of
informed trading is high, and lower expected returns and
volatility when the likelihood of informed trading is low.
In order to test this prediction, measures of informed
trading such as PIN or fraction of institutional ownership
can be used to proxy for πt .

5.5. Simulations

To explore additional empirical implications of our
model, we generate and analyze simulated data in this
section. We maintain the parameter assumptions as in
Table 1 and set λ¼ 0:75. For each initial value of
π0Af0;0:05;0:1;…;1g, we generate a sample of 25,000
paths by generating realizations of θt, dt, and Sθ;t . We then
compute excess returns (Re;t), updated beliefs (πt), and
disagreement based on these realizations and on the
numerical solution of the price function.26 The sample is
trimmed at the 1st and 99th percentiles of observations for
excess returns to ensure that the empirical specifications
are not driven by outliers.

Table 2 provides summary statistics of our main vari-
ables of interest. As expected, the mean (10.5%) and
median (8.9%) excess return is higher than the excess
return of 7.5% in the benchmark rational expectations
equilibrium, when there is no uncertainty about others
(i.e., when πt ¼ 1). Although the autocorrelation in dis-
agreement is positive (0.825), the autocorrelation in excess
returns is negative ((0.218). This implies that, for our
benchmark parameters, even though excess returns are
predictable (as we shall see), they are not positively
serially correlated.

Table 3 reports the results from predictive regressions
of excess returns (Re;tþ1) and volatility, as proxied by
squared excess returns (R2

e;tþ1), on lagged excess returns.
The regression coefficient of excess returns on lagged
excess returns is negative, which implies excess returns
exhibit reversals, even though πt and Dt are persistent.
Consistent with our prediction of volatility clustering, both
excess returns and volatility are positively related to
squared lagged returns (i.e., R2

e;t). Moreover, the economic
impact is significant: the first and third rows of Table 3
suggest that a one-standard deviation increase in R2

e;t
corresponds to a 0:217, 0:215¼ 4:7 percentage point
increase in average excess returns, and a 0:217,
0:326¼ 0:07 (or, equivalently, a 0.326 standard-deviation
increase) increase in squared excess returns.

The estimates in Table 3 are also consistent with an
asymmetric response to lagged returns. Specifically, the
sensitivity of future volatility and excess returns to lagged

returns is significantly larger for negative lagged returns
(i.e., the coefficient on Re;t1fRe;t o0g is negative and signifi-
cant). This asymmetric reaction partially explains the
estimated volatility clustering effect, and is economically
meaningful in and of itself. The second and fourth rows of
Table 3 imply that a one-standard deviation change in
lagged return increases expected excess returns by 0:285,
0:346¼ 9:9 percentage points, more if it is negative; the
same change in returns increases future squared returns
by 0:285, 0:770¼ 0:2194 (or, equivalently, one-standard
deviation) more when it is negative. The conclusions from
the regression analysis are confirmed by the plots in Fig. 7:
excess returns and squared excess returns decrease shar-
ply across lower deciles of lagged excess returns, when
these are negative, but more gradually across the higher
deciles.

These results are consistent with the so-called “lever-
age” effect — see Black (1976) and the subsequent litera-
ture. Of course, the mechanism in our model that
generates this asymmetric relation between return
moments and lagged returns does not rely on leverage.
Instead, it is driven by the asymmetric price reaction to
signals that we discussed in Section 3.3. The intuition is as
follows. Since the signals are conditionally i.i.d. over time,
they are a source of reversals — a large negative realization
at date t corresponds to a lower excess return between
dates t(1 and t, but a higher excess return (and higher
volatility) between dates t and tþ1, on average. However,
due to the asymmetric price reaction in our model, these
reversals are amplified for negative realizations of Sθ;t — all
else equal, the change in returns associated with a nega-
tive realization of Sθ;t is larger than for the change in
returns associated with a positive realization of the same
magnitude, and this generates an asymmetry in the return
dynamics.

We next turn to the relation between disagreement and
returns generated by our model. The plot in Fig. 8 high-
lights the nonmonotonicity: disagreement and return
moments are positively related when disagreement is
low, but negatively related when disagreement is high.
The results in Table 4 suggest how the mixed evidence
documented in the literature may arise due to misspeci-
fication. Since our model generates a nonmonotone rela-
tion between disagreement and returns, the linear
specifications in Table 4 generate inconsistent estimates
based on the sample chosen. For the full sample, the
estimated relation is positive, while for the high-
disagreement sample, it is negative. A nonlinear specifica-
tion on the full sample (as reported in the second row)
generates a more accurate depiction of the underlying
relation between the two variables.

6. Robustness: noisy aggregate supply

In this section, we consider an alternative specification
to our benchmark model. We focus on the two-date
version (and normalize R¼1, μ¼ 0) using the same setup
as in Section 3, with the two exceptions: N investors are
fully rational (i.e., they know their signal is uninformative)
and the aggregate supply of the risky asset is stochastic.
This specification is useful in highlighting the robustness

26 As discussed earlier, to ensure nonnegative prices, we set the
initial dividend level at large value relative to its volatility (i.e., D0 ¼ 1 and
σ ¼ 0:06). However, since dividends mean-revert, and the growth rate of
dividends is relatively low, we restrict our sample to a large cross-section
of short price paths (three periods long). This ensures that prices stay
positive, and consequently, rates of returns are well-behaved. The results
are robust to increasing the length of each price path, if parameters are
modified to ensure positive prices.
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of the positive implications of uncertainty about others in
a more familiar setting — the model reduces to the noisy
rational expectations model of Grossman and Stiglitz
(1980) when π0 ¼ 1.

Unlike in the previous specification, N investors know
that SN is not informative about dividends, or equivalently,
N investors do not observe a signal prior to submitting
orders. The optimal demand for a θ investor is given by

xθ ¼

λSθ(P
ασ2ð1(λÞ

if θ¼ I

0(P
ασ2 if θ¼N:

8
>>><

>>>:
ð40Þ

Note that without an additional source of noise, observing
price and quantities perfectly reveals both Sθ and θ. Thus,
we follow the noisy rational expectations literature and
introduce aggregate supply shocks. In particular, the
aggregate supply of the risky asset is Zþz, where
z'Nð0;σ2

z Þ.
27 The market clearing condition is given by

xθþxU ¼ Zþz: ð41Þ

Finally, as in the benchmark model, we assume unin-
formed traders can condition on the equilibrium price
and residual supply when determining their optimal
demand. As a result, they can construct a signal

y& ασ2ð1(λÞðxθ(zÞþP;

which is informative about both the type of θ investors
and the fundamental dividend shock. Given the optimal
demand of the θ investors, y takes the form

y¼
λSθ(ασ2ð1(λÞz if θ¼ I
λP(ασ2ð1(λÞz if θ¼N;

(
ð42Þ

and so U traders can condition on y to update the like-
lihood of θ¼ I. Further, conditional on θ¼ I, U's belief
about d is given by

EU djy;θ¼ I
$ %

¼ λyy; varU djy;θ¼ I
$ %

¼ σ2 1(λy
" #

;

where

λy &
cov y;djθ¼ I

" #

var yjθ¼ I
" # ¼

λσ2

λσ2þλ2α2σ4
ϵσ2

z

:

In this setup, there exists a rational expectations
equilibrium which is characterized by the following
proposition.

Proposition 12. There exists a rational expectations equili-
brium in which the price is given by the solution to

P ¼ κnþ 1(κn
" #

πnλy
" #

y
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

expectations

(κnασ2 1(λ
" #

Z
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

risk premium

;

where y¼ ασ2ð1(λÞðxθ(zÞþP, πn ¼ Prðθ¼ Ijy; PÞ, and

κn ¼
σ2 1(πnλy

" #
þπn 1(πnð Þ λyy

" #2

σ2 1(λ
" #

þσ2 1(πnλy
" #

þπn 1(πnð Þ λyy
" #2:

Analogous to the decomposition in Eq. (11), the price
can be decomposed into the expectations and risk-
premium components. Fig. 9 illustrates these two compo-
nents and suggests that uncertainty about whether others
are informed has qualitatively similar implications in this
setup. As in the static model of Section 3, the expectations
component is monotonic in the price signal. Moreover, U
traders are unsure about the informativeness of y, which
implies that their posterior variance, and therefore, the
risk-premium component of price depends on the realiza-
tion of y. Therefore, as in the benchmark model, the price
reacts asymmetrically to good news versus bad news.

In contrast to the benchmark model, uninformed traders
learn directly about θ from the signal y; large realizations of
y lead to large updates in πn (either towards zero or one).
That is, both uncertainty and learning are present even in
the static environment. As a result, the risk-premium
component is dampened for large realizations of y, since
for these realizations πn is near zero or one.

7. Final remarks

Asset pricing models primarily focus on uncertainty
about the underlying fundamentals and assume that the

Table 2
This table reports summary statistics of the simulated data generated by
the model. The variables reported are the excess return (i.e.,
Re;tþ1 ¼Qtþ1=Pt), squared excess returns (R2

e;tþ1), and the disagreement
across investors. The summary statistics reported are the mean, standard
deviation, median, 5th and 95th percentiles, and the autocorrelation (AC)
in the variable.

Variable Mean Std.
dev

Median 5th Pctl 95th
Pctl

AC

Exc. ret 0.105 0.285 0.089 (0.325 0.585 (0.218
Sq. exc. ret 0.092 0.217 0.032 0.000 0.353 (0.018
Disagreement 0.021 0.013 0.021 0.002 0.039 0.825

Table 3
Predictability in returns. The table reports the regression coefficients
from the following specification:

ytþ1 ¼ aþbRe;tþcR2
e;tþdRe;t1fRe;t o0gþεtþ1;

where ytþ1 is either the excess return next period (i.e., Re;tþ1) or the
squared excess return next period (i.e., R2

e;tþ1). Since the returns are from
a cross-section of simulations with independent shocks, we report
ordinary least squares (OLS) standard errors. The adjusted R2s are also
reported in percentage points.

Specification Constant Re;t R2
e;t

Re;t1fRe;t o0g Adj. R2

ytþ1 ¼ Re;tþ1 0.149 (0.378 0.215 5.801
s.e. 0.001 0.003 0.005
ytþ1 ¼ Re;tþ1 0.123 (0.225 0.093 (0.346 6.037
s.e. 0.001 0.004 0.004 0.011

ytþ1 ¼ R2
e;tþ1

0.170 (0.453 0.326 11.965

s.e. 0.001 0.004 0.008
ytþ1 ¼ R2

e;tþ1
0.112 (0.111 0.056 (0.770 13.701

s.e. 0.001 0.003 0.003 0.010

27 Alternatively, one could assume that in addition to being poten-
tially informed, θ investors anticipate an endowment to their wealth of
zd in the next period, where z is known to θ investors but not to
uninformed traders, and z'Nð0;σ2

z Þ.
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characteristics of other traders in the market are common
knowledge. We consider a framework in which investors
are uncertain whether others are informed and gradually
learn about them by observing prices and dividends. We
show that these channels have important implications for
return dynamics. Specifically, the model generates non-
linear prices that are more sensitive to bad news than
good news; stochastic, predictable expected returns and
volatility, that vary with beliefs about other investors;
volatility clustering and the “leverage” effect; time-
variation in the relation between disagreement, informa-
tion quality, and returns. From a theoretical perspective,
the model connects two widely adopted approaches to
modeling belief heterogeneity (RE and DO), and seems, to
us, a useful framework for future research.

To illustrate the dynamic implications of uncertainty
and learning, we use an OLG setting with mean–variance
investors. This is primarily for tractability and to highlight
the key forces in a parsimonious way. With long-lived
investors, hedging demands would complicate the equili-
brium characterization and analysis, though we believe
the main forces are robust.

We focus on a setting in which investors are uncertain
about whether other traders are informed. However, one
could also consider alternative settings in which uninformed
investors are uncertain about other characteristics of other
traders such as their risk aversion or hedging demands
(Section 2 discusses some recent advances along similar
lines). The predictions of such models will depend on the
exact source of uncertainty, yet a number of similarities
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Fig. 8. Average excess returns (Re;tþ1) and squared excess returns (R2
e;tþ1) by disagreement deciles. (a) Excess return (Re;tþ1). (b) Squared excess return

(R2
e;tþ1).
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should arise: the multi-dimensional uncertainty will gener-
ally lead to a nonlinearity in prices, and learning about
others should generate rich return dynamics.

In the specifications considered, we assume that either
I or N traders are present in the market, but not both. One
could instead consider a setting in which both informed
investors and noise traders are present simultaneously, but
uninformed traders are uncertain about the proportion of
each type of investor. By conditioning on the information
in the residual demand and the price, uninformed traders
will be able to update their beliefs about the proportion of
informed investors even in a static setting. Conditional on
these beliefs, the residual demand provides a noisy signal
about the dividend next period, which uninformed traders

can use to update their beliefs about fundamentals. A
complete analysis of such a model is left for future work.

Appendix A. Proofs

Proof of Proposition 2. First, note that in the static model
the optimal demand given in (2) reduces to

xi ¼
μþEi½d*(RP
αvari½d*

: ðA:1Þ

For θ investors, this can be expressed as

xθ ¼
μþλSθ(RP
αð1(λÞσ2 : ðA:2Þ

We argue that any equilibrium must be signal-revealing. If
the equilibrium is not signal-revealing, then there must
exist two signal realizations, s14s2, for which P is the
same. But in this case, from (A.2), the θ investor would
demand strictly more after observing s1, which implies
that the U investor can distinguish between s1 and s2 using
residual demand (i.e., Z(xθ). Next, since I and N have
symmetric optimal strategies, prices and quantities cannot
reveal information about θ. Hence, the equilibrium cannot
be fully revealing and therefore, U's beliefs about the
dividend must be given by (7) and (8). Existence and
uniqueness follow by plugging the formulas for the opti-
mal demand of U and θ investors given by (A.1) into the
market clearing condition and solving for P as given by
(9).□

Proof of Proposition 4. To demonstrate the results, it will be
useful to establish the following properties of κ:

∂
∂λ
κ ¼

σ2ð1(π0Þðπ0S
2
θð2(λÞλþσ2Þ

ðσ2ð1(λÞþσ2ð1(π0λÞþπ0ð1(π0ÞðλSθÞ2Þ2

¼
ð1(π0Þðπ0S

2
θð2(λÞλþσ2Þ

σ2ð1(λÞ2
ð1(κÞ2Z0 ðA:3Þ

∂
∂π0

κ ¼ (
ðσ2(ð1(2π0ÞλS2θÞλð1(λÞσ2

ðσ2ð1(λÞþσ2ð1(π0λÞþπ0ð1(π0ÞðλSθÞ2Þ2

¼ (
ðσ2(ð1(2π0ÞλS2θÞλ

σ2ð1(λÞ
ð1(κÞ2 ðA:4Þ
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Fig. 9. Using the alternative specification given in Section 6, this figure illustrates the two components of the equilibrium price function as they depend on
the price signal y and the prior beliefs π0. (a) Expectations component of price. (b) Risk premium component of price.

Table 4
Returns and disagreement. The table reports the regression coefficients
from the following specification:

Re;tþ1 ¼ aþbDistþcDist1fDist 480thPctgþεtþ1 ;

where Re;tþ1 is the excess return at date tþ1, Dist is the disagreement at
date t, and 1fDist 480thPctg is an indicator variable for disagreement in the
top 80th percentile. The first and second specifications use the entire
sample, while the third specification uses only the sample of observations
where disagreement is in the top 80th percentile (high-disagreement
sample). Since the returns are from a cross-section of simulations with
independent shocks, we report ordinary least squares (OLS) standard
errors. The adjusted R2s are also reported in percentage points.

Full sample

Specification Constant Dist Dist1fDist 480thPctg Adj. R2

Coeff. 0.088 0.818 0.129
s.e. 0.001 0.031
Coeff. 0.084 1.118 (0.315 0.143
s.e. 0.001 0.045 0.040

High disagreement sample

Constant Dist Adj. R2

Coeff. 0.126 (0.306 0.001
s.e. 0.008 0.231
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∂
∂Sθ

κ ¼
2π0ð1(π0Þð1(λÞλ2σ2Sθ

ðσ2ð1(λÞþσ2ð1(π0λÞþπ0ð1(π0ÞðλSθÞ2Þ2

¼
2π0ð1(π0Þλ

2Sθ
σ2ð1(λÞ

ð1(κÞ2 ðA:5Þ

which imply κ is (i) increasing in λ, (ii) hump-shaped in π0

around 1
2 1(σ2=ðλS2θÞ
, -

, and (iii) U-shaped in Sθ
around zero.
Effect of λ: The derivative of the expectations component

of P with respect to λ is given by

∂
∂λ

κþ 1(κð Þπ0ð Þð ÞλSθÞ

¼ π0þ 1(π0ð Þ κþλ
∂
∂λ
κ

) *) *
Sθ : ðA:6Þ

From (i) above, this component increases with λ for Sθ40
and decreases in λ otherwise. The derivative of the risk-
premium component is given by

The expression can be positive or negative depending on
jSθj. For Sθ ¼ 0 and as jSθj-1, the derivative is strictly
positive and so the risk-premium component of price
increases in λ at these extremes. However, for intermedi-
ate values of jSθj, the derivative is negative.
Effect of π0: The derivative of the expectations compo-

nent of P with respect to π0 is given by

∂
∂π0

κþ 1(κð Þπ0ð Þð ÞλSθÞ

¼ 1(κð Þþ 1(π0ð Þ
∂

∂π0
κ

) *
λSθ : ðA:8Þ

Inserting the expression from (A.4) for ð∂=∂π0Þκ gives

1(κð Þþ 1(π0ð Þ
∂

∂π0
κ

) *
λSθ

¼
σ2ð1(λÞððð1(π0ÞSθλÞ2þ2ð1(λÞσ2Þ
ð1(λÞσ2þð1(π0λÞσ2þðλSθÞ2ð1(π0Þ

λSθ : ðA:9Þ

Therefore, the derivative of the expectations component of
prices with respect to π0 has the same sign as Sθ . The risk-
premium component of the price is U-shaped in π0 around
1
2 1(σ2=ðλS2θÞ
, -

. This can be seen by using (ii) above and

∂
∂π0

(ασ2 1(λ
" #

κZ
" #

¼ (ασ2 1(λ
" #

Z
∂

∂π0
κ:

Effect of Sθ: The expectations component of P is increas-
ing in Sθ . This can be seen by using (iii) above and

∂
∂Sθ

κþ 1(κð Þπ0ð Þð ÞλSθÞ

¼ κþ 1(κð Þπ0ð ÞÞλþ 1(π0ð ÞλSθ
∂
∂Sθ

κ40: ðA:10Þ

The risk-premium component of the price is hump-shaped
in Sθ around zero. This can also be seen by using (iii) above

and

∂
∂Sθ

(ασ2 1(λ
" #

κZ
" #

¼ (ασ2 1(λ
" #

Z
∂
∂Sθ

κ:

This completes the proof of the comparative static
results.□

Proof of Corollary 5. Follows immediately from Proposition
4 since (i) the derivative of the expectations component
(with respect to) Sθ is symmetric around zero and
(ii) the derivative of the risk-premium component is
increasing for positive signal levels and decreasing for
negative ones.□

Proof of Proposition 6. Let P(s) denote the equilibrium price
(as given by (11)) for an arbitrary signal realization s, and
similarly for κðsÞ (which is given by (10)). Note that for
0os1os2, the difference in the price is given by

P s2ð Þ(P s1ð Þ

¼
1
R

ðκðs2Þþð1(κðs2ÞÞπ0Þλs2
(ðκðs1Þþð1(κðs1ÞÞπ0Þλs1
(ασ2ð1(λÞZðκðs2Þ(κðs1ÞÞ

0

B@

1

CA: ðA:11Þ

Since κðs2Þ4κðs1Þ (see proof of Proposition 4), setting

γ ¼
ðκðs2Þþð1(κðs2ÞÞπ0Þλs2(ðκðs1Þþð1(κðs1ÞÞπ0Þλs1

σ2ð1(λÞðκðs2Þ(κðs1ÞÞ
ðA:12Þ

gives the result.□

Proof of Proposition 7. The expressions for the conditional
expected return and volatility follow from the observation
that the only source of randomness in returns, conditional
on P and xθ , is the realization of the dividend d. In
particular, this implies that var½Q jP; xθ* ¼ varU ½djP; xθ*. To
derive the expression for unconditional expected return,
take the expectation of the right-hand side (RHS) of (14)
and using that EU ½d* ¼ π0λSθ , we have

E½Q * ¼ E½E½Q jP; xθ**

¼ ασ2ð1(λÞZE½κ*(ð1(π0ÞλE½κSθ*; ðA:13Þ

Thus, it suffices to show that E½κSθ* ¼ 0. For this, note
that κ + Sθ is an odd-function (of Sθ) and the distribution of
Sθ is symmetric around zero. Thus, E½κSθjSθ40*
¼ (E½κSθjSθo0*, which implies E½κSθ* ¼ 0.
For unconditional volatility of returns, we have that

var½Q * ¼ E½var½Q jP; xθ **þvar½E½Q jP; xθ** ðA:14Þ

var Q½ * ¼
E½σ2ð1(π0λÞþπ0ð1(π0ÞðλSθÞ2*
þvar ασ2ð1(λÞκZ(ð1(π0ÞκλSθ

$ % ðA:15Þ

∂
∂λ

(ασ2 1(λ
" #

κZ
" #

¼
αZσ2 ð(1þπ0Þ2π2

0S
4
θλ

4þ2π0σ2S2θλ (1þπ0þ3λ(3π0λ(λ2þπ2
0λ

2
, -

þσ4 1þπ2
0λ

2þπ0 1(4λþλ2
, -, -, -

ð(1þπ0Þπ0S
2
θλ

2þσ2ð(2þλþπ0λÞ
, -2 : ðA:7Þ
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var Q½ * ¼

σ2ð1(π2
0λÞþðασ2ð1(λÞZÞ2var½κ*

þð1(π0Þ2λ
2var½κSθ*

(2ασ2ð1(λÞλZð1(π0Þcovðκ; κSθÞ:
ðA:16Þ

Stein's Lemma implies that for Y ' A ð0;σ2
Y Þ, and g(Y) such

that E½gðYÞY*o1 and σ2
YE½g

0ðYÞ*o1, we have
covðgðYÞ;XÞ ¼ E½g0ðYÞ*covðY ;XÞ. Therefore,

cov κ; Sθ
" #

¼ E
∂
∂Sθ

κ
' (

var Sθ
" #

ðA:17Þ

var½κSθ* ¼ E½κ2S2θ*(ðE½κSθ*Þ2 ðA:18Þ

var½κSθ* ¼ covðκ2Sθ ; SθÞ(covðκ; SθÞ ðA:19Þ

var κSθ
$ %

¼ E κ2þ2κSθ
∂
∂Sθ

κ
' (

(E
∂
∂Sθ

κ
' () *

var Sθ
" #

ðA:20Þ

covðκ; κSθÞ ¼ E½κ2Sθ*(E½κ*E½κSθ* ðA:21Þ

covðκ; κSθÞ ¼ covðκ2; SθÞ(E½κ*covðκ; SθÞ ðA:22Þ

cov κ; κSθ
" #

¼ E 2κ ∂
∂Sθ

κ
h i

(E κ½ *E
∂
∂Sθ

κ
' () *

var Sθ
" #

: ðA:23Þ

Since ð∂=∂SθÞκðSθÞ ¼ (ð∂=∂SθÞκð(SθÞ, we have that
E ð∂=∂SθÞκ
$ %

¼ 0, and E κð∂=∂SθÞκ
$ %

¼ 0. This implies that
volatility can be expressed as

var Q½ * ¼
σ2ð1(π2

0λÞþð1(π0Þ2λ
2var½κSθ*

þðασ2ð1(λÞZÞ2var½κ*
ðA:24Þ

since λ¼ σ2=varðSθÞ.□

Proof of Proposition 8. Optimality of xi;t follows from (2),
the expressions for beliefs are given by (6)– (7), and the
expression for the price follows from the market clearing
condition.□

Proof of Proposition 9. One can conjecture and verify the
specified price function in each case. In particular, suppose
Ptþ1 ¼ AμþBDtþ1þCSθ;tþ1þF. Since Sθ;tþ1 is uncorrelated
with dtþ1, we have that optimal demand for investor i is
given by

xi;t ¼
Ei;t Ptþ1þDtþ1

$ %
(RPt

vari;t Ptþ1þDtþ1
$ % ðA:25Þ

xi;t ¼
AμþðBþ1Þðð1(ρÞμþρDtþEi;t dtþ1

$ %
ÞþF(RPt

ðBþ1Þ2 vari;t dtþ1
$ %

þC2ðσ2þσ2
εÞ

:

ðA:26Þ

This implies that the equilibrium is signal-revealing, since
the optimal demand for θ investors is linear in Sθ;t . More-
over, note that for πt ¼ 1 and θ¼ I, we have

Ei;t dtþ1
$ %

¼ λSθ;t and ðA:27Þ

vari;t dtþ1
$ %

¼ σ2ð1(λÞ; ðA:28Þ

for iAfU;θg, while for πt ¼ 0 and θ¼N, we have

Eθ;t dtþ1
$ %

¼ λSθ;t and ðA:29Þ

varθ;t dtþ1
$ %

¼ σ2ð1(λÞ; ðA:30Þ

EU;t dtþ1
$ %

¼ 0 and ðA:31Þ

varU;t dtþ1
$ %

¼ σ2: ðA:32Þ

Plugging in these beliefs into the optimal demand for each
type of investor, and imposing the market clearing condi-
tion (i.e., xU;tþxθ;t ¼ Z) verifies the conjectured linear form.
Matching coefficients implies uniqueness of the equili-
brium. In particular, for πt ¼ 1 and θ¼ I, we have

C ¼
λ

R(ρ
; ðA:33Þ

while for πt ¼ 0 and θ¼N, we can show that C is the
solution to the cubic equation:

C ¼
λ R2λþC2ðR(ρÞ2
, -

R2ð2(λÞλþ2C2ðR(ρÞ2
, -

ðR(ρÞ
: ðA:34Þ

Since the discriminant of the above equation is less than
zero, there is one real solution, which pins down the
unique linear equilibrium in this case. The expressions for
expected returns and volatility in returns can be verified
by plugging in the expression for price and computing the
moments.□

Proof of Proposition 10. Consider first the (T-period) finite
horizon model in which all dividends and trading termi-
nates at some arbitrary date T with PT¼0. We first
establish that, for any T, there is a unique equilibrium
price for all toT , which is given by

Pt ¼ AtμþBtDtþptðSθ;tÞ; ðA:35Þ

in which

Bt ¼
ρ
R
1þBtþ1ð Þ; ðA:36Þ

At ¼
1
R

Atþ1þ 1(ρ
" #

1þBtþ1ð Þ
" #

and ðA:37Þ

pt Sθ;t
" #

¼
1
R

Et 1þBtþ1ð Þdtþ1þptþ1ðSθ;tþ1Þ
$ %

(ακtvarθ;t 1þBtþ1ð Þdtþ1þptþ1ðSθ;tþ1Þ
$ %

Z

( )
;

ðA:38Þ

whereand E i;t +½ * ¼ κtEθ;t +½ *þð1(κtÞEU;t +½ *: We shall establish
the claim by induction.
Base step. The terminal date is T at which point PT¼0

and so PT(1 is given by

PT(1 ¼
1
R

ð1(ρÞμþρDT(1þEi;T(1½dT *
(ακT(1varθ;t dT

$ %
Z

 !

ðA:40Þ

κt ¼
varU;t ð1þBtþ1Þdtþ1þptþ1ðSθ;tþ1Þ

$ %

varU;t ð1þBtþ1Þdtþ1þptþ1ðSθ;tþ1Þ
$ %

þvarθ;t ð1þBtþ1Þdtþ1þptþ1ðSθ;tþ1Þ
$ % ðA:39Þ
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PT(1 ¼ AT(1μþBT(1DT(1þpT(1ðSθ;T(1Þ: ðA:41Þ

Hence AT(1;BT(1 and pT(1 satisfy the conjectured recur-
sion. Also, note that Ei;T(1½pT ðSθ;T Þ* ¼ vari;T(1½pT ðSθ;T Þ* ¼ 0
for iAfU;θg.
Recursive step. Suppose the price in the next period

satisfies Ptþ1 ¼ Atþ1μþBtþ1Dtþ1þptþ1ðSθ;tþ1Þ, and
jEi;t ½ptþ1ðSθ;tþ1Þ*jrmt and vari;t ½ptþ1ðSθ;tþ1Þ*ovt for
iAfU;θg for some mt ; vto1. Then,

xi;t ¼
Ei;t Ptþ1þDtþ1

$ %
(RPt

αvari;t Ptþ1þDtþ1
$ % ðA:42Þ

xi;t ¼
Ei;t Atþ1μþð1þBtþ1ÞDtþ1þptþ1ðSθ;tþ1Þ

$ %
(RPt

αvari;t 1þBtþ1ð ÞDtþ1þptþ1ðSθ;tþ1Þ
$ % :

ðA:43Þ

Market clearing then requires that

Pt ¼
1
R

ðAtþ1þð1þBtþ1Þð1(ρÞÞμþð1þBtþ1ÞρDt

þEi;t ð1þBtþ1Þdtþ1þptþ1ðSθ;tþ1Þ
$ %

(ακtvarθ;t ð1þBtþ1Þdtþ1þptþ1ðSθ;tþ1Þ
$ %

Z

0

B@

1

CA

ðA:44Þ

Pt & AtμþBtDtþptðSθ;tÞ; ðA:45Þ

which verifies (A.35)–(A.38) hold in period t. Note that
Sθ;tþ1 is independent of dtþ1. Then, ptðSθ;tÞ is given by

pt Sθ;t
" #

¼
1
R

Et 1þBtþ1ð Þdtþ1þptþ1ðSθ;tþ1Þ
$ %

(ακtvarθ;t 1þBtþ1ð Þdtþ1þptþ1ðSθ;tþ1Þ
$ %

Z

( )

ðA:46Þ

pt Sθ;t
" #r1

R

ð1þBtþ1Þðκtþð1(κtÞπ0ÞSθ;t

þmtþαZ σ2ð1þBtþ1Þ2þvt
, -

0

@

1

A; ðA:47Þ

where the inequality follows from κtr1, varθ;t 1þBtþ1ð Þ
$

dtþ1*rσ2ð1þBtþ1Þ2, jEi;t ½ptþ1ðSθ;tþ1Þ*jrmt , vari;t ½ptþ1
ðSθ;tþ1Þ*ovt , and the fact that ptþ1 and dtþ1 are indepen-
dent. Taking the expectation gives

Ei;t(1 pt Sθ;t
" #$ % r1

R
mtþαZ σ2ð1þBtþ1Þ2þvt

, -, -++++

++++
&mt(1; ðA:48Þ

since E ðκtþð1(κtÞπ0ÞSθ;t
$ %

¼ 0 (recall κt is an odd-function
of Sθ;t and Sθ;t is mean-zero). For the variance term, we
have that

vari;t(1½ptðSθ;tÞ* ¼ ð1þBtþ1Þ2vari;t(1 ðκtþð1(κtÞπ0ÞSθ;t
$ %

ðA:49Þ

vari;t(1½ptðSθ;tÞ*rð1þBtþ1Þ2ðσ2þσ2
εÞ & vt(1; ðA:50Þ

where the inequality follows from Ei;t(1½ðκtþð1(κtÞπ0Þ2

S2θ;t *rEi;t(1½S
2
θ;t *.

Stationary solution to the infinite horizon model with i.i.
d. θ. Now we turn to the proof of existence in the infinite
horizon. A stationary equilibrium requires that At and Bt be
time-invariant, which from (A.37) implies that
A¼ Rð1(ρÞ=ðR(1ÞðR(ρÞ, and B¼ ρ=ðR(ρÞ. Assuming they
are well defined (which will be verified shortly), denote
m¼ Ei;t ptþ1

$ %
and v¼ vari;tþ1 ptþ1

$ %
both of which can be

made independent of t in a stationary equilibrium. Note
that E κtSθ;t

$ %
¼ 0 and cov κtSθ;t ; κt

$ %
¼ 0, since κt is even in

Sθ;t , and also that var κtSθ;t
$ %rσ2þσ2

ε and var κt½ *r1, since
κtr1. Finally, note that dtþ1 and ptþ1 are uncorrelated.
Then,

m¼ Ei pt
$ %

ðA:51Þ

¼ Ei
1
R

Et 1þBð Þdtþ1þptþ1
$ %

(ακtvarθ;t 1þBð Þdtþ1þptþ1
$ %

Z

( )" #
ðA:52Þ

¼
1
R

E
ð1þBÞðκtþð1(κtÞπ0ÞλSθ;tþm

(ακtðð1þBÞ2σ2ð1(λÞþvÞZ

" #( )
ðA:53Þ

which implies

m¼ (
1

R(1
ð1þBÞ2σ2 1(λ

" #
þv

, -
αZE κt½ * ðA:54Þ

o1: ðA:55Þ

Let σ2
E & var ðκtþð1(κtÞπ0ÞSθ;t

$ %
and σ2

κ ¼ var κ½ *. Then, we
have

v¼ vari
1
R

ð1þBÞðκtþð1(κtÞπ0ÞλSθ;tþm

(ακtðð1þBÞ2σ2ð1(λÞþvÞZ

 !" #
ðA:56Þ

¼
1
R2

ð1þBÞ2λ2σ2
E

þα2ðð1þBÞ2σ2ð1(λÞþvÞ2Z2σ2
κ

0

@

1

A ðA:57Þ

) v¼ JðvÞ; ðA:58Þ

where

J vð Þ ¼
1
R2

ð1þBÞ2λ2σ2
E

þα2ðð1þBÞ2σ2ð1(λÞþvÞ2Z2σ2
κ

0

@

1

A: ðA:59Þ

Since, σ2
Erσ2þσ2

ε and σ2
κr1, we have that J(v) is

bounded above by the quadratic function

JðvÞrFþGðvþHÞ2 ðA:60Þ

where F ¼ ð1=R2Þð1þBÞ2λ2ðσ2þσ2
εÞ, G¼ ð1=R2Þα2Z2, and

H¼ ð1þBÞ2σ2ð1(λÞ. The solution to the quadratic equa-
tion v¼ FþGðvþHÞ2 is given by

vn ¼
1(2GH7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1(4GðFþHÞ

p

2G
ðA:61Þ

and a sufficient condition for existence is

1(4G FþHð ÞZ1(
4α2Z2σ2

ðR(ρÞ2
40; ðA:62Þ

since FþH ¼ ð1=R2Þð1þBÞ2σ2. Under this sufficient condi-
tion, we know that JðvnÞrvn. Noting that Jð+Þ is continuous
on Rþ and Jð0Þ40, the intermediate value theorem
implies there exists a solution to JðvÞ ¼ v, and conse-
quently, an equilibrium.
The equilibrium price is then given by

Pt ¼ AμþBDt

þ
1
R

ð1þBÞðκtþð1(κtÞπ0ÞλSθ;t
þm(ακtðð1þBÞ2σ2ð1(λÞþvÞZ

 !
; ðA:63Þ

where A, B, m and v are characterized above. The equili-
brium is signal-revealing in this case, since the optimal
demand of the θ investor is linear in Sθ;t .□
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Proof of Proposition 11. Again, the claim will be established
by backward induction on T.
Base step. The terminal date is T (i.e., PT¼0) and so PT(1

is given by

PT(1 ¼
1
R

ð1(ρÞμþρDT(1

þEi;T(1½dT *(ακT(1varθ;t dT
$ %

Z

 !

ðA:64Þ

PT(1 ¼ AT(1μþBT(1DT(1þpT(1ðSθ;T(1Þ; ðA:65Þ

since AT ¼ BT ¼ pT ¼ 0. Also, note that Ei;T(1½pT
ðSθ;T ÞjπT * ¼ vari;T(1½pT ðSθ;T Þ* ¼ 0 for iAfU;θg.
Recursive step. Suppose the price in the next period

satisfies Ptþ1 ¼ Atþ1μþBtþ1Dtþ1þptþ1ðSθ;tþ1;πtþ1Þ, and
jEi;t ptþ1ðSθ;tþ1;πtþ1Þjdtþ1

$ %
jrmt and vari;t ptþ1ðSθ;tþ1;

$

πtþ1Þ*jrvt for some mt ; vtr1 and all dtþ1. Note
that the first constraint implies that jEi;t ptþ1

$

ðSθ;tþ1;πtþ1Þ*jrmt . The optimal demand is given by

xi;t ¼
Ei;t Ptþ1þDtþ1

$ %
(RPt

αvari;t Ptþ1þDtþ1
$ % ðA:66Þ

xi;t ¼
Ei;t Atþ1μþð1þBtþ1ÞDtþ1þptþ1ðSθ;tþ1;πtþ1Þ

$ %
(RPt

αvari;t 1þBtþ1ð ÞDtþ1þptþ1ðSθ;tþ1;πtþ1
$ % :

ðA:67Þ

Market clearing implies
P

ixi;t ¼ Z, or equivalently,

Pt ¼
1
R

ðAtþ1þð1þBtþ1Þð1(ρÞÞμþð1þBtþ1ÞρDt

þE i;t ð1þBtþ1Þdtþ1þptþ1ðSθ;tþ1;πtþ1Þ
$ %

(ακtvarθ;t ð1þBtþ1Þdtþ1þptþ1ðSθ;tþ1;πtþ1Þ
$ %

Z

0

B@

1

CA

ðA:68Þ

Pt & AtμþBtDtþptðSθ;t ;πtÞ; ðA:69Þ

which verifies our conjectured form. To verify the price is
well defined, we need to confirm that the conditional
expectation and variance of ptð+Þ is bounded. If the equili-
brium is signal-revealing, it must be that:

pt ¼
1
R

Et ð1þBtþ1Þdtþ1þptþ1
$ %

(ακtvarθ;t ð1þBtþ1Þdtþ1þptþ1
$ %

Z

 !
ðA:70Þ

pt ¼
1
R

ð1þBtþ1Þðκtþð1(κtÞπtÞλSθ;t
þEt ptþ1

$ %

(ακtvarθ;t ð1þBtþ1Þdtþ1þptþ1
$ %

Z

0

BB@

1

CCA: ðA:71Þ

Given our conjecture,

varθ;t ð1þBtþ1Þdtþ1þptþ1
$ %

ðA:72Þ

¼
ð1þBtþ1Þ2varθ;t dtþ1

$ %
þvarθ;t ptþ1

$ %

þ2ð1þBtþ1Þcovθ;t dtþ1;ptþ1
$ % ðA:73Þ

rð1þBtþ1Þ2σ2þvtþ2ð1þBtþ1Þσ
ffiffiffiffiffi
vt

p
ðA:74Þ

& Vt : ðA:75Þ

But this implies that

Ei;t(1 κtvarθ;t ð1þBtþ1Þdtþ1þptþ1
$ %

jdt
$ %

rVtþ
ffiffiffiffiffi
Vt

p
; ðA:76Þ

since κtA ½0;1*. Since Ei;t(1 ðκtþð1(κtÞπtÞλSθ;t jdt
$ %

¼ 0 (κt
is odd and Sθ;t is mean-zero), we have

Ei;t(1 pt jdt
$ % r1

R
mtþαZðVtþ

ffiffiffiffiffi
Vt

p
Þ

, -++++

++++ ðA:77Þ

jEi;t(1 pt jdt
$ %

j&mt(1; ðA:78Þ

which verifies that the conditional mean of the price is
bounded at date t(1. Next, note that

vari;t(1 pt jdt
$ %r 1

R2

ð1þBtþ1Þ2λ
2ðσ2þσ2

εÞ

þm2
t þα2Z2V2

t

þ2ð1þBtþ1Þλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2þσ2

ε
p

ðmtþαZVtÞ
þ2mtαZVt

0

BBBB@

1

CCCCA

ðA:79Þ

vari;t(1 pt jdt
$ %

&Wt : ðA:80Þ

But this implies that by applying the law of total variance,
we have

vari;t(1 pt
$ %

¼ Ei;t(1 vari;t(1 pt jdt
$ %$ %

þvari;t(1 Ei;t(1 pt jdt
$ %$ %

ðA:81Þ

vari;t(1 pt
$ %rWtþm2

t(1 & vt(1; ðA:82Þ

which verifies that conditional variance of the price is
bounded in period t(1.□

Proof of Proposition 12. Given the distribution of y in Eq.
(42), the U investor can use the “signal,” y, to learn about θ.
In particular, her updated belief conditional on (y,P) is
given by

πn y; Pð Þ ¼

π0ffiffiffiffiffiffiffiffi
σ2
Y ;I

q ϕ
yffiffiffiffiffiffiffiffi
σ2
Y ;I

q

0

B@

1

CA

π0ffiffiffiffiffiffiffiffi
σ2
Y ;I

q ϕ
yffiffiffiffiffiffiffiffi
σ2
Y ;I

q

0

B@

1

CAþ
1(π0ffiffiffiffiffiffiffiffiffiffi
σ2
Y ;NI

q ϕ
y(λPffiffiffiffiffiffiffiffiffiffi
σ2
Y ;NI

q

0

B@

1

CA

; ðA:83Þ

where

σ2
Y ;I ¼ λ2 σ2þσ2

ε
" #

þα2σ4 1(λ
" #2σ2

z ðA:84Þ

σ2
Y ;NI ¼ α2σ4 1(λ

" #2σ2
z : ðA:85Þ

Conditional on θ¼ I, U's belief about d is given by

EU djy;θ¼ I
$ %

¼ λyy; ðA:86Þ

varU djy;θ¼ I
$ %

¼ σ2 1(λy
" #

; ðA:87Þ

where

λy ¼
cov y;dð Þ
var yð Þ

¼
λσ2

σ2
Y ;I

¼
λσ2

λσ2þλ2α2σ4
ϵσ2

z

: ðA:88Þ

Optimal demand for the U investor is then given by

xU xθ(z; P
" #

¼
1
α

πnλyy(P

πnσ2 1(λy
" #

þ 1(πnð Þσ2þπn 1(πnð Þ λyy
" #2:

ðA:89Þ

The market clearing condition (41) implies that the equili-
brium price, P, can be implicitly characterized as the
solution to the following equation:

xU ðxθ(z; PÞ ¼ Z(ðxθ(zÞ: ðA:90Þ
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Note that since

∂πn

∂P
¼
π0 1(π0ð Þ
σ2
Y ;Iσ2

Y ;NI

ασ2ð1(λÞðxθ(zÞ σ2
Y ;I 1(λ
" #

(σ2
Y ;NI

, -

þP σ2
Y ;I 1(λ
" #2(σ2

Y ;NI

, -

0

B@

1

CA;

ðA:91Þ

for any realization of xθ(z, we have

# If σ2
Y ;I 1(λ
" #2(σ2

Y ;NI40, the derivative is increasing in P
and, for large enough values of P, it is positive, which
implies limjPj-1πn ¼ 1, and consequently,

lim
jPj-1

xU ¼
λyy(P

ασ2ð1(λyÞ
:

# If σ2
Y ;I 1(λ
" #2(σ2

Y ;NIo0, the derivative is decreasing in
Pt and, for large enough Pt, it is negative. This implies
that limjPj-1πn ¼ 0, and consequently,

lim
jPj-1

xU ¼
0(P
ασ2 :

Since xU is continuous in P and πn, this implies that in
either case, there exists a P that satisfies Eq. (A.90).
Rearranging Eq. (A.90) gives the expression for the price
in the proposition.□

Appendix B. Supplementary analysis

B.1. Comparative statics on return moments

To investigate comparative statics, we start by present-
ing the following result.

Proposition 13. In the static model,

(i) The unconditional expected return is homogeneous of
degree one (HD1) in σ2 and αZ.

(ii) The unconditional volatility component due to funda-
mental shocks is HD1 in σ2 and HD0 in αZ.

(iii) The unconditional volatility component due to the
expectations component of returns is HD1 in σ2 and
HD0 in αZ.

(iv) The unconditional volatility component due to the risk
premium component of returns is HD2 in σ2 and αZ.

Proof of Proposition 13. It suffices to show that E½κ* and
var½κ* are HD0 in σ2, while var½κSθ* is HD1 in σ2. Recall that

κ ¼
σ2ð1(π0λÞþπ0ð1(π0Þλ

2S2θ
σ2ð1(λÞþσ2ð1(π0λÞþπ0ð1(π0Þλ

2S2θ
ðB:1Þ

and by definition, λ¼ σ2=ðσ2þσ2
ϵÞ and

Sθ 'Nð0;σ2þσ2
ϵÞ ¼Nð0;σ2=λÞ, we have

E κ½ * ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2=λ
p

Z 1

(1

σ2ð1(π0λÞþπ0ð1(π0Þλ
2s2

σ2ð1(λÞþσ2ð1(π0λÞþπ0ð1(π0Þλ
2s2

e ( s2=2σ2=λð Þ ds:

ðB:2Þ

Using a change of variables, by letting x& ð
ffiffiffi
λ

p
=σÞs, we get

that

E κ½ * ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2=λ
p σffiffiffi

λ
p

Z σ2 1(π0λ
" #

þπ0 1(π0ð Þλ2
σ2

λ
x

σ2 1(λ
" #

þσ2 1(π0λ
" #

þπ0 1(π0ð Þλ2
σ2

λ
x
e ( x2=2ð Þdx

ðB:3Þ

E κ½ * ¼
1ffiffiffiffiffiffi
2π

p
Z 1

(1

ð1(π0λÞþπ0ð1(π0Þλx
ð1(λÞþð1(π0λÞþπ0ð1(π0Þλx

e (x2=2ð Þdx:

ðB:4Þ

And clearly, Eq. (B.4) is independent of σ. To see that var½κ*
is also independent of σ, note that the same proof as above
applies to E½κ2*.
For var κSθ

$ %
, again using the same change of variables,

we have that

E κSθ
$ %

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2=λ
p

Z 1

(1

σ2ð1(π0λÞþπ0ð1(π0Þλ
2s2

σ2ð1(λÞþσ2ð1(π0λÞþπ0ð1(π0Þλ
2s2

se ( s2=2σ2=λð Þ ds

ðB:5Þ

E κSθ
$ %

¼
σffiffiffiffiffiffi
2π

p
Z

ð1(π0λÞþπ0ð1(π0Þλx
ð1(λÞþð1(π0λÞþπ0ð1(π0Þλx

xffiffiffi
λ

p e (x2=2ð Þ dx;

ðB:6Þ

which clearly scales with σ and hence, E½κSθ*
" #2 scales

with σ2. The same change of variables can be used to show
that the same is true of E½ κSθ

" #2*, which completes the
proof.□

As expected, (i) implies that unconditional expected
returns are increasing in the fundamental volatility and the
overall risk concerns in the market as captured by αZ. Results
(ii) through (iv) are also fairly intuitive, but they have
important implications for which component drives overall
volatility. In particular, when overall concerns about risk in the
market are relatively high, the risk-premium component of
expression (20) is the key driver of overall return volatility.
When αZ and σ2 are relatively small, the first and second
components of expression (20) drive overall volatility.

Proposition 13 is also useful for exploring comparative-
static results with respect to λ and π0. For example, (i)
implies that when exploring how expected returns change
with λ and π0, it is without loss to normalize σ2 and αZ. By
doing so, we are left with a two-dimensional parameter
space (i.e., ðπ0; λÞA ½0;1*2), over which the expected return
can be plotted to obtain comparative-static results that
obtain for any parameter specification of the model. Fig. 10
(a) illustrates the result; both higher quality information
and greater likelihood of an informed trader decrease the
expected return. This is because both higher quality
information and a higher likelihood of an informed trader
imply that the price is more informative about the funda-
mentals in expectation, and the uncertainty faced by the
uninformed investor is lower.

Using (ii) through (iv), we can conduct a similar
exercise to characterize the comparative-static effects of
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each of the individual components of volatility. Fig. 11(a)
shows the volatility in returns due to fundamental divi-
dend shocks is decreasing in π0 and λ, since an increase in
either parameter reduces the uncertainty that investors
face about next period's dividend. Fig. 11(b) shows that the

variance in the expectations component of conditional
expected returns is decreasing in π0 but increasing in λ.
Recall that the expectations component of the conditional
expected returns is nonzero because investors exhibit
differences of opinion, and in particular, because
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Fig. 11. The three components of volatility as they depend on the quality of information, λ, and the probability of a θ being informed, π0. Panel (a) plots the
fundamental component of volatility (i.e., σ2ð1(π20λÞ), Panel (b) plots the expectations component (i.e., ð1(π0Þ2λ2var½κSθ *), and Panel (c) plots the risk-
premium component (i.e., ðσ2ð1(λÞαZÞ2var½κ*). The other parameters are set as in Fig. 10.
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S. Banerjee, B. Green / Journal of Financial Economics 117 (2015) 398–423 421



uninformed θ investors believe they are informed. This
effect is larger when π0 is smaller (since θ investors are
less likely to actually be informed) and when λ is larger
(since uninformed θ investors put more weight on their
signals), which leads to the effect on volatility. Fig. 11(c)
shows the risk-premium component of volatility is non-
monotonic in both π0 and λ. This is because the risk-
premium component of returns is stochastic only when
both λ and π0 are strictly between zero and one.28

Of course, comparative statics on the total return
volatility depend on the relative magnitudes of σ2 and
αZ, which determine the relative weight on each compo-
nent. For instance, Fig. 10(b) presents the effect of π0 and λ
on overall volatility for a given set of parameters, for which
the fundamental and expectations components dominate
the risk-premium component.
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