Journal of Financial Economics 111 (2014) 589-608

Contents lists available at ScienceDirect

Journal of Financial Economics

journal homepage: www.elsevier.com/locate/jfec

Trading in derivatives when the underlying is scarce ™

Snehal Banerjee **, Jeremy J. Graveline "

2 Northwestern University, Kellogg School of Management, United States
b University of Minnesota, Carlson School of Management, United States

@ CrossMark

ARTICLE INFO

ABSTRACT

Article history:

Received 4 March 2013

Received in revised form

14 June 2013

Accepted 15 July 2013

Available online 4 December 2013

JEL classification:
G12
G13

Keywords:
Scarcity
Short-selling
Price distortions
Derivatives
Regulation

Regulatory restrictions and market frictions can constrain the aggregate quantity of long
and short positions in a security. When these constraints bind, we refer to the security as
scarce, and its price becomes distorted relative to its value in a frictionless market. We
show that an otherwise redundant derivative can reduce the price distortion of the
underlying security by relaxing its scarcity. We also show that it is especially important to
analyze the underlying and derivative markets jointly when evaluating the impact of
regulation, such as short-sales bans and position limits in derivatives, that restricts trade.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is critical that regulatory rulemaking ... is done right,
with the proper analysis to ensure that any new rules
do not impede the function of the markets they are
meant to protect.’

“ We are grateful for comments from Darrell Duffie, Nicolae Garleanu,
Brad Jordan, Arvind Krishnamurthy, Xuewen Liu, Moto Yogo, and parti-
cipants at the Minnesota Junior Finance Conference (2011), the Financial
Intermediation Research Society Conference (2012), and the NBER AP
Meeting in Palo Alto (2012).
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! Timothy Ryan, chief executive officer of Securities Industry and
Financial Markets Association (SIFMA), in response to the position limits
on commodity derivatives proposed by the Commodity Futures Trading
Commission (CFTC) under the mandate of the Dodd-Frank Act (see
Financial Times, December 5, 2011). In December 2011, SIFMA and the
International Swaps and Derivatives Association (ISDA) filed suit against
the CFTC over the proposed position limits. In September 2012, less than
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Many recent policy changes have focused on restricting
trade in derivatives and the securities that underlie them. For
example, the Securities and Exchange Commission (SEC)
imposed short-selling bans on financial stocks in the fall of
2008, and many European countries imposed similar restric-
tions for bank stocks during the recent Eurozone crisis.
On the derivatives side, the European Union has banned
naked credit default swap (CDS) positions on sovereign debt,
and the CFTC has proposed position limits on certain
commodity derivatives to “diminish, eliminate or prevent”
excessive speculation.

By restricting trade in a security, these regulations may
distort prices. For instance, a short-sales ban prevents
pessimistic short-sellers from trading, but it also prevents
long positions from being larger, in aggregate, than the

(footnote continued)

two weeks before the limits were set to take effect, US district judge
Robert Wilkins ruled against the proposed limits, arguing that more
analysis was required by the CFTC to assess if the proposals were
necessary and appropriate under the law.


www.sciencedirect.com/science/journal/0304405X
www.elsevier.com/locate/jfec
http://dx.doi.org/10.1016/j.jfineco.2013.11.008
http://dx.doi.org/10.1016/j.jfineco.2013.11.008
http://dx.doi.org/10.1016/j.jfineco.2013.11.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2013.11.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2013.11.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2013.11.008&domain=pdf
mailto:snehal-banerjee@kellogg.northwestern.edu
mailto:snehal-banerjee@kellogg.northwestern.edu
mailto:jeremy@umn.edu
http://dx.doi.org/10.1016/j.jfineco.2013.11.008

590 S. Banerjee, ].J. Graveline / Journal of Financial Economics 111 (2014) 589-608

security's outstanding supply. More generally, regulatory
restrictions and market frictions, such as transactions
costs, search costs, short-sales constraints, and margin
requirements, can constrain the aggregate quantity of long
and short positions in a security. When these constraints
bind, we refer to the security as scarce, and the price of the
security must adjust to clear the market.

In frictionless markets, a simple derivative security is
redundant because it provides exposure to the same
source of risk as the underlying asset. However, we show
that this redundancy no longer applies when the under-
lying can be scarce. In fact, the presence of a derivative
may affect the price of the underlying itself. Intuitively,
derivatives can reduce the scarcity of the underlying by
providing a substitute for long and short positions. We
characterize how equilibrium prices and trading volume in
the underlying asset and its derivative are jointly deter-
mined, and provide sufficient conditions under which the
presence of a derivative reduces both the scarcity of the
underlying and the associated price distortion.

Our model provides a framework to analyze the effect
of proposed regulations that restrict trade in the under-
lying or derivative securities. It is important to note that
prices and quantities that are empirically observed in the
absence of these proposed trading restrictions cannot be
used directly to test the impact of the restrictions. Instead,
to evaluate the effects of such policy, one must jointly
characterize the equilibrium in the underlying and deri-
vative markets under the counter-factual assumption that
the restrictions are in effect. To provide a role for regula-
tory trading restrictions, we assume that some investors
may trade for non-informational motives, and therefore,
distort prices relative to the underlying asset's fundamen-
tal value. In this framework, we show that even if trade in
the derivative is always accompanied by distortionary
trading by speculators, restricting trade in the derivative
may increase the overall price distortion for an underlying
asset that is scarce. Moreover, if the underlying asset is
scarce and the derivative is not a perfect substitute, then
we show that a short-sales ban can actually lower the price
of the security, instead of raising it. As such, our analysis
highlights the importance of accounting for scarcity in the
underlying, and jointly modeling the underlying and
derivative markets, when evaluating policy decisions.

Our analysis is applicable to any security that may be
scarce, including both liquid and illiquid assets. Generally
speaking, liquidity captures the ease with which a parti-
cular security can be traded, and the literature has focused
on the role of various frictions in generating illiquidity.?
In contrast, the notion of scarcity reflects the aggregate
demand for both long and short positions in an asset
relative to the capacity for such positions that it can

2 These frictions include transactions costs (e.g, Amihud and
Mendelson, 1986; Duffie, 1996; Vayanos, 1998; Krishnamurthy, 2002;
Acharya and Pedersen, 2005; Bongaerts, De Jong, and Driessen, 2011),
search frictions (e.g., Duffie, Garleanu, and Pedersen, 2002; Vayanos and
Weill, 2008), and asymmetric information (e.g., Kyle, 1985; Wang, 1993;
Garleanu and Pedersen, 2004). See Amihud, Mendelson, and Pedersen
(2005) and Vayanos and Wang (2012) for excellent surveys of the
literature on liquidity and asset prices.

support. For example, on-the-run Treasuries are extremely
liquid, but the demand for long and short positions in
these securities often exceeds the supply that are available
to be borrowed in the financing, or repo, market. When
this situation occurs, the Treasury is scarce — it is costly to
borrow and trades “on special” in the financing market.
Off-the-run Treasuries are also extremely liquid, but they
are not typically scarce, since the demand for positions is
most often concentrated in their on-the-run counterparts.
Conversely, while the corporate bond market is much less
liquid than the Treasury market, corporate bonds can also
be scarce when the demand for positions to hedge or
speculate on default risk exceeds the supply of corporate
bonds that are available to be traded. Other illiquid assets,
such as real-estate and commodities, can also be scarce if
there is sufficient demand for positions but they are
inherently difficult to borrow and sell short.

The rest of the paper is organized as follows. In the next
section, we briefly discuss the related literature. In Section 3,
we develop a benchmark model and characterize equili-
brium prices and quantities in both markets. We also derive
sufficient conditions on preferences and payoff distributions
under which the presence of a derivative security reduces
the price distortion in the underlying. In Section 4, we
develop a general framework that allows us to analyze the
implications of scarcity on standard policy changes such as
limits on derivative trading and short-selling bans. Section 5
concludes. All proofs are in Appendix A.

2. Related literature

In general, the equilibrium prices of existing securities
change when a derivative security, exposed to risks that
are not spanned by those securities, is introduced into an
economy (e.g., see Detemple and Selden, 1991; Zapatero,
1998; Boyle and Wang, 2001; Bhamra and Uppal, 2009).3
In contrast to these earlier papers, where derivatives
complete the market by allowing investors to trade new
sources of risk, we show that the presence of a derivative
security can affect the price of the underlying asset, even
when both securities span the same risks. In our setup, the
derivative makes the market more “complete” by relaxing
the constraint on the aggregate capacity for positions in
the underlying asset.* As such, the mechanism through
which derivatives affect the price of the underlying is also
distinct from, but complementary to, other channels that
have been suggested in the literature, such as reducing
transactions costs and search frictions (e.g., Merton, 1989;
Garleanu, 2009).

Our paper is closely related to the large literature that
explores the effect of trading frictions on asset prices and,
in particular, to earlier models that generate costly

3 However, much of the existing literature on derivatives assumes
that the presence of such a derivative does not affect the price of the
underlying security — this is described by Hakansson (1979) as “The
Catch 22 of Option Pricing.”

4 Jordan and Kuipers (1997) provide direct empirical evidence of the
effect of trading in a derivative on the price of the underlying security in
U.S. Treasury markets.
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borrowing through frictions such as transaction costs (e.g.,
Duffie, 1996; Krishnamurthy, 2002), and search costs (e.g.,
Duffie, Garleanu, and Pedersen, 2002; Vayanos and Weill,
2008).> While our model is more stylized than some of the
models in these papers, it offers greater tractability and allows
us to characterize how trade in derivative securities affects the
cost of borrowing an underlying that may be scarce. Our
model also provides an intuitive and flexible framework in
which to analyze the effects of regulatory policy that restricts
trade in the derivative or the underlying asset.

More generally, our paper relates to the literature on
financial innovation and security design, including early work
by Allen and Gale (1988), Duffie and Jackson (1989), Cuny
(1993), and Rahi (1995), and more recent work by Simsek
(2011), Kubler and Schmedders (2012), Shen, Yan, and Zhang
(2012), and others.® In contrast to the general approach in
these papers, our model focuses on a particular form of
market incompleteness (i.e., the constrained capacity for
positions in the underlying), and we specifically derive how
the price is affected by the presence of a derivative. Moreover,
while some of these papers focus on how the introduction of
derivatives can increase the distortion in equilibrium alloca-
tions (e.g, Simsek, 2011) and prices (e.g., Kubler and
Schmedders, 2012), we highlight a channel through which
even simple derivatives can help reduce the distortion in the
equilibrium price of the underlying. As such, we view our
analysis as complementary to these other papers.

Finally, our paper relates to the literature that studies
the effect of short-sale constraints on asset prices. Standard
intuition suggests that short-sales restrictions constrain
pessimists from expressing their views and therefore
increase the price of a security (e.g., Miller, 1977). A number
of subsequent papers characterize conditions under which
this overpricing result fails to hold (e.g., Diamond and
Verrecchia, 1987; Bai, Chang, and Wang, 2006; Gallmeyer
and Hollifield, 2008). In our model, the mechanism through
which short-sale constraints can lower the security's price
is analogous to the one in Duffie, Garleanu, and Pedersen
(2002), but we characterize conditions under which the
result obtains in the presence of derivatives.

3. Benchmark model

We begin by developing a benchmark model to high-
light the effect of derivatives on the scarcity of the under-
lying asset. Section 3.1 presents the setup of the model and
Section 3.2 provides a discussion of our assumptions.
In Section 3.3, we present the main analysis, including a
characterization of the equilibrium in the underlying and
derivative markets. In Section 3.4, we characterize suffi-
cient conditions, for general utility functions and payoff

5 A number of papers document this distortion in the price of scarce
securities, in the form of a price premium paid for securities that are
costly to borrow (i.e., trade “on special”). These papers include Jordan and
Jordan (1997), Krishnamurthy (2002), Goldreich, Hanke, and Nath (2005),
and Banerjee and Graveline (2013), which show a positive relation
between prices and borrowing fees in bond markets, and D'Avolio
(2002), Geczy, Musto, and Reed (2002), and Ofek and Richardson
(2003), which document it in equity markets.

6 See Allen and Gale (1994) and Duffie and Rahi (1995) for compre-
hensive surveys and discussions of the earlier literature in this area.

distributions, under which the scarcity of the underlying
asset is reduced when investors can trade a derivative.

3.1. Model setup

Securities and payoffs. There are two dates and three
securities in the market. The risk-free security is normal-
ized to pay a net return of zero. The risky asset, which we
refer to as the underlying, trades at a price P and pays
off a normally distributed fundamental value F ~ N(m, v) in
the next period. The derivative security has a price D,
and a payoff of F+¢ in the next period, where £ ~ N(0, ) is
normally distributed and independent of the fundamental
value F. The net supply of the underlying security is given
by Q >0, and the derivative is in zero net supply. Short-
sellers in the underlying security must borrow it from long
investors and pay a borrowing fee of R > 0.

Investor beliefs and preferences. There are two groups of
investors, indexed by ie {L,S}, with constant absolute risk
aversion (CARA) utility over next period's wealth, risk-
tolerance 7, and common beliefs. An investor from group i
is endowed with an exposure p; to the fundamental shock F,
where ps= —p; =p. We denote investor i's position in the
underlying asset by x;, and her position in the derivative by y;.

We focus on the range of parameters such that L
investors are long in the underlying asset and S investors
are short. Each short position must be borrowed from a
long. However, since the underlying asset is in positive net
supply, not every long position can be loaned in equili-
brium to a short-seller (i.e., 0 < —xs/x; < 1). To convey our
basic intuition more clearly, we exogenously fix the max-
imum fraction 0 <y <1 of long positions that are bor-
rowed by (or equivalently, loaned to) shorts. While we
take a reduced-form approach in our benchmark model, in
Appendices B and C we characterize the conditions under
which our results are robust to endogenizing this fraction
7, as discussed below.

Investor i's wealth in the next period is given by

Wi=Wio+piF +xi(F—P+y;R)+y(F+e-D), (1

where y; <y <1 if i is long in the underlying (i.e., x; > 0)
and y; =1 if i is short (i.e., x; < 0). The y; term captures the
fact that short-sellers must borrow each unit they sell at a
borrowing fee R, while only a fraction y of long positions
can be borrowed by (loaned to) short-sellers. Investor i
maximizes expected utility U;(W;), given by

Uw,) = 7|E|:EXD<7%W,'>:|. 2)

3.2. Discussion of assumptions

In any equilibrium, since the underlying is in positive
net supply, not every long position can be borrowed by (or
equivalently, loaned to) a short-seller.” There are instances
when the upper bound, y, on borrowing and lending is

7 However, there may be significant heterogeneity in the fraction of
each long investor's position that they lend to short-sellers. We abstract
away from this heterogeneity in order to maintain tractability and more
clearly highlight the intuition for our results.
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exogenous (e.g., due to short-sales bans or finite market
capacity to clear trades). However, one might expect that,
in general, y is determined endogenously. We consider two
such scenarios in the appendices.

In Appendix B, we consider a model in which long
investors must pay a cost to lend out a fraction y of their
position to short-sellers. In this case, the optimal fraction y
lent out in equilibrium trades off the marginal cost of
lending out an additional unit with the marginal benefit of
getting the lending fee R from doing so. In Appendix C, we
consider an alternate setup in which short-sellers must
pay a cost to search for long investors in order to borrow
shares and establish a short position. In this case, the
optimal search intensity (which, in turn, determines the
equilibrium fraction of long positions that are borrowed)
sets the marginal cost of searching equal to the increase in
a short-seller's expected utility from being able to trade in
the underlying security (i.e., from locating a long investor).
The analysis in these appendices characterizes conditions
under which the results from our benchmark model
extend to these settings.

Note that the constraint on borrowing and lending (i.e.,
y) can also be interpreted as a collateral constraint faced by
investors (e.g., Geanakoplos, 2003; Simsek, 2013). For
instance, suppose the initial wealth of L investors reflects
their endowment of the risky asset (i.e., Wo = QP for the
aggregate long investor), and the collateral constraint
implies that their position in the risky asset can be at
most a multiple x of their initial wealth (i.e., x,P <xWj).
In this case, the link between the collateral constraint «
and the borrowing constraint y is given by y = (x—1)/x.?

We focus exclusively on a simple derivative that is
otherwise redundant if the underlying asset is not scarce.
As such, we do not consider more complex derivatives (such
as options with nonlinear payoffs) that would “complete”
the market in a more traditional sense by providing expo-
sure to a risk that investors wish to trade but cannot do so
using only the underlying security.® This assumption allows
us to focus exclusively on the role of derivatives in relaxing
the scarcity of the underlying.

We assume that the derivative offers a potentially noisy
exposure, F+¢, to the fundamental risk, F, so that it may
not be a perfect substitute for the underlying asset. For
example, the cheapest-to-deliver option in many exchange
traded derivatives introduces additional noise in their
payoff, as does the fact that the secondary market for
customized over-the-counter derivatives is often relatively
illiquid.'® In the extreme, the derivative markets for some
assets may not even exist (e.g., futures on individual

8 This follows from comparing the constraint on collateral, given by
x.P <xQP, to the constraint on long positions implied by y, given by
x<Q/(1=yp).

9 For example, if the volatility of an asset is stochastic, then an option
on that asset can complete the market (in the traditional sense) by
allowing investors to explicitly trade this risk.

10 For instance, the primary market for over-the-counter interest rate
swaps is generally considered to be extremely liquid, but the secondary
market is not. As a result, rather than use the secondary market to exit an
existing swap position, participants in this market typically take an
offsetting position in a new swap (in the primary market) and are,
therefore, left with some residual basis risk.

stocks and bonds), and so investors may be forced to use
derivatives on related assets. In the next subsection, we
illustrate that when noise in the derivative payoff is present
(ie., 6> 0), it effectively constrains investors' equilibrium
positions in the derivative security. In Appendix D, we
develop a model that eliminates the noise in the derivative
payoff, but instead imposes position limits in the derivative
market. Our main result is qualitatively similar in this
model — increasing ease of trade in the derivative (i.e.,
relaxing the limits on derivative positions) reduces the price
distortion in the underlying asset by relaxing the effective
scarcity that investors face.!!

For simplicity, we assume that ¢ is uncorrelated with F.
The model can be easily adjusted for the noise ¢ to be
correlated with F by redefining F + & = aF +#, where 5 is the
component of ¢ that is uncorrelated with F. Moreover, as
we show in Section 3.4, if we maintain the assumption
that investors exhibit constant absolute risk aversion, our
main result is robust to relaxing the assumption that F and
¢ are normally distributed.

3.3. Market clearing and equilibrium

An equilibrium in this market is defined as the set of
prices P, D, and R, and the positions x; (in the underlying)
and y; (in the derivative) for each group i of investors, such
that (i) the positions x; and y; maximize the utility of agent
i given by Eq. (2) subject to the budget constraint in Eq. (1),
and (ii) the cash and financing markets for the underlying
and the market for the derivative are cleared. The deriva-
tive is in zero net supply, so the market clearing condition
for it is given by

Yi+ys=0. (3)

The cash market clearing condition for the underlying
asset is given by

X +xs=0Q, 4)
and the financing market clearing condition is given by
—Xs <yXL. (5)

The financing market clearing condition binds with equal-
ity when there is a strictly positive fee R > 0 to borrow the
security, since long investors would like to lend out as
much of their position as possible. Moreover, since short-
sellers can borrow at most a fraction y from longs, Egs. (4)
and (5) imply that the maximum aggregate long position
in the underlying is Q /(1 —y), and the maximum aggregate
short position is —yQ/(1—y).

If borrowing and lending are unconstrained, then the
frictionless price of the underlying reflects the (risk-adjusted)

" As we discuss in Appendix D, one notable difference with this
setup is that when the constraint in the underlying and the position limit
in the derivative are both binding, the price of the derivative is bounded,
but not determinate without additional assumptions (e.g., bargaining
between L and S investors over the gains from trade). This result is
because the derivative is in zero net supply and so L and S investors must
always pay the same price. In contrast, as we discuss below, a positive
borrowing cost R in the underlying asset allows the market to clear even
when aggregate positions in it are constrained, since L and S investors
pay different net prices for the underlying (P—yR and P —R, respectively)
when R > 0.
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expected value of its payoff, and is given by

Po=m— 2LQ. (6)
T

Also, there is no cost to borrow the security and the

equilibrium quantities are given by

~Ys0=Y0=0 and (7)

Q—Xxs0=X0=%3Q+p. (8)

If the constraint on borrowing and lending does bind,
then the price of the underlying is distorted relative to the
frictionless price Po. The following proposition charac-
terizes this distortion, as well as the rest of the equilibrium
in this case.

Proposition 1. Given the economy above with L and S
investors, the equilibrium prices are given by

D:m—iQ, P:Po+mR, and (9a)
2z 2
s 1 v 1+y
R_max{O,@l—_y; (Zp—]—_y )} (9b)
and the equilibrium quantities are given by
1 %Q if R>0,
oz —
—}’s=}’L=Ty§R and Q—Xxs=x, = !
EQ"‘[J lf R=0.

(10

The proof is a special case of Proposition 4 in Section 4
that follows. To gain some intuition for the relation between
equilibrium prices and quantities, recall from Eq. (8) that
X10=3Q+p and xso = 1Q —p are the equilibrium quanti-
ties in the underlying asset when its price is Py as given by
Eq. (6) and the constraint on borrowing and lending does
not bind. Market clearing implies that the maximum
aggregate long position in equilibrium is Q /(1 —y) and the
maximum aggregate short position is —yQ/(1—y). There-
fore, if

1 1 1
XLo= EQ+P> 1—_}/Q and Xso = iQ—p< _%}/Q,

1
an

then the constraint on borrowing and lending binds, since
the aggregate demand for long and short positions exceeds
the capacity that the underlying can support. From Eq. (11),
the constraint binds if and only if,

0<2p— % . (12)
The borrowing cost, R (see Eq. (9)), is positive when the
constraint binds and Eq. (12) holds. It allows the cash market
to clear because longs and shorts pay different net prices for
the underlying (P—yR and R— P per unit, respectively).

Fig. 1 illustrates the notion of scarcity and its effect on
the price of the underlying security. The top panel plots
the inverse aggregate demand curves for long and short
positions in the underlying. Since L investors are willing to
hold larger long positions when the net price they pay for

a

[ Underlying is scarce
& ;-
Iz e
S ______ Long demand
2 P
[ (P
e
S T TS e
= P 0| - : 1l -
I R o S
Z. P e

_______ Short demand
P I I I i ]
0 0.5 1 1.5 2 2.5
Capacity for aggregate positions beyond outstanding (i.e., 2-)
3 P
&
=
2
2 P—-1R
&
T P-R
Z
. . . )

.
0 0.5 1 1.5 2 2.5
Capacity for aggregate positions beyond outstanding (i.e., ﬁ)

Fig. 1. Scarcity and the distortion in price of the underlying. The top
panel plots the frictionless price (horizontal, dotted line), Py, the (inverse)
demand functions for long and short positions in the underlying security
(downward sloping and upward sloping dashed lines, respectively), and
characterizes the range of y for which the underlying security is scarce.
In addition, the bottom panel plots the equilibrium price (solid, nonlinear
curve), P.

the security is lower, the aggregate demand curve for long
positions is downward sloping. Similarly, the aggregate
demand curve for short positions is upward sloping since S
investors are willing to hold larger short positions only if
the net price of the underlying is higher. The aggregate
demand curves intersect at the price Py, which is the
frictionless price for the underlying security. If the capacity
for aggregate positions beyond the outstanding is to the
right of this intersection point (which in the plot is at
y/(1—y)=2, so that y = %), then the security is not scarce,
and its price is given by Py. However, if the capacity for
aggregate positions is constrained to the left of the inter-
section, then the demand for long and short positions
cannot clear at the same net price for long investors and
short-sellers, and the security is scarce. In this case, as the
bottom panel of Fig. 1 illustrates, the cash and borrowing
markets for the underlying can only clear if the cost to
borrow the underlying security becomes positive (i.e.,
R > 0), so that long investors and short-sellers pay differ-
ent net costs for the underlying security (i.e., P—yR and
P—R, respectively). As a result, the equilibrium price P of
the underlying security (plotted as the solid curve in the
bottom panel) is distorted relative to the frictionless price
Po. In particular, even though investors have the same
beliefs about fundamentals and their hedging demands
perfectly offset each other, the equilibrium price for the
underlying is higher than Py when it is scarce.

Positions in the derivative security provide a substitute
for positions in the underlying asset, and therefore can
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Net price to buy/sell

1 1
0 0.5 1 1.5 2 2.5

Capacity for aggregate positions beyond outstanding (i.e., 1%7)

Fig. 2. The effect of the derivative on the price of the underlying. The plot
depicts the effect of introducing a derivative on the demand for long and
short positions in the underlying, and the resulting effect on the price of
the underlying security. The dashed lines reflect the demand for long and
short positions when there is no derivative, while the dotted lines reflect
the demand for long and short positions in the presence of the derivative.
Similarly, the solid line reflects the equilibrium price of the underlying
security when there is no derivative, while the dot-dashed line reflects
the underlying price in the presence of a derivative.

relax the scarcity in the underlying. Investors trade off
their demand for positions in the underlying risk against
the additional noise ¢ in the payoff of the derivative.
As Fig. 2 illustrates, when investors can trade in a deriva-
tive security, the aggregate demand for long and short
positions in the underlying are smaller at each net price
for the underlying. Therefore, in the presence of the
derivative, the underlying security is scarce for a smaller
range of y (the intersection of the demand curves for long
and short positions shifts left), and the price distortion in
the underlying security is smaller. In contrast to a friction-
less market where the derivative is a redundant security,
the presence of the derivative in this case can affect the
price of the underlying asset. The following proposition
summarizes this result.

Proposition 2. The distortion in the price of the underlying
asset, AP = P — Py, decreases with the noise § in the derivative
security. Therefore: (a) as the noise in the derivative (i.e., )
becomes arbitrarily small, the price distortion in the under-
lying disappears, i.e., lims_oAP =0, and (b) the price distor-
tion in the underlying is largest if investors do not have access
to a derivative (or equivalently, the noise in the derivative is
infinite).

Finally, one might expect that the tradeoff between the
noise § and the constraint y on borrowing and lending
would be reflected in both the price and the volume of
trade in the derivative. However, in our benchmark model,
the price D of the derivative is a “cleaner” measure of the
(risk-adjusted) expected value of the underlying security,
in that it does not depend on § or y. Specifically, the
derivative price D is the market's risk-tolerance weighted
expectation of F, adjusted for aggregate risk due to the
fundamental F. Instead, the tradeoff between y and &
manifests itself in the equilibrium positions in the deriva-
tive. All else equal, derivative positions are smaller when
the lending constraint is less binding and when the noise
in the derivative is higher (i.e., equilibrium derivative
positions are decreasing in y and &, respectively).

The scarcity of the underlying is closely related to the
lending fee R, which is typically small in the data. However,
the prices and quantities that we observe empirically reflect
the equilibrium scarcity in the presence of derivatives and
in the absence of the proposed regulatory restrictions.
Therefore, a small lending fee does not imply that the role
of scarcity is unimportant for evaluating regulatory policy.
Instead, as we highlighted in the introduction, one must
analyze equilibrium prices and quantities under the counter-
factual assumptions of imposing the proposed restrictions.
We take up this task in Section 4.

3.4. General utility functions and payoff distributions

In this subsection, we characterize general sufficient
conditions under which the presence of the derivative
increases or decreases the price distortion in the under-
lying. We begin with some general notation. Let u;(W;) be
agent i's increasing and concave utility function over wealth
Wi. As in our benchmark model, we assume that the payoff
of the underlying, F, and the noise in the derivative payoff,
g are independent and that E[¢]=0. However, we do
not impose any additional distributional assumptions. Let
Xi(11;,D) and y;(I1;, D) be agent i's optimal demand for the
underlying and derivative, respectively, where D is the price
for the derivative and 77; = P—y;R is the net price that agent
i pays for the underlying. That is,

(xi(T;, D),y (T;, D)} = arg max Ei{u(Wy]  where 13)

Wi =Wy +piF+x(F—11;)+y(F+e—D), (14)

and p; < 0 < ps. Let P, R, and D denote the equilibrium prices
that clear the cash, financing, and derivative markets,
respectively. That is,

X (P—yR,D)+xs(P—R,D)=Q, (15a)
yX (P—yR,D)+xs(P—R,D) >0, (15b)
and

Yi(P—yR,D)+ys(P—R,D)=0. (16)

When the asset is scarce, Eq. (15b) binds with equality and
can be combined with Eq. (15a) to produce
rQ

X]_(P—}/R,D)—Q: _17_)/ = —Xs(P—R,D). (17)

Our main result in Section 3.3 is that the price of the
underlying security is higher (more distorted) when there
is no derivative. In the more general current setting, it is
sufficient to show that the equilibrium price of the under-
lying is decreasing in the equilibrium derivative positions
of the investors, as the following result characterizes.'?

12 To highlight the sufficient conditions as generally as possible, we
abstract away from the underlying parameter of the payoff distribution or
preferences that decreases the equilibrium holdings of the derivative.
However, what we have in mind is a change in a fundamental parameter
(e.g., the variance of the noise in the derivative payoff) that affects
investors' positions in the derivative, and our goal in this section is to
characterize the effect of this change in derivative positions on the price
of the underlying security.
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Proposition 3. Suppose the underlying security is scarce (i.e.,
condition (17) holds).

(i) If for all i € {L, S}, we have
ay;  0y; oxi/oll;

ort; ~ 9D ax;joD = °

everywhere, then the price of the underlying is higher when
there is no derivative available to trade.
(ii) If for all i e {L,S}, we have

ay;  9y;oxi/oll

oll; 9D ox; / oD

everywhere, then the price of the underlying is lower
when there is no derivative available to trade.

In the proof of Proposition 3, we show that the sign of an
investor's position in the derivative must be the same as the
sign of his or her position in the underlying asset. Therefore,
to move towards an equilibrium with no derivative positions,
L investors must decrease their position in the derivative and
S investors must increase their position (i.e., they must take a
smaller short position in the derivative). Since the price of
the underlying security can be expressed as

P=—Lp_R)— L (P-R), (18)
]—]/T 1—)/Hn,_/
L N

a sufficient condition for the price of the underlying to increase
(decrease) with smaller derivative positions is that d/7;/dy; < 0
(dr1;/dy; > 0, respectively) for both i=L and i=S investors.

To see why the conditions in Proposition 3 are suffi-
cient for the above conditions, suppose that the net price
that agent i pays for the underlying changes by dr7;. Since
the underlying asset is scarce, the equilibrium positions in
itare x; =Q/(1—y) and xs = —yQ /(1 —y), and must remain
unchanged for the market to continue to clear. That is,
dX,‘: %dﬂi—‘r %dD:O, (19)
which, in turn, implies that the equilibrium price of the
derivative must change by

0X,‘/(317,'
0X,‘/0D

dD= — dr;. (20)

Along this equilibrium path, the change in agent i's
optimal position in the derivative is

_ Wign  Wign (Vi Wi/l
dy; = oIT; dn”LaD db = (an,» oD ox;/oD d, @0

which implies the sign of dr1;/dy; is characterized by the
conditions in Proposition 3. The following result provides
intuition for the conditions in Proposition 3.

Corollary 1. Assume that the underlying security is scarce
and the demand curves for the underlying and the derivative
are downward sloping (i.e., ox;/oll; < 0 and dy;/oD < 0).

1. Suppose that, for all i € {L, S}, either of the two following
conditions always holds:
oxX;

oI,

oXi
oD

i

and )

‘% or (22a)

olT;

< ‘

|| g ]|
op| < lom| ™ |om,| <|op| (22b)
Then

(a) The price of the underlying is higher in the absence
of a derivative if the substitution effect always
dominates the wealth effect for both securities (i.e.,
0xi/oD > 0 and oy;/oIl; > 0).

(b) The price of the underlying is lower in the absence of
a derivative if the wealth effect always dominates
the substitution effect for both securities (i.e.,
0x;/oD < 0 and ay;/dIl; < 0).

Suppose that, for all i e {L, S}, either of the two following

conditions always holds:

2. |ox; oy; ay; 0X;
ot < '6_171‘ and ’E <5l o (23a)
OXi| | Wil _ | Wi
o < [ap| 9 ‘aD = ‘an,v" (23b)
Then

(a) The price of the underlying is lower in the absence
of a derivative if the substitution effect always
dominates the wealth effect for both securities
(i.e., ox;/oD > 0 and ay;/oll; > 0).

(b) The price of the underlying is higher in the absence
of a derivative if the wealth effect always domi-
nates the substitution effect for both securities (i.e.,
0x;/oD < 0 and ay;/dIl; < 0).

The sufficient conditions in Corollary 1 depend on
(i) the relative sensitivity of the optimal demand for each
security to the price of the securities (as described in
Egs. (22) and (23)) and (ii) whether the substitution effect
dominates the wealth (or income) effect for both securities.
The first part of condition (22) requires that, for a given
change in the price of a security, the optimal demand for that
security changes by more than the optimal demand for the
other security. Alternatively, the second part of condition (22)
requires that, for the same change in price of both the
underlying and the derivative, the optimal demand for a
security is more sensitive to its own price. Under either of
these intuitive conditions,”® the price of the underlying is
higher in the absence of a derivative if the substitution effect
always dominates the wealth effect, but lower if the wealth
effect always dominates the substitution effect. It seems
counterintuitive to assume that the wealth effect always
dominates the substitution effect, therefore, the sufficient
conditions for 1(a) above seem most natural.

It is difficult to derive more primitive sufficient condi-
tions because the partial derivatives depend on both the
assumptions of preferences and the payoff distributions.
However, the conditions in part (i) of Proposition 3 are
always satisfied when investors exhibit constant absolute
risk aversion. Therefore, the results from our main model

3 In contrast, condition (23) seems less intuitive since it requires
that the optimal demand for a security is always less sensitive to its
own price.
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survive even when we the relax the assumption that
payoffs are normally distributed.

Corollary 2. If both agents have preferences with constant
absolute risk aversion (CARA), then for i e {L, S}, we always have

oy;  0y; oxi/oll

all; oD ox; / oD ’

Therefore, if both groups of agents have CARA preferences, then
the price of the underlying is higher when there is no derivative
available to trade. This result holds for any distributions of the
fundamental payoff F and noise ¢ in the derivative payoff (with
finite first and second moments).

4. The general model

In this section, we generalize our benchmark model by
allowing for agents with heterogeneous beliefs and trade
by speculators. The first subsection presents the setup of
the model and Section 4.2 characterizes the equilibrium
prices and quantities. In the following subsections, we
characterize the equilibrium in special cases of the general
models. In Section 4.3, we assume that L and S investors
can only trade in the underlying, but speculators can trade
both the underlying and derivative securities. In Section
4.4, we analyze the equilibrium when speculators can only
trade in the derivative security. This case is useful to
consider the effects of restricting trade in derivatives when
there are speculative investors who can distort the under-
lying price through their trades in the derivatives market.
In Section 4.5, we consider the effects of introducing long-
only investors (e.g., mutual funds) in the underlying on
equilibrium prices for the underlying and derivative secu-
rities. Finally, in Section 4.6, we analyze the special case in
which short-sales of the underlying security are comple-
tely banned and characterize the conditions under which
imposing such a ban can lead to a decrease in the price of
the underlying, even in the presence of a derivative.

4.1. Model setup

The assumptions about security payoffs and prices are
as in our benchmark model of Section 3. We refer to the
L and S investors as hedgers, since they use the underlying
and derivative securities to hedge shocks to their endow-
ments (i.e., p;). In addition, we assume there exist spec-
ulators, denoted by B, who have no endowment shocks
(i.e, pp=0) but instead bet on the realization of F.
An investor of type i has CARA utility with risk-tolerance
7, While investors are assumed to agree on the distribu-
tion of & they may have different beliefs about F.
In particular, while the objective (or “true”) distribution
of F is given by F~ N(m,v) as before, we assume that
investor i's beliefs about F are given by

F~N(mj,v), (24)

where m; > ms. Again, we focus on the parameter space
where L investors have long positions and S investors have
short positions in equilibrium.

Whether or not investors have a distortionary effect on
prices depends on whether or not they are assumed to be

trading on fundamental information. For instance, if differ-
ences in expectations arise due to differences in information,
then equilibrium prices aggregate information and the pri-
mary source of price distortion in our setup is the scarcity of
the underlying security."* However, more generally, these
differences in beliefs may represent other, non-informational
motives for trade that are often interpreted as distortionary,
and therefore may generate a role for regulation.

Implicit in the discussion of regulatory policy that
restricts trade in a security is the notion that some subset
of this trade leads to undesirable distortions in prices. For
instance, a short-sales ban is often considered when
regulators believe that short-sellers are overly pessimistic
and drive asset prices below their fundamental value.
Similarly, regulators may propose restrictions on deriva-
tive positions in commodities if they feel that speculators
with beliefs that are disconnected from fundamentals may
distort prices. Given a stand on investors' information and
trading motives, our framework allows us to characterize
the effect of regulatory restrictions when the underlying
security is scarce. For instance, in Section 4.4, we assume
that speculators have distorted beliefs, so that, in the
absence of scarcity in the underlying (e.g., if y=1),
restricting trade in the derivative security would reduce
the price distortion in the underlying. Similarly, in Section 4.6,
we assume that S investors have overly pessimistic beliefs
and evaluate the impact of a short-sales ban. To emphasize, it
is not our objective to argue that short-sellers or speculators
are distortionary. Instead, we analyze the effects of commonly
proposed regulatory restrictions under these assumptions
when the underlying security may be scarce.

It is also worth noting that, rather than analyze the
welfare implications of regulatory policy, we instead
restrict attention to price distortions relative to a friction-
less benchmark. Since investors in our model have hetero-
geneous beliefs about the distribution of fundamentals,
it is unclear how one defines a welfare criterion — see
Brunnermeier, Simsek, and Xiong (2012) and Gilboa,
Samuelson, and Schmeidler (2012) for recent approaches.
In the context of our model, a frictionless benchmark price
is a less ambiguous objective.

4.2. Equilibrium characterization

The market clearing conditions for the underlying asset
are given by
X +Xs+xp=Q and yXx;+ypXp+Xs>0, (25)

where yp=1 if x5 <0 and yg=y if xg>0. The market
clearing condition for the derivative becomes

YitYs+yp=0. (26)

4 From Proposition 4 (below), we have

yTtL+1Ts T My +75Msg v
- ———R=—"—7T-—-°">— +pL+ps—Vp)-
7L+ 75 7L +7s T +7s (Q pLves yB)

Therefore, if investors can observe both R and P, then they can infer a
linear combination of expectations and aggregate supply as in standard
noisy rational expectations models (e.g., Grossman and Stiglitz, 1980).
It may be possible to study a very stylized model with asymmetric
information within our framework, but we leave this for future work.
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The following proposition characterizes the equilibrium
prices and positions in the underlying security and the
derivative.

Proposition 4. Given the economy above with L, S, and B
investors, the equilibrium prices are given by

v o

D=P X , 27
0+TL+T5( B+y5)+TL+TSyB 27
) 1 7
R_max{O,m {R(,Jrfy <EXB - EXB )} } (28)
P=Po+ —Y— (xs+yp) + LT ER, 9)
T+ 7Ts T+ 7Ts

where x5 =Xxglix, <01, X5 =Xl >0

TLMp+175Mg v
Py = — and 30
0 o p——— (Q+pL+ps) (30)
Ro= L [ (- " 0up)meam -2 (- Lox
il g T—,%t7s stm— 7, QH) |

(€3]

The equilibrium quantities {x;,y;}; . s, are characterized in
the proof.

The characterization of the equilibrium in the above
result highlights the incremental effect of the presence of
B investors. In particular, note that Py is the frictionless
price of the underlying asset if it is traded by L and S
investors only, once we allow for heterogeneity in beliefs,
risk-tolerances, and endowment shocks. Similarly, in the
absence of B investors, the borrowing rate for the under-
lying is given by max{0,Rg} if L and S investors cannot
trade the derivative, and by max{0,Ry5/(5+v)} if they can
trade the derivative.

Note that when B investors participate in the underlying
(i.e., xg # 0) and the underlying is scarce, a larger demand
from speculators increases the borrowing rate R, irrespective
of whether they are long or short. This result is because, all
else equal, their demand for positions in the underlying
increases its scarcity. Moreover, due to a risk-sharing effect,
a larger long (short) position from B investors increases
(decreases, respectively) the price P.

It is also interesting to note that B investors do not always
acquire a position in the underlying security. Specifically, as
we characterize in the proof, when the underlying is scarce
(ie, R>0), and the investors' beliefs mp are close to the
hedgers' risk-adjusted valuation of the asset (i.e., Po),
B investors optimally choose not to participate in the under-
lying market. However, even in this case, the speculator can
affect the price of the underlying. Since B investors trade in
the derivative security, the net exposure of L and S investors
in the derivative need not be zero. This net aggregate
exposure to the fundamental shock F leads to a risk adjust-
ment in the price of the underlying security. For instance, if
B investors are net long in the derivative (i.e., yg > 0), then L
and S investors must be net short, which implies that the
total exposure of the hedgers to the fundamental shock is
lower — as a result, the risk-premium component of P is
smaller, and therefore P is higher. Similarly, if B investors are
net short in the derivative (i.e., y; < 0), hedgers must be net
long, which leads to a bigger risk-premium adjustment and

hence a lower price for the underlying.!® Moreover, even
though speculators do not affect the borrowing rate R if they
do not trade in the underlying security (i.e., when xg = 0),
they do affect the net cost of being long and short in the
underlying security (i.e., P—yR and R-P, respectively)
through their effect on P. In particular, if speculators have
an aggregate long position in the derivative, then, all else
equal, the price P of the underlying is higher, which
increases the net cost of a long position (i.e., P—yR), but
decreases the net cost of a short position (i.e.,, R—P).

While the general model is tractable and offers a great
deal of flexibility, the equilibrium comparative statics results
are not transparent given the large number of parameters.
In the following subsections, we consider special cases of the
above model which are more parsimonious, but highlight
the important consequences of our analysis for regulatory
policy, and the intuition for these results.

4.3. When L and S investors only trade in the underlying

There may be investors who are prohibited from acces-
sing derivative markets, while speculators (or arbitrageurs)
are able to able to trade in both the underlying and
derivative markets.'® This setting can be analyzed as a special
case of our model. Specifically, suppose that L and S investors
have correct beliefs (i.e., m=m;=ms), while speculators
have incorrect beliefs (i.e., mp # m), but only speculators can
trade in the derivative market. The following corollary
characterizes the equilibrium prices in this case, and the
effect of speculators on the price of the underlying.

Corollary 3. Suppose that L and S investors have correct
beliefs (i.e., m; =ms=m) but can only trade in the under-
lying market (i.e., y, = ys = 0), while speculators have incor-
rect beliefs (i.e., mg # m) and can trade both the underlying
and derivative securities. Then, if the underlying security is
scarce, the cost of borrowing R and the price of the under-
lying P are always higher in the presence of speculators than
in their absence, irrespective of whether they have long or
short positions in equilibrium.

Since L and S investors do not trade the derivative, market
clearing implies that the net derivative position across all
speculators must be zero (i.e,, yz = 0), and that the borrow-
ing rate R is given by the expression in (28) with §— oo, or
equivalently, 6/(5+v)=1." In this case, any distortionary
effects of speculation are directly through the price and

15 A casual argument proposed for why speculators in the derivative
security should not affect the price of the underlying is based on the
observation that derivatives are in zero net supply. For instance, if
speculators are optimistic and so have an aggregate long exposure, other
investors must be willing to take the other side, and so the buying
pressure should not affect the price of the underlying security. However,
what this casual argument fails to recognize is that the aggregate short
exposure of these other traders (the hedgers in our model) in the
derivative market will affect their positions in the underlying security,
which in turn, affects the price of the underlying.

16 We are grateful to the referee for highlighting this situation.

7 When there is only one group of speculators, they do not trade in
the derivative security. However, as the proof of Proposition 4 establishes,
even when there are multiple groups of speculators, the net derivative
position across them all must be zero (i.e., Ypyp =yg=0), and the
conclusions of Corollary 3 follow.
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borrowing rate for the underlying security. If the underlying
is scarce, an increase in speculative trading in either direction
(i.e., long or short) increases the borrowing rate R. In addition
to this effect, speculators increase the price of the underlying
if they are long, and decrease it if they are short. However,
the first effect dominates and the overall effect of speculators
on the price of the underlying is given by

Y7L +7s 1 v . v v _
PPyt TRy ) = = Pt T Yy 32
< o+ 71 +7s 0) 1—yr B 1—yz B (32

which implies that both optimistic and pessimistic specula-
tors (i.e., xg > 0 and xp < 0, respectively) always increase the
price of the underlying security. Intuitively, since L and S
investors do not access the derivative markets, the presence
of the derivative does not reduce the scarcity of the under-
lying. Therefore, any trading by speculators leads to a price
distortion in the underlying. As we discuss in the next
subsection, this result is in contrast to the effect of spec-
ulators when they can only access the derivatives market but
hedgers can trade both securities.

4.4. The effect of speculation only in the derivative market

In this subsection, we consider the case where spec-
ulators can only trade in the derivative security, and
hedgers are exposed to their distortionary trades through
the derivatives market. This scenario is often cited by
regulators as justification for limiting speculative trade
in derivative securities. For instance, on November 15,
2011, the European Parliament adopted regulation that
restricts investors from entering into uncovered, or
“naked,” CDS on sovereign debt after November 2012,
in an effort to curb speculation against a country's
default.'”® Similarly, under the mandate of the Dodd-
Frank Act, the CFTC proposed position limits on commod-
ity derivatives so as: “(i) To diminish, eliminate, or prevent
excessive speculation as described under this section;
(ii) To deter and prevent market manipulation, squeezes,
and corners; (iii) To ensure sufficient market liquidity for
bona fide hedgers; and (iv) To ensure that the price
discovery function of the underlying market is not
disrupted.”'®

To analyze this situation, we assume that the L and S
investors in our model have correct beliefs (i.e.,
m=m; =ms), while speculators have incorrect beliefs
(i.e.,, mg#m) and can only trade the derivative security
(i.e., xg = 0). To simplify the analysis, we also assume that
all investors have the same risk-tolerance (i.e., z; = 7), and
that the endowment shocks of L and S investors perfectly
offset each other (i.e., ps = —p; = p). The frictionless bench-
mark in this setup is when there are no constraints on
borrowing and lending (i.e., y = 1), and no speculators (i.e.,
75 =0). In this case, the price of the underlying security

18 See http://ec.europa.eu/internal_market/securities/short_selling_en.
htm.

19 See http://www.cftc.gov/LawRegulation/DoddFrankAct/Rulemakings/
DF_26_PosLimits/index.htm.

simplifies to*°
Po=m-— % Q. 33)

Relative to this frictionless benchmark, if the underlying is
scarce, the price distortion when investors have access to
the derivative is given by

v 1+y 6 v

—yp=—— Ro+ = 34
ZryB 2 v+46 o+ ZTyB’ 34
and the distortion when investors do not have access to
the derivative is given by

1+y
2
Therefore, despite the distortionary effects of speculative
traders, the presence of a derivative may reduce the
overall price distortion in the underlying security, through
its effect on scarcity. The following result characterizes
sufficient conditions for this result.

14y
AP_TR-',-

AP = Ro. (35)

Proposition 5. Suppose that L and S investors have correct
beliefs (i.e., m; = ms=m), while speculators have incorrect
beliefs (i.e., mp #m) and can only trade in the derivatives
market (i.e., xg =0). Moreover, suppose that ;=1 for all i
and ps= —p; =p.

ors
2
Sma-m+ 30| <(1+1Ro

then the price distortion in the underlying (relative to the
frictionless price) is lower in the presence of the deriva-
tive with speculators than in the absence of derivatives.

(i) If

2 v v+26
‘§(m8—m)+ gQ‘ >

v

(1+7)Ro,

then the price distortion in the underlying (relative to the
frictionless price) is higher in the presence of the deriva-
tive with speculators than in the absence of derivatives.

(iii) If speculators are long (i.e., yg > 0), or sufficiently short (i.e.,

—

S T
yp<—( +7)m;R0,

then the price distortion in the underlying (relative to the
frictionless price) is increasing in the aggregate position of
speculators (i.e., |yg|). Otherwise, if

6 7
——-R 0
vtov <Yp<P

then the price distortion is increasing in the aggregate
position of speculators.

—(1+y)

The proof of the above result follows from the expres-
sions for the price distortion in the presence and absence
of derivatives with speculators. For parts (i) and (ii), note

20 Alternatively, one can set the frictionless benchmark as the case in
which there are no constraints on borrowing and lending (i.e., fory=1),
no noise in the derivative (i.e., § = 0), and speculators have correct beliefs
(i.e., mg=m). In this case, the price of the underlying security is
Po=m—Qu/(37). As is apparent, the results in Proposition 5 remain
unchanged for this benchmark.
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that the price distortion with the derivative is lower when

1+yv+25 v 1+y v
T3 e o < z)’s < 5 —y+5R07 (36)
and higher when either
v 1+y v v T+yv+25
28> g a0 O <5 st GD

and that the optimal derivative position for the speculators
is given by

_ T
T S+v

“2 T meme i (38)
Intuitively, the presence of the derivative reduces the price
distortion in the underlying when the security is scarce
(i.e., Ro is large), the outstanding supply Q is small, and the
disagreement between speculators and hedgers is not
large (i.e., |mg —m]| is small). Notably, whether the presence
of the derivative reduces price distortion is unaffected by
the noise in the payoff (i.e., 5), although the magnitude of
the change in the price distortion is obviously affected.
Finally, part (iii) emphasizes that even in the presence of a
derivative, completely restricting trade by speculators may
lead to a larger price distortion in the underlying than
allowing for some trade by (short) speculators.

This result highlights the tradeoff that regulators face
when restricting trade in derivatives. While allowing for
unrestricted trade in derivatives in the presence of aggres-
sive speculators may increase the price distortion in the
underlying, excessive trading restrictions can make the
underlying more scarce and, thereby, distort prices.

VB (mp—D)

4.5. The effect of speculation only in the underlying

As documented by Kaplan, Moskowitz, and Sensoy
(2013), Rizova (2011), Evans, Ferreira, and Porras Prado
(2012), and others, a large part of the equity lending
market has recently been dominated by long-only inves-
tors who lend stocks (e.g., mutual funds). An open ques-
tion in this literature is whether the lending activity of
such buy-and-hold investors distorts the price of the
underlying security.’’ We can analyze this situation
as a special case of our model in which B investors are
restricted to have only long positions in the underlying
security and are unable to trade in the derivative.??
In particular, suppose that L and S investors have correct
beliefs (i.e., m = m; = ms), and B investors can only trade in
the underlying market (i.e., yz = 0). The following corollary
characterizes the equilibrium prices in this case, and the
effect of long-only (or short-only) investors on the price of
the underlying and the derivative.

Corollary 4. Suppose that L and S investors have correct
beliefs (i.e., m; = mg =m), and speculators can only trade in
the underlying security (i.e., yg = 0). Then:

21 We thank the referee for pointing out this case.

22 While we interpret B investors as speculators in the earlier
subsections, we do not think of mutual funds as speculators. However,
it is notationally convenient to denote the mutual funds as B investors, so
that we can appeal to the general results in Section 4.2.

(i) In the presence of long-only speculators (ie., xg > 0), the
price of the derivative D, the borrowing cost R, and the price
of the underlying P are all higher than in their absence.

(ii) In the presence of short-only speculators (i.e., xg < 0), the
price of the derivative D is always lower and the
borrowing cost R is always higher than in their absence.
The price of the underlying is higher in their presence if
t5(1—7)/(es+y71) <5/(6+v), and lower if zs(1—y)/
(zs+ytL) > 8/(5+v).

As discussed before, when the underlying security is
scarce, the effect of speculative trading in the underlying is
two-fold. First, higher demand from either side leads to an
increase in the borrowing rate since it increases the scarcity
in the underlying. Second, due to risk-sharing in the under-
lying, a larger long position from speculators increases the
price of the underlying, while a larger short position
decreases the price. The overall effect on the underlying
price then depends on the relative magnitudes of the two
effects, and their signs, as is characterized by the expression:

ytL+71s O
P—|Pp+———R
( o+ 1 +75 V40 0)
1) 1
=Y xB+yTL+TS—x—<ix;—ix§>. (39)
7L +75 T +75 64U 1—}' TL 5

In the case of long-only speculators, the two effects reinforce
each other, and as such, unambiguously increase the price of
the underlying. However, for short-only speculators in the
underlying, the overall effect depends on

yTL+7s O ytL+175s O v
P= <P0+ TL+7Ts ERO) - ( B 75(1 —y)5+v> T]_+1'5XB
(40)
In particular, note that when the derivative is a perfect
substitute (i.e., 5= 0), the price of the underlying decreases
with shorting demand from B investors, while in the absence
of the derivative (i.e., 5= o), the price of the underlying
increases (as in Section 4.3).

Finally, it is important to note that even though B
investors do not trade the derivative security, they affect
the price of the derivative through their trading in the
underlying since the two securities are substitutes. If B
investors have a net long position in the underlying, they
increase the price of the underlying. All else equal, this
makes the derivative a more attractive substitute for long
investors, which drives up its price. Similarly, when B
investors have a net short position in the underlying,
this drives down the price of the derivative. Therefore,
our model generates an interesting prediction: increased
short-selling by investors in the underlying always
decreases the derivative price, but increases the price of

the underlying when the derivative payoff is sufficiently
noisy.

4.6. The effect of short-sales bans

Regulations that restrict short-selling are often justified
as a means to limit the effect of pessimistic investors who
would otherwise distort prices below their fundamental
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value. For instance, in September 2008, the SEC tempora-
rily banned short-selling in financial stocks “to combat
market manipulation that threatens investors and capital
markets.””> More recently, a number of EU member
countries imposed short-sales bans for bank stocks to
“restrict the benefits that can be achieved by spreading
false rumors.”**

To capture this scenario, we assume that there are no
speculators in the market (i.e., g =0), that L investors
have correct beliefs about fundamentals (i.e., m;=m),
and that S investors are pessimistic (i.e., ms <m). In this
case, while short-sellers are pessimistic, the following
proposition shows that for some parameter values, banning
short-sales (i.e., setting y = 0) actually reduces the price of
the underlying asset, even in the presence of derivatives.

Corollary 5. Suppose there are no speculators (i.e., 75 =0),
L investors have correct beliefs (i.e., m; =m), and S investors
are pessimistic (i.e., mg <m).

(i) If short-selling is allowed, then the underlying price is
given by
P T M~+75Ms v
- TL+7Ts T+ 7Ts

(Q+ps+pr) + rotes R, where
T+ 7Ts
(41)

1
z (pstQ> e (—Q+m> +m—ms
R=max{ 0,2 1=y u =y
= ) 4
(1—7)(1 +5>

(42)

(ii) If short-selling is not allowed, then the underlying price

is given by
USRS v Ts
ns = 7,&_._15 —TL+TS (Q+P5 +pL) + - +_TS Rns
(43)
where
14 v
PsT (Q+p) +m—ms
Rns = max{ 0,5 L (44)

14
(1+5)
The price of the derivative in either case is given by

AU SEUN v
T ottt
Even though short-selling is not allowed, it is instruc-
tive to decompose the underlying price into a frictionless
component and a shadow cost of borrowing the security
(i.e., Rys). For instance, in the special case when trading in
derivatives is not allowed (i.e., §—oco which implies
5/(6+v)=1) and short-selling is not allowed (i.e., y =0),
the shadow cost of borrowing the security is given by

D

(Q+ps+p1)- (45)

Rus = —ps— — (Q+p) +m—ms, (46)
75 T

23 See http://www.sec.gov/news/press/2008/2008-211.htm.
24 See http://www.ft.com/intl/cms/s/0/9a55839a-c42d-11e0-ad9a-00144
feabdcO.html.

and the price of the underlying reduces to the familiar
expression
T M—+75Mg v 75

Pns:
TL+7Ts 7 +7s

(Q+/’5 +/’L) + Rys (47)

7L +7s

ns =1M— %(Q‘H’L)- (48)

That is, if L investors must hold the underlying security and
cannot trade the derivative with the S investors, then the price
of the underlying security is completely determined by the
beliefs and preferences of L investors. If short-selling is not
allowed, but S investors are allowed to trade the derivative
security, then their beliefs affect the value of the underlying
security. In fact, lower noise in the derivative payoft (i.e., lower
8), decreases the price P,; when short-sales are not allowed,
since S investors are able to express their beliefs more
strongly. In the limit, if there is no noise in the derivative
(ie., s =0), then imposing the short-sales constraint has no
effect on the price of the underlying. In contrast, regardless
of the noise in the derivative payoff, imposing a short-selling
ban has no effect on the price of the derivative security
itself. However, positions in the derivative security do change
in response to the ban — as in our benchmark model in
Section 3, the optimal demand for the derivative security
depends on the (shadow) cost of borrowing R, which depends
on whether the short-selling ban is in effect.

Finally, note that the derivative of P with respect to y at
y =0 is given by

oP _ S Ps l
o (m—mw{% - (pL+2Q)D, (49)

which is positive when Q is small. Thus, if the underlying
security is scarce relative to its outstanding supply, its price
may be lower when short-sales are banned (i.e. y=0).
Intuitively, when the underlying is scarce but short-selling
is not allowed, the shadow cost of borrowing the underlying
is not zero (i.e., Rys # 0), but none of this borrowing cost is
reflected in the price P,. In this case, relaxing the short-
selling ban increases the price of the underlying since it
allows L investors to lend some of their positions at Ry,
which increases the price they are willing to pay for the
underlying asset. The above result generalizes a similar
result in Duffie, Garleanu, and Pedersen (2002) to a setting
in which investors can trade derivatives.

To summiarize, we have the following results concerning
the effect of a short-sales ban on an underlying asset that
may be scarce, when investors have access to a derivative.

Proposition 6. Suppose that there are no speculators (i.e.,
3 =0), L investors have correct beliefs (ie., m,=m), S
investors are pessimistic (i.e., ms < m). Then:

(i) if the aggregate supply of the underlying is low enough,
imposing a short-sales ban can lower the price of the under-
lying security, even when L and S can trade the derivative,

(ii) the price of the underlying security decreases as the
noise in the derivative decreases (i.e., 5 decreases), even
in the presence of a short-sales ban,

(iii) imposing a short-sales ban has no effect on the price of
the underlying if investors can trade a derivative with no
noise (i.e., 5=0),


http://www.sec.gov/news/press/2008/2008-211.htm
http://www.ft.com/intl/cms/s/0/9a55839a-c42d-11e0-ad9a-00144feabdc0.html
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(iv) imposing a short-sales ban has the largest effect on the
price of the underlying if investors cannot trade a
derivative (i.e., 5— oo, or equivalently, 5/(6+v) = 1), and

(v) imposing a short-sales ban has no effect on the deriva-
tive price but increases the size of equilibrium derivative
positions.

As these results highlight, regulation that bans short-
selling to mitigate the distortionary effects of trading by
pessimistic investors may be ineffective if investors can
trade derivatives, and can actually decrease the underlying
price if the security is sufficiently scarce. These results are
in contrast to the over-pricing effect of short-sale con-
straints in many standard models (e.g., Miller, 1977) that is
often used to motivate such regulation.

While beyond the scope of our model, in settings where
the noise in the derivative payoff is endogenously affected by
the constraint on borrowing and lending in the underlying
(ie., if & is affected by y), parts (i) and (ii) of the above
proposition may be particularly relevant. For instance, con-
sider a setting in which market makers in the derivative
market must hedge their positions by trading in the under-
lying security. In this case, one might expect that restricting
short-sales (i.e., decreasing y) makes it more difficult for
market makers to hedge their derivative exposures and
therefore increases the noise § in the derivative payoff>°
As a result, in this setting, (i) and (ii) predict opposite effects
on the underlying price. In particular, the first part of the
result implies that a decrease in y might lead to lower P, while
the second part implies that an increase in § leads to a higher
P. In an alternative setting, suppose that investors face search
frictions in trading both the underlying and derivative secu-
rities. In this case, increasing scarcity in the underlying by
restricting short-sales might lead to increased liquidity and
lower search costs in the derivative security, as more investors
coordinate their trading in the latter security. As a result, the
two effects could reinforce each other a decrease in y and a
decrease in § might both lead to a decrease in P.

5. Conclusions

When the demand for long and short positions exceeds an
asset's capacity to support such positions, it becomes scarce
and its price is distorted relative to its value in a frictionless
market. In this case, we show that even simple derivatives are
no longer redundant since the presence of a derivative can
alleviate the scarcity in the underlying asset, and, therefore,
reduce the distortion in its price. Finally, we show that
accounting for scarcity is important in analyzing the effects
of regulatory policy, such as short-selling bans and derivative
position limits, that restrict trade in an underlying asset or its
derivative.

To highlight the role of derivatives in relaxing the scarcity
of the underlying asset, we focus exclusively on a simple
(linear) derivative that is otherwise redundant. Our model
predicts that, all else equal, assets with simple derivatives

25 In the extreme, investors may be unwilling or unable to make
markets in the derivative security when the underlying is sufficiently
scarce (e.g., single name futures contracts), and instead only offer
derivatives on correlated securities (e.g., broader index futures).

that are close substitutes should have lower borrowing fees
and therefore smaller price distortions. A number of empiri-
cal papers that study how the introduction of options
impacts the underlying asset find evidence consistent with
our model's predictions for simple derivatives. For example,
Sorescu (2000) finds that the price of the underlying stock
tends to fall when (nonlinear) options on the stock are
introduced. Danielsen and Sorescu (2001) provide empirical
evidence that is consistent with the notion that the intro-
duction of options mitigates short-sale constraints. However,
one must be cautious in interpreting these results as
conclusive evidence for our model. While options may relax
the scarcity of the underlying asset, they can also affect the
equilibrium by allowing investors to trade new sources of
risk (such as the volatility of the asset).?®

In testing the empirical predictions of our model, it is
also important to account for a number of features of the
market that we have abstracted from in order to more
clearly highlight the role of derivatives in relaxing the
scarcity of the underlying. For instance, we do not consider
the effect of financial intermediaries who make markets in
the derivative securities. If market makers need to hedge
their derivative positions with positions in the underlying,
then increased trade in derivatives can lead to an increase
in the scarcity of the underlying. One must also keep in
mind that the introduction of derivatives is endogenous —
it may be more likely that derivatives are introduced on
underlying securities that are scarce. In particular, it is
important to control for this endogeneity in any cross-
sectional tests of our model's predictions.

Finally, the notion that simple derivatives can “complete”
the market by allowing long investors and short-sellers to
take larger aggregate positions in the same source of risk as
the underlying, may also be important for understanding
the relative size of derivative markets across various assets.
For instance, although U.S. equity indexes are extremely
liquid, they are often accompanied by very large futures
markets, which may be driven by the fact that it can be
difficult to simultaneously short-sell all of the components
of an index.?’ Similarly, the fact that many corporate bonds
are often difficult to borrow (and short-sell) may be an
important driver of the recent surge in the size of the
corporate CDS markets (e.g., Gupta and Sundaram, 2011).
Our model may also be useful for understanding why even
extremely liquid securities like U.S. Treasuries may be
accompanied by extremely large futures markets.”® As our
model highlights, the size of the derivative market may be
driven, not by the constraint on borrowing and lending in
the underlying per se, but by the demand for both long and
short positions relative to the trading capacity of the under-
lying that results from this constraint.

26 For examples, see Detemple and Selden (1991), Zapatero (1998),

Boyle and Wang (2001), and Bhamra and Uppal (2009).

27 For example, in October 2011, the average daily trading volume in
Standard and Poor's 500 (S&P 500) futures on the Chicago Mercantile
Exchange (CME) was about $270B notional, while trade in all stocks on
the NYSE, Nasdaq, and SPDRs (an exchange traded fund that mimics the
S&P 500) was about half that.

28 In October 2011, the average daily trading volume in all Treasury
securities was around $500B, while trade in four Treasury futures on the
Chicago Mercantile Exchange was about $220B notional.
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Appendix A. Proofs of main results

Proof of Proposition 3. We begin by making the following
observations:

1. In any equilibrium, unless ¢=0, P-R<D<P—yR.
If D>P—yR, then long investors would short the
derivative and so would shorts, so markets cannot
clear. If D < P—R, then short-sellers would be long the
derivative and so would longs, so markets cannot clear.

2. Given the above, y* >0 and y° <O0. If y* <0, then the
long could do better by selling some of the underlying
instead since D <P—yR <P. Similarly, if y° >0, then
short-sellers would be better off reducing their short
position a little, since P—R < D.

3. If the constraints are binding before the derivative, they
will be binding after the derivative, unless ¢ = 0. If not,
R=0, which implies P=D. But since ¢ # 0, no one trades
the derivative, and so we have a contradiction.

These observations imply that generically, L investors have
positive positions in the derivative, S investors have
negative positions in the derivative, and the rest of the
argument follows the text of the paper. Specifically, the
equilibrium position in the underlying does not change for
either investor i.e.,

L

dx; = o, dHl+ dD 0, (50)

which implies the price of the derivative must change by
_oxi/oll;

dD=— o%;/aD dn (51)

Along this path, the change in investor i's optimal position
in the derivative is

= iy igp (D MY
dyi = 2L d;+ 21D = (an,- 2%, /aD)dn,. (52)

Hence,
ay; 9y, oxi/oll;

oIl oD ox; / oD

(33)

is a sufficient condition for dy;/dr1; <0, and vice versa,
which, combined with the observation that y, = —ys and
P=11./(1—y)—Isy/(1—y), gives us the result. O

Proof of Corollary 2. Dropping the subscript i, the first
order conditions of the optimal portfolio problem in
Eq. (13) are

0 = E[{F — ITyu' (W +pF +X[F — [T+ y[F 4+ & —D))], (54a)

0 =E[{F4+e—Dju' (Wo+pF+x[F—I+y[F+e—D])].  (54b)
Differentiating each of these equations with respect to
I7T and D yields

ox _ (A+2B+O)E[u +x(F—u']— (A+ B)XE[(F +&— D)’ ]
o~ AC—B?

(55a)

9y _ AXE[(F+e— Dyu']—(A+B)E[u +x(F — H)u]

o= T (55b)

ox _ (A+2B+Q)yE[(F—IDu']—(A+B)E[u +y(F+¢— D)u]

oD AC—B?
(55¢)
0y  AHu +Y(F+e—Du']—(A+B)yE[(F—u']
oD~ AC— B2 ’ (35d)
where
A=E(F-m*u], (56a)
B=FE[(F—I)(e—D+Mmu’], (56b)
C=FE[(e—D+m*u’]. (560)
For an investor with CARA utility, we have u’ = —ku for
some constant k > 0, so that
E[(F—Iu'l= —KkE[(F—Iu']1=0, (57)
| ——
0 by Eq. (54a)
E[(F+e—D)u']= —KE[(F+e—D)u']1=0. (58)
———
0 by Eq. (54b)
Also,
E[(F—I)(e—D+1u'] (59a)
u’ u’ P
[ (rlrte]) (el ] reacon
(59b)
, u’ u’ u’
= —kefule| (P Feg] ) (o~ #leagin] )
(59¢)
, u’ u’ u’ u’
= kel | (F¢ [ Forn] ) o] €| (-~ ¥[eatin] )
0 0
(59d)
=0. (59e)

To move from Eq. (59¢) to Eq. (59d), note that u'/F[u']
defines a change of probability measure under which F and
¢ are independent (since they are independent under the
original measure).?® Combining these results, we have

E[(F — IT)*u'TE[u' )+ E[(e — D+ 17)?u"1E[u ']
E[(F — IT)*u'|E[(e— D+ 1T)*u’]
(60a)

ox _ (A+OHu]

o~ AC

29 More specifically, since u'(W)=e~¥W and therefore,
% —g(Ph(e) where E[g(F)]=1=E[h(s)].

so that

[ (F=<lrie] ) (-—=lriet] ) i

= E[(F~E[Fg(F)h(e)(e — Eleg(F)h(e))g(F)h(e)]

= F[(F — E[Fg(F)Dg(F)] El(¢ — E[eh(e)Dh(#)].
0 0
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dy _ox_ ay  AHU] E[(F — IT)%u"]E[u] This implies
o~ oD~ oD AC = EF-I*uE(e—D+’u’] 5 1 (v, v__

(60b) R=max{0,m(Ro+E<;xB fExB >)} 71
which establishes the result. © where
Proof of Proposition 4. We consider a more general speci- Ri— | <1<_L N )—m m _i(L 4 ))
fication than in the proposition, in which there are two T 1y \ss 1*7Q rs ST 1*7Q "))

types of speculators, indexed by i e {BO, BP} (for optimists The equilibrium quantities can be computed by plugging in

and pessimists, respectively). The first-order conditions for the expressions for the price into the first-order conditions
investor i e {L,S, BO, BP} imply that for each type of investor. Since yg; = (z5;/8)(P—y5R—D) and
7i(m; —P+y;R) = v(x; +y;+p;) and (61) Xgi+Ypi = (zgi/v)(mp; — P+ygiR), we have for j # i
m. D)) ) ) ) ) g (yTL+T 1
(1 — D) = v(X; +Yi+pi)+ 8. ©) = (TLL_HSSR— 2 W0+ Y) fyBl-R> 72)
Let Po = (zymy +zsms) /(v +75) — (v/ (21 +75))(Q + p +ps), and
let Xg =Xpo+Xpp, and yp =ypo+Yypp. The market clearing
condition for the derivative implies that _ i\, _ TR (rautTs  \p o TBi
P > (14 Y= (P R By 73

7ymp +75Ms — (21 +75)D = (Q +p +ps — (Xp+Yp)) — Vg But this implies

(63)
1+ T )XB,'
v o 7L +7s
= D=Py+ Xg+Yg)+ 64
RS (o +s) TL‘”SYB 4 - %(msi—l’o)_ z TT Xpj (E + %) (781'_ }:L:—:S) R (74)
and market clearing in the cash-market implies b b
When R=0, the above reduces to
P=Po+—Y— (x+yp) + LR, (65)
71 +7s 7L +7s TBi TBi TBi
) . ) <1+ )yBi:_ Vi = Ypi=———Yp=Yp=0
Finally, comparing the risk-return tradeoffs for L and S LTS ts Lt7s
implies that (75)

R(1—y) = % (Xs+ps+Ys) —Ms— :—L (X +pL+y)+my  (66) and this implies

= |:(TL +1s+17po +7p)Mpi — (zoiMpo +7ppMpp) — (71 +75)P0]
= 2 .
v

and since (v/zs)ys —(v/71)y; = (v/5)(y — 1R, we have 7L+ 75+ 7o+ 8P
v v (76)
— (Xs+ps) —ms+m.—— (XL +py)
R=max{ 0,% L (67) When R > 0, then
a-n(1+%)
0 7Bi TBi yu+zs\ 1 (v, v __
. R . Xpi| 1+ —— == rsi———— 1=, \ 7 i = [ bi
When R > 0, the lending constraint binds since longs want L+ TS v +zs ) L=y \n s
to lend as much as they can, — @(mBi—PO)— B i
1 v T+ 7s J
S = = + i 1 1
Xs=—-—"—Q—-Xz; and x=-—Q—x7, (68) i YLt L v
I-r I-r o\ 7L+ 75 R 1 TLXBJ 1771'5XBJ ‘
where 77)
Xg =(XBo 1o <0y +XBp 1 (xzp <0)) and (69) This implies that
X5 = (XBo1(xg > 0) TXBP 1 (x> 0))- (70 (i) If x > 0, then y; =y, and so
TBi TBi TS v v TBi
B (mpi—Po)— B ((1—pRo+Zxt —Fx= ) =B xp
, (Msi—Po)——" p——— <( 7) 0 Xg o XBJ) P
Xpi = 75 T TS >0, (78)
TL+7ts T TL+Ts
and so mgi—Po > (ts/(rs+7))(1—y)Ro+(/m)xg s
sufficient.
(ii) If xp <O, then y5 =1 and so
TBi TBi 7L v v TBi
— (mp;—Po)+——— <(1 —7Ro+—x5 __XB]‘> ————Xpj
Xpi = v v T +7s 7L Ts T+ 75 <0 79)

TBi TBi 7L
TL+7Ts TS TL+Ts



604 S. Banerjee, ].J. Graveline / Journal of Financial Economics 111 (2014) 589-608

and so mg;—Po < —(z1/(z1+75))(1 —y)Ro+(v/75)X5; s

sufficient.
(iii) Finally, if
71(1—7y) v _ zs(1—y) v
— —— " Ro+ —Xg <mpi—Pg < =——""Ro+ —X;:
T+ 75 o+ 75 B <Mpi—Fo < s+1 0 o B

then xg =0 and yz = rg(mp-D) /(5 + v).

The expressions in the statement of the proposition
follow from the above conditions and noting there is only
one group of speculators (i.e., xg=xp and xz =0 for
j#i). ©

Appendix B. Costly lending by long investors

In our main model of Section 3, we exogenously fix the
maximum fraction y of their position that long investors
can lend out. While this assumption is made for tract-
ability, in this subsection, we show that our results are
qualitatively similar when the fraction y lent by longs is
determined endogenously in equilibrium. In particular, if
long investors face a cost c(y) to lend out a fraction y of
their position, then their wealth is given by

Wi =Wio+p F+Xx.(F=P+yR—c(y)+y (F+e—D). (80)

We show that in this case, the equilibrium is characterized
by the following proposition.

Proposition 7. Suppose that L investors pay a per-unit cost
c(y) in order to lend out a fraction y of their portfolio, where
c(y) is non-negative, non-decreasing, convex, c(0)=0, and
c'(0) = 0. Then, the equilibrium prices are given by

+75 T
D=P,, P=Po+AP and R=—t <AP+ c *)
° 0 r*r 415 T+ 75 (y )

(81)

where the price distortion AP relative to the frictionless price
Py in Eq. (6) is given by
C(w*)}

(82)

{ m— £ (p+ 2Q)

_ v _
ms+ & (/’5 1,.,*Q)

47 b}
AP= 7T maxo,
(z+75)(1—7%) S5+v
)
7 +7s

and the optimal fraction y* lent out is characterized by
R=c,(y*). The equilibrium positions are given by

1 1
ommm § (174 Re)) S (3P4 i),

r*t+1s 7L +7Ts
(83)
1 .
=0 if R>0,
Q—Xs=x. = (84)
(Q+ps+pr) —p, ifR=0.
T +7Ts

Proof. The first-order conditions for investor L imply that

¢ = R, (85)
yi6=1(P—yR+c—D), (86)
XL +YyL+p v =7(m —P+yR—o0), (87)

while the first-order conditions for the S investors are
given by

y55 = Ts(P—R—D), (88)

(Xs +Ys+ps)v = 75(Ms—P+R). (89)

Suppose that an interior optimal fraction y* exists (we
shall verify this below). For notational simplicity, let y
denote the optimal fraction y* that is characterized by
¢,(r*)=R(y*), and let ¢ denote the cost at that optimal
fraction (i.e., c = c(y*)). The market clearing conditions for
the derivative and underlying cash-market imply

Ts+yTL R T
Ts+ 7L Ts+7L

D=P-— c (90)

P_erL+rsm5 T5+}/TLR_ TL o
TL+7Ts Ts+7L Ts+7L 7L +7s

(Q+pL+ps),

91
which in turn imply that the equilibrium positions in the
derivative are given by

(1 &) p_
vs=—(1-14 ) s pay k= (92)

Finally, note that

M —P+R—(my P+ 7R—0)= - (xs+Ys+ps) = - (xu+Yi+0),
(93)

and

) o

Lys— 2Ly, =P—R—D—(P—yR+c—D), (94)

75 TL

which imply

RA-p)+c=my—ms+ % (Xs+Ys+ps) — % (XL +YL+pL)s
(95)

m;,—mg += (Xs+ps) -z (XL+pr)
=R= s L (96)

I

Finally, to establish the existence of the optimal fraction y*,
note that it must solve the equation

v (1 N S )
Cy(y):mL o (1_yQ+ﬂL> mS:'TS </’s 1_}/Q _M,
(1-n(1+%) 1=
(97)

or equivalently,

v v v v 1
mL——PL—ms-FEPs— —r+—)7—Q

©) 1
)+ -—pc)=— o
(1+5)

(98)

Since ¢(-)>0, ¢'(-)>0, and c’(-)>0, the left hand side
(LHS) is non-negative and increasing in y. On the other
hand, the right hand side (RHS) is positive for y=0,
decreasing in y, and strictly negative for y = 1. Therefore,
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if the LHS is less than the RHS at y =0, i.e,, if

v 14 14
mg _T_/)L_mS +T—P5—T— Q
c0)+c(0) < L — L,
(1+3)

then there is a solution y* € [0, 1] to the above equation.
In particular, if ¢(0) =0 and ¢’(0) = 0, then the condition is
satisfied, which completes the proof. ©

(99)

The conditions on the cost function c(-) ensure that the
equilibrium fraction lent out by long investors, y*, is
between zero and one. Comparing the above result to
Proposition 1, an endogenous fraction y leads to a number
of differences in equilibrium prices and quantities. First,
note that there is always a price distortion, given by
—11¢(y*) /(7L + 75), relative to the frictionless price Po. This
price distortion reflects the (risk-tolerance weighted) cost
that long investors incur to lend out the equilibrium fraction
y* of the underlying security. Second, in comparison to
condition (12), the underlying security is scarce only when

S v r* v 1
st (momst £ (- 7550) - £ (2 0m) ) et =0
(100)

Since the long investor pays P+c—yR per unit position in the
underlying, while the short pays R— P, longs and shorts pay
different prices even when the cost of borrowing (i.e., R) is
zero. The security is scarce only when, for a zero lending fee
(i.e.,, R=0), the aggregate demand for long and short posi-
tions do not clear the market.

When there is excess demand for the underlying secur-
ity (i.e., condition (102) holds), both prices (i.e., R and P) and
quantities (i.e., y) adjust in equilibrium. The degree to which
each adjusts depends on the specific cost function c(y), and
the equilibrium quantity y* is pinned down by the L
investors' indifference condition R(y)=c,(y).>° As before,
there is trade in the derivative security only when the
underlying is scarce. The next result establishes that even
though the borrowing constraint is endogenous in this
setting, the distortion in the price of the underlying
increases in the noise § in the derivative, and is highest in
the absence of the derivative.

Proposition 8. Suppose that L investors pay a per-unit cost
c(y) in order to lend out a fraction y of their portfolio, where
c(y) is non-negative, non-decreasing, convex, c¢(0)=0, and
c'(0)=0. Then the price distortion AP in the underlying
security increases with the variance & of the noise in the
derivative security. This implies that, all else equal, the price
distortion in the underlying is largest when investors do not
have access to a derivative (or equivalently, the noise in the
derivative becomes arbitrarily large).

Proof. As the proof of Proposition 7 establishes, the
assumptions on the cost function ensure that there is an
optimal y* in equilibrium between zero and one. Moreover,
recall that the cost function is non-decreasing and convex
(i.e., ¢, >0 and c,, > 0). Recall that the cost of borrowing
can be expressed as R=R’—c(y*)/(1—y*), where R® is

30 Note that this is the indifference condition for the L investors
when they take the lending fee R as given.

given by

v r* v 1
mL—ms+E (/’s—mQ> 7 <1TV*Q+/)L>

R =
- 14
(1=r(1+5)
(101)
This implies that
_0R_ 1 0
5—%—5(,,+5)R and (102)
1 1
Q(—+—>
oR 75 1 1 (1 1
Ri= =4 11K~ fCﬁizC)
u (1_y)3<1+1> =y \I=r" ad-p
v 6
(103)

Finally, since R=c'(y*) in equilibrium, we have that
dR/ds =R;+R,dy/ds must be equal to dc,/ds=c,,dy/ds,
which implies

v 0
d}/ _ R§ _ 5(1/+5)
&= K~ : 1) >0. (104)
Ql —+—
s TL

Since R=c,(y*) and c, >0, we have that for y<y*
¢,(y) < c,(y*), and so
TL}’*+‘L'5R_ T Ts T

c= R+ (¥*R—c) = 0.
T+ 7Ts TL+7Ts TL+7Ts T+ 7Ts

AP =

(105)

Moreover, change in the price distortion due to a change in
& can be expressed as

dap 7L dy 7L dy ty+1sdR
==L T R-E = 1

ds TL+TSC7d5+TL+TS ds T +7Ts das’ ( 06)
dAP _ ‘rLy—H’s@ _ T[_Y+Ts% _ TLy_FTSC;,yﬂ -0, (107)
ds 7L +7Ts ds 7L +75 ds 7L+ 75 ds

Hence, the distortion in price is increasing in the noise

6. o
Appendix C. Costly search by short sellers

In this appendix, we develop a search model in which
the equilibrium fraction of the outstanding supply of the
underlying asset that is borrowed/lent is determined
endogenously. Specifically, suppose short-sellers pay a
utility cost c(1) to search, which results in successfully
meeting a long investor with probability 4. Conditional on
meeting a long investor, they submit demand {xs;,ys1}.
On the other hand, if they do not meet a long investor,
they submit demand {xso=0,yso}. As a result, short-
sellers solve the following problem:

AEu(Wo+X51(F = (P—R))+Ys1(F+&—D)+psF)]

max  +(1=DEu(Wo+xs50(F —(P—R)+yso(F+e—D)+psF)]
AX5.0X51:Y50Ys1 —c(h).

(108)

Similarly, if a long investor meets a short-seller (which
happens with probability 1), he submits a demand
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{XL1,¥1.1}. On the other hand, if they do not meet a short-
seller, they submit demand {x.0,y;¢}. As a result, short-
sellers solve the following problem:

AEUWo +X,1(F—(P=R)+y 1 (F+&e—D)+p F)]
max

XLO0-XL1:YLo-YL1 +(1 7/1)[E[U(W0 +XL,O(F7P)+yL,0(F+€7D)+/)LF)]-

(109)
The market clearing conditions are given by the following:
X1 +Xs51)+(1=2)(Xs0+X10) = Q, (110
AXs1+Axpq >0, (111)
WY1 +Ys)+(A=DWso+Y0) =0, (112)
Xs0=0. (113)

To simplify notation, we shall restrict attention to the
parameter assumptions from Section 3 of the benchmark
model. Specifically, suppose ps = —p; = p and suppose the
risk-tolerance of both groups is given by z. In this case, the
following proposition characterizes the equilibrium.

Proposition 9. Suppose that S investors pay a per-unit cost
c(4) in order to search for L investors with probability A,
where c() is non-negative, non-decreasing, and strictly
convex. Then, the equilibrium prices are given by

v S5 v 1
D:m—ZQ, R:max{O,m;<p—mQ>} and

(114)
v 1)
P:D+R_Z m(xl,l'FXSJ_Q) (115)
where
p if R>0
x1=4{ 1 A (116)
{1+;{(Q+2/1/)) if R=0,
—p lf R>0
xs1=¢ 1 _ i (117)
{ —1+/1(2p Q) ifR=0,
and 2 is the unique solution to
O — E[u(Wo +xs1(F—(P—R))+ys1(F+&—D)+psF)]
€= —E[u(Wo +¥50(F+£—D)+psF)]
(118)

Proof. The expressions for the prices follow from comput-
ing the optimal demand for the underlying and the
derivative in each scenario and applying the market
clearing conditions. In particular, one can show that:

® |f the underlying is scarce, then we have

v 1
Yii=Ysa= miQ (119)
v 1 1+2 v 1
e 1), e o 19)
(120)

1
Xp1=—Xs1=p, Xo= mQ (121)

® [f the underlying is not scarce, i.e., R=0
1 v 1-2

Yi1=Ys1=Yi0= imm(zp—Q), (122)
1 v
Yso=— jm(zﬁ— Q), (123)

1 1
X1 =X 0= m(Q—I—Zip), Xs1= — m(zf’_Q)‘
(124)

Finally, the optimal 2 is pinned down by the first-order
condition for 1 in the S investors' optimization problem,
given by

¢'(\)=DEU where DEU = EU; — EU,, (125)

EU; = EFlu(Wo+Xs1(F—(P—R))+ys 1 (F+&—D)+psF)],

(126)
EUp = E[u(W +Yso(F +&— D)+ psF)]. (127)
Note that
EUp = — el = (1/2Wo+mp+(1/80)(/(w+)QuUQ - 4p) — 450 )} (128)

whether or not the underlying is scarce. On the other
hand,

EU; = — el = (1/D(Wo +mp+(1/80)(v/(v+6)QuUQ - 4p))} (129)

if the underlying is scarce, and
EU, = — el =~ (1/0Wo+mp-+(1/80(/(+0)45Q — 2% /(1 +4 +Qu(Q — 4p) — 45p)
(130

if the underlying is not scarce. As such, DEU only depends
on 2 through EU; when the underlying is scarce, and
moreover, DEU is non-increasing in 1. Therefore, if c(1) is
strictly convex, i.e., c¢'(4) is increasing, then there is a
unique solution 4* to Eq. (125), which characterizes the
equilibrium search probability 1. ©

The above result establishes that many of the results
from our benchmark model in Section 3 continue to hold
in this setting, in which the equilibrium fraction of the
outstanding supply of the underlying asset that is lent/
borrowed is determined as a function of the endogenous
search probability 4. For instance, note that: (i) the price of
the derivative does not depend on the search probability A
or the noise in the derivative payoff s, and (ii) the repo rate
R and the price distortion AP =P — P, are decreasing in A.
Moreover, as in the benchmark model of the paper, for a
fixed search probability, increasing the noise in the deri-
vative § makes the underlying more scarce and, therefore,
increases the price distortion.

However, when short-sellers can endogenously choose
their search probability (which determines the scarcity of
the underlying) in response to the noise in the derivative
payoff, then increasing the noise in the derivative may
decrease the scarcity and price distortion in the underlying.
Intuitively, the equilibrium search probability 2 is deter-
mined by the short-seller's first-order condition which
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sets the marginal cost of searching c'(1) equal to the
increase in her expected utility from being able to trade
in the underlying security (i.e., from locating a long
investor). As such, more noise in the derivative increases
the relative benefit (in expected utility) for each short-
seller from meeting a long investor, which incentivizes her
to search more aggressively in equilibrium. However, by
searching more aggressively, short-sellers reduce the scar-
city in the underlying, and therefore reduce the price
distortion.

The following proposition characterizes the conditions
under which an increase in § leads to an increase in the
price distortion, and shows that this is always the case
when §=0, i.e.,, when the derivative security is initially
frictionless.

Proposition 10. Suppose that S investors pay a per-unit cost
c(2) in order to search for L investors with probability 2,
where c(2) is non-negative, non-decreasing, and strictly
convex and does not depend on é. Then, the optimal search
probability 2* which is characterized by c¢'(1)=DEU is
increasing in §, i.e., As=01*/d5 > 0. The price distortion in
the underlying increases in the noise of the derivative payoff
(i.e., 8), if 25 is small enough (as characterized in the proof), or
if 5=0.

Proof. Note that then the underlying is scarce,

DEU = 76—(1/1)(W0+mp+(1/8{)(b/(b+5))Ql/(Q—4ﬂ))(‘1 _ e(pz/ZTZ)(lz(;/(b-Fﬁ)))’

(131)
while when the underlying is not scarce,
DEU = — e~ (1/9Wo+mp+(1/8)w/(w+8)(QuQ —4p) —45p%))
(e~ (1/22)w/+8)3Q =20 /(1 +27 _ 1y, (132)

In both cases, one can show that (9/d5)DEU > 0. Since c(-)
does not depend on §, this implies that for all else equal, an
increase in & (i.e., more noise in the derivative) shifts the
DEU curve up, which implies 2* will be higher, i.e.,
(0/08)2*(8) > 0. As a result, 5 can have an ambiguous effect
on the price distortion. In particular, note that when the
underlying is scarce, the price distortion is given by

S5 v 1 v )
AP:mz(/’—mQ)+z(mQ) (133)

d 1 v v 1 1 S
= %=1 u+5<”+Q<§_1—/1>>_1—/1Q1”' ‘
———

-0 >0
(134)

This implies that the effect of § on AP depends on the
relative magnitude of A5, which in turn depends on the
cost function c. Moreover, note that the derivative is
positive when 6= 0 (as long as 15 is bounded) or if

v 1 1
m(ﬂ*QG—m))
/15< 5 .

Q

1-2

Similarly, when the underlying is not scarce, the price
distortion is
v s 1-2
AP = Z(zp_Q)l/_+5—l+l (135)
W(1=2)—258(6+1)As)
@+ (1+27
Again, the derivative is positive when &=0, or if
Zs <v(1=2)/(28(6 + v)). ©

(136)

d v
= $AP= Z(prQ)

Appendix D. Position limits

Consider a version of the model in Section 3, in which
the payoff of the derivative is F (i.e., there is no noise), but
there are position limits that restrict the size of derivative
positions to y, i.e., y; = —ys <. In this case, the first-order
conditions for investor i are given by

v(Xi+Yi+p) =2(m—(P—-y;R) and (137)

vXi+Yi+pi) =2(m—D), (138)

where y; <y <1 and ys=1. As in the model, the market
clearing conditions are given by

in = Q, Zyi =0 and yXL+Xs = 0. (139)
i i

As in the benchmark model, the optimal equilibrium
allocations in the economy without any frictions (and in
the absence of derivatives) is x, = 1Q+p and xs= 1Q —p.
This implies there are two cases to consider.

Casel: If 1Q+p<(1/(1—y)Q+y (or equivalently, if
1Q-p>—(y/(1-7)Q—-Yy), then the underlying security
is not scarce. In this case, R=0 and the price of the
derivative and the underlying are given by

P=D=m-2Q. (140)
2t

Since the payoffs and prices of the underlying and the
derivative are identical, this implies a certain degree on
indeterminacy in the equilibrium quantities held by inves-
tors. We can recover a complete characterization if we
impose some type of tie-breaking rule — for instance,
suppose investors trade in the underlying when indifferent
between the two securities. In this case, the equilibrium
positions are given by

x,_:Q—xs:min{%Q—i-p,lLQ} and (141)
-7

1 1

yi=-ys=max{03 Q40 110}, (142)

Case2: If 1Q+p > (1/(1-y))Q+Y, then the underlying
is scarce, and R > 0. Specifically, market clearing implies:
R=-1 Y (2~ 1H7q 2y). (143)

1—y<z 11—y

Given the payoff of the derivative and the underlying are
identical, the price of the derivative is bounded by the net
cost to L and S investors for the underlying, i.e.,
P—yR>D>P—R. (144)

Moreover, for any price D that is strictly in between these
bounds, L and S investors take the largest derivative
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position they can, i.e., y; = —ys=y. Within these bounds,
the derivative price is indeterminate without additional
assumptions (e.g., bargaining between L and S investors
can help pin down D), but the equilibrium quantities and
the price of the underlying security are pinned down as
follows:

B 1 B o B v 1+y
XL_Q_XS_l——yQ’ Y= —Ys=Y, P—m—zQ'FTR,
(145)
R=max{ 0¥ (20—y— 170\ L. (146)
1-y7 11—y

As such, this version of the model also delivers the main
comparative static result of the paper. Increasing ease of
trade in the derivative (in this case, by increasing y),
reduces the price distortion in the underlying by relaxing
the scarcity that investors face.
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