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We study how dynamic research affects information acquisition in financial markets. In our
strategic trading model, the trader performs costly research to generate private information
but does not always succeed. Optimal research activity responds to market conditions
and generates novel implications. First, more frequent public disclosures can “crowd in”
private information acquisition, increase price informativeness, and harm liquidity, instead
of “leveling the playing field.” Second, observed research activity does not necessarily
imply that traders are better informed. Finally, improvements in research effectiveness
or higher market participation by uninformed investors can simultaneously increase price
informativeness and liquidity. (JEL D82, D84, G12, G14)
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Research outcomes are uncertain: spending time and effort researching trading
opportunities does not guarantee a profitable strategy, even for Warren Buffet.2

Moreover, research activity varies over time and with market conditions, as
suggested by the recent analysis of measures like Bloomberg search volume
and EDGAR queries.3 Yet, the literature on information acquisition in financial
markets following Grossman and Stiglitz (1980) largely ignores the uncertainty
and dynamics of research. Traditional models treat information acquisition as a
static, deterministic decision whereby investors make their information choices
before trading begins and are guaranteed to receive payoff-relevant information
if they pay an appropriate cost.

Understanding these limitations is especially important for policy analysis. In
many models of static information acquisition, more public disclosure “crowds
out” private information (see Section 1 for further discussion). Consequently,
regulators who seek to improve market liquidity often require more public
disclosures in an effort to “level the playing field.” An important example
in practice is Regulation Fair Disclosure (Reg FD), which was introduced in
2000 to reduce the incidence of selective disclosure.4 Surprisingly, however,
the policy may have had the opposite effect. For instance, Duarte et al. (2008)
show the probability of informed trading (PIN) for NASDAQ stocks increased
after the introduction of Reg FD.

To better understand how the timing and uncertainty of research affects
financial markets, we develop a strategic trading model where the trader
dynamically optimizes her research activity in response to market conditions.
Research activity evolves dynamically and is not guaranteed to succeed:
conditional on devoting time to research, the trader receives payoff-relevant
information with some probability that depends on the effectiveness of her
research technology. When her research is successful, the trader has an
uncertain, but limited, window to exploit her private information before a public
disclosure at a random future date eliminates her informational advantage.

We show that accounting for the dynamic and uncertain nature of research
has important implications. First, research activity can increase or decrease
with the frequency of public disclosures.5 As a result, policy efforts to “level
the playing field” can be counterproductive because requiring more public
disclosure can “crowd in” private information acquisition, which increases
price impact and harms liquidity. Second, since research success is uncertain, a

2 Not surprisingly, this also applies to academic research!

3 For example, see Drake, Roulstone, and Thornock (2012), Ben-Rephael, Da, and Israelsen (2017), Crane, Crotty,
and Umar (2019), and Drake et al. (2020).

4 Specifically, Reg FD mandated that firms could not disclose material information to some investors unless it was
also disclosed publicly. This limited the ability of large, institutional investors to receive and trade on (effectively
private) information before others.

5 As we will discuss in Section 1, the channel through which public disclosure can “crowd in” more research by
the trader in our setting is distinct from settings in which investors can learn about multiple dimensions of payoffs
(e.g., Goldstein and Yang 2015; Banerjee, Davis, and Gondhi 2018; Goldstein and Yang 2019).
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trader with access to more effective research technology is, counterintuitively,
less likely to conduct research but (unconditionally) more likely to be privately
informed. This implies that the empirical relation between research activity
(e.g., EDGAR queries, Bloomberg search volume) and informed trading need
not always be positive, but instead depends on cross-sectional and time-series
variation in investor sophistication. Third, when traders acquire information
dynamically, we show that some regulatory changes (e.g., improvements to
research technology, or increases in the participation of uninformed traders)
can improve both price informativeness and market liquidity at the same time.
This suggests that regulators do not always face a trade-off between price
informativeness and market liquidity, as might be suggested by traditional
models.6

Section 2 introduces the model. We augment the standard, continuous-time
setting of Kyle (1985) and Back (1992), with (a) stochastic noise trading volume
(e.g., Collin-Dufresne and Fos 2016; Banerjee and Breon-Drish 2020), (b) a
random trading horizon (e.g., Back and Baruch 2004; Caldentey and Stacchetti
2010), and, most importantly, (c) endogenous information acquisition via
a probabilistic research technology. Stochastic noise trading volume, first
introduced by Collin-Dufresne and Fos (2016) in a different context, is a
tractable and empirically plausible mechanism for generating time variation
in the value of being informed.7 For instance, Collin-Dufresne and Fos (2015)
document that informed traders strategically trade more aggressively on days
when uninformed trading volume is higher. Our analysis suggests that such days
are also likely to be associated with more research activity and information
acquisition, which is consistent with evidence (e.g., Ben-Rephael, Da, and
Israelsen 2017). A natural interpretation of the random trading horizon is that
the potential trading opportunity goes away due to an unscheduled, public
announcement that reveals the previously private information. The assumption
ensures that the analysis is tractable, and the interpretation as public disclosure
allows us to derive direct empirical predictions and policy implications of our
model.

The key innovation in our paper is to model dynamic, stochastic research
in this setting. We assume that the strategic trader is not endowed with private
information, but instead she must engage in research to acquire it. Specifically,
at each instant prior to information arrival, the trader can optimally choose her

6 In most static acquisition models, policy makers face a trade-off between improving price informativeness and
market liquidity: changes that encourage private information acquisition lead to not only more informative prices
but also higher adverse selection and lower liquidity. We show that with dynamic research this trade-off continues
to be true along some dimensions (e.g., policies that affect the cost of research), but not always.

7 Specifically, we assume the instantaneous noise trade to be dZt =νt dWZt , where νt follows a stochastic process.
As we will discuss in Section 2, the process νt drives trading activity in the model. For expositional clarity, we
follow Collin-Dufresne and Fos (2016) and refer to νt as “trading volume.” Furthermore, while we argue that
stochastic noise trading volume is a natural driver of the value of being informed, as we will discuss below,
our results are robust to other mechanisms that generate a time-varying value of information (e.g., time-varying
fundamental uncertainty).
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research intensity subject to a flow cost.8 The research intensity determines the
probability with which a (potentially noisy) signal about the asset value arrives
in the next instant. If the signal arrives, the trader optimally begins trading on
her information. This is in contrast to standard models of static information
acquisition in which the trader is restricted to making a one-time decision,
before the market opens, about whether or not to acquire information, and in
which the information arrives with certainty if she pays the appropriate cost.

We derive the equilibrium in Section 3, characterizing the trader’s optimal
research and trading strategy, as well as the equilibrium pricing rule, in closed
form. To see how dynamics affect the optimal research strategy, it is useful to
first consider the optimal static acquisition strategy in our setting. The trader
follows a “threshold” rule: she acquires information at the beginning of trading
if and only if the initial noise trading volume is greater than an optimal threshold
value. Essentially, the trader follows a net present value (NPV) rule because she
only acquires information if the expected trading profits from being informed
are higher than the explicit cost of information. Consistent with the standard
results in the literature, this implies that, all else equal, acquisition occurs when
(a) the level of uninformed trading volume is high, (b) uncertainty is high, and
(c) the frequency of public disclosures is low (i.e., the trading horizon is longer).

With dynamic research, the trader’s optimal research strategy also follows
a threshold rule. However, in addition to trading off the expected value of
being informed and the explicit cost of research, the optimal dynamic research
choice also reflects a number of real options: the option to delay research until
trading opportunities are more profitable (i.e., the level of uninformed trading
volume is even higher), and the option to abandon if research has not been
successful. The resultant dynamic research “threshold” is higher than in the
static acquisition (NPV) threshold; that is, the trader is willing to wait for higher
noise trading volume before engaging in research than in the static acquisition
case. More importantly, the optimal threshold in a dynamic research setting
responds differently to changes in market conditions than the static acquisition
threshold. These differences in optimal acquisition, together with the dynamic
and uncertain nature of research itself, yield novel predictions on the behavior
of research activity and the relation between research and informed trading,
which we explore in Section 4.9

First, research activity is stochastic and increases with the volatility of trading
volume, even after controlling for the level of volume. This prediction is

8 For tractability and clarity, we primarily focus on the case in which the trader faces a proportional cost of
research, that is, the flow cost of conducting research at intensity ζ is C (ζ )dt , where C(ζ )=cζ , subject to a
capacity constraint ζ ∈[0,ζ

]
.

9 Our model also generates predictions that are largely common to existing static models. For instance, the
likelihood and expected duration of research increases with the investor’s prior uncertainty and the level of
noise trading volume, and decreases in the cost of research. While these are natural, robust, and important
implications, they have been explored theoretically and empirically in the existing literature. As such, we focus
our attention on results that are more distinctive to our analysis.
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consistent with the positive correlation between abnormal trading volume and
research activity documented in the empirical literature (e.g., Ben-Rephael,
Da, and Israelsen [2017] show this for Bloomberg search volume and Google
search activity). Moreover, the prediction is in contrast to acquisition in a static
setting, which is unrelated to the volatility of volume and either occurs with
certainty prior to trading or never occurs. More surprisingly, we also show
that the likelihood of research activity is negatively related to the effectiveness
of the research technology (or equivalently, the intensity of research activity).
Intuitively, a trader with a more effective technology can afford to wait longer
to engage in research because, conditional on performing research, she is very
likely to receive information. That is, with a more effective research technology,
the opportunity cost of waiting to perform research is lower.

Second, the likelihood of conducting research, and the expected time spent
in research, is hump shaped in the frequency of public disclosures. Intuitively,
this is because the frequency of public disclosures (or the expected length of
the trading horizon) has two offsetting effects. On the one hand, more frequent
disclosures decrease the value of acquiring information since, conditional on
receiving information, the trader expects to exploit her informational advantage
over a shorter horizon. This “trading horizon” effect is what leads more frequent
public disclosures to “crowd out” private information in the static acquisition
benchmark. On the other hand, more frequent disclosures also increase the
opportunity cost of waiting to conduct research, by effectively increasing the
trader’s “impatience”: she becomes less willing to wait since she may be
preempted by the public disclosure. When public disclosures are rare, the
impatience effect dominates: increasing the frequency of disclosures pushes the
trader to conduct research more frequently (i.e., it crowds in private research).
However, when disclosures are sufficiently frequent, the “trading horizon”
effect begins to dominate, and further increases in disclosure frequency crowd
out private research.

Third, we are also able to pin down the probability that the trader
ever successfully receives information and enters the market (i.e., the joint
probability that she ever conducts research and that the research is ever
successful). This probability inherits many of the properties of the probability
of research. However, the relation between research effectiveness and eventual
probability of informed trading delivers one of the most striking predictions
from the model. While an increase in research effectiveness reduces the
probability that the trader ever conducts research, it increases the unconditional
probability that she ever receives information.10 Intuitively, higher-skilled
analysts or more efficient information systems may generate more informed

10 While it is not surprising that conditional on conducting research a trader with better research technology is
more likely to receive information, we emphasize that this result is an unconditional one. Moreover, note that
variation in the cost of research (or other parameters) would generate a positive relation between the likelihood
of research and eventual success. As such, this result is unique to settings with uncertainty in research.
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trading activity (and higher profits), even if they do not appear to generate
more research activity.

Overall, these results suggest that, in settings in which research takes place
dynamically and need not succeed, one should exercise caution when using
measures of research activity to proxy for information acquisition or informed
trading. Moreover, our analysis helps shed light on why the empirical relation
between observed research activity and future performance varies across
different types of investors. For instance, Drake et al. (2020) document that
while EDGAR search activity by institutional investors is predictive of future
performance, similar activity by noninstitutional investors is not. Crane, Crotty,
and Umar (2019) show that increased reliance on public information by hedge
funds leads to higher performance, while Kacperczyk and Seru (2007) argue
that the opposite relation holds for mutual funds. These observations line up
with our model’s predictions about how the relation between research activity
and (informed) trading profits depend on the effectiveness of the research
technology and the sophistication of investors.

Section 5 highlights how accounting for research dynamics can lead to novel
policy implications for price informativeness and liquidity (price impact). We
show that both price informativeness and average price impact (Kyle’s lambda)
are hump shaped in the frequency of public disclosures, and the latter is also
hump shaped in noise trading volume. This is in contrast to the monotone
relations in static acquisition settings, and suggests that efforts to improve
price informativeness or enhance liquidity by “leveling the playing field” (e.g.,
higher public disclosure requirements or facilitating access for uninformed
traders) may be counterproductive. These results may also help shed light on the
surprising empirical results of Duarte et al. (2008) discussed above. Finally, the
natural tension between price informativeness and liquidity in standard settings
need not always obtain in a dynamic setting. Policies that make research more
effective (i..e., improve the research technology) or increase uninformed trading
activity can sometimes improve both price informativeness and liquidity.
Together, these results suggest that insights about price informativeness and
liquidity that are derived from standard, static acquisition settings need not
hold when investors can engage in research dynamically. Consequently, one
should exercise caution when evaluating policy proposals in such settings.

1. Related Literature

Our model builds on two strands of the literature. The first involves the
continuous-time Kyle (1985) model with a random horizon (e.g., Back and
Baruch 2004; Caldentey and Stacchetti 2010) and stochastic volatility in noise
trading (e.g., Collin-Dufresne and Fos 2016). The second is the large literature
that studies information acquisition in financial markets, following Grossman
and Stiglitz (1980) and Verrecchia (1982).
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A primary innovation of our model is allowing the strategic trader to
dynamically optimize her research and information acquisition activities. This
stands in contrast to most of the existing literature on endogenous information
acquisition, which restricts investors to acquire information, or commit to
an information acquisition strategy, before trading begins, even if trading
takes place dynamically. For instance, Back and Pedersen (1998) and Holden
and Subrahmanyam (2002) allow investors to commit to receiving signals
at particular dates, while Veldkamp (2006) considers a sequence of one-
period information acquisition decisions. Similarly, Kendall (2018), Dugast and
Foucault (2018), and Huang and Yueshen (2018) study information acquisition
with a “time cost,” but in each of these settings the information acquisition
decision is made before trading and therefore the decision is effectively
a static one. As we discuss further in the following sections, our results
suggest that allowing for dynamics in research has important consequences
for both positive and normative analysis (see Sections 4.4 and 5.1,
respectively).

Two recent works that do not make such a restriction are Banerjee and Breon-
Drish (2020) and Han (2018). In Banerjee and Breon-Drish (2020), a companion
to the current paper, we also study dynamic information acquisition by a
strategic trader but focus on differences between different types of “standard”
information acquisition technologies in a setting in which market entry is not
detectable by market participants. We contrast settings in which the trader
optimizes the precision of a flow of signals and those in which the trader
must optimize the arrival time of a “lump” of information. We show that
when the trader chooses a flow of information, the optimal signal precision
evolves over time with noise trading activity and leads to novel implications
for the dynamic behavior of price informativeness. In contrast, when the trader
can acquire “lumpy” information, we show that there generally do not exist
equilibria with endogenous information acquisition. In contrast, the current
paper studies the empirical and policy implications of uncertain and dynamic
research, and establishes that when market entry is detectable, an equilibrium
with endogenous research can be sustained even with ultimately “lumpy”
information arrival.

Han (2018) studies a competitive dynamic trading model based on Hellwig
(1980) (particularly its nonlinear generalization due to Breon-Drish [2015]) in
which heterogeneously informed investors dynamically optimize the allocation
of attention in response to the evolution of aggregate uncertainty. Investors
naturally allocate more attention and thereby acquire more precise information
when uncertainty is high. However, this endogenously lowers uncertainty in
future periods due to learning from prices, which feeds back into current
information acquisition decisions. This differs from our setting, in which
fundamental uncertainty is constant over time and research activity is driven
by noise trading activity. Furthermore, in our model, research intensity itself
has no direct effect on market maker (i.e., public) uncertainty, and the rate of
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public learning after information arrival is constant because the trader smooths
her trades over time to protect her information advantage.

Our analysis also speaks to the large literature on how public disclosure
affects price informativeness and real outcomes (see Bond, Edmans, and
Goldstein 2012; Goldstein and Sapra 2014; Goldstein and Yang 2017 for
recent surveys). A common insight from this literature is that public disclosure
“crowds out” private information acquisition and can lead to lower price
informativeness (e.g., Diamond 1985; Colombo, Femminis, and Pavan 2014).
Intuitively, the arrival of public information (before, simultaneously with, or
after related private information) reduces the trader’s anticipated informational
advantage relative to other participants and, therefore, reduces her ex ante
incentive to acquire private information. More recently, a number of papers
have highlighted how more public disclosure can “crowd in” additional
private learning about fundamentals when investors can learn about multiple
components of payoffs (e.g., Goldstein and Yang 2015; Goldstein and
Yang 2019). This “crowding in” can improve price informativeness when
investors learn about other components of fundamentals. However, when public
disclosure about fundamentals crowds out learning from more informative
signals (e.g., Dugast and Foucault 2018) or crowds in more learning about
other traders (e.g., Banerjee, Davis, and Gondhi 2018), it can harm price
informativeness.

Our model highlights a distinct, but related, channel through which public
disclosures can “crowd out” private learning in our setting, which is particularly
transparent in the static acquisition benchmark in Section 3.2. As we show,
when the trader is restricted to acquire information before trading begins, more
frequent public disclosures discourage information acquisition. This is because
she anticipates being able to exploit her informational advantage over a shorter
trading horizon (“trading horizon” effect), which reduces her expected benefit
from becoming better informed.

The introduction of research dynamics (Section 3.3) highlights a further
novel mechanism by which more frequent public disclosure can “crowd
in” learning about fundamentals by affecting the trader’s incentives to wait
to conduct research. Our result is complementary to the earlier work by
Goldstein and Yang (2015) and Goldstein and Yang (2019), but highlights
an economically distinct channel, since the public disclosure and the private
information acquisition are about the same component of payoffs (indeed, in our
model, there is only one component to the asset payoff). Intuitively, when public
disclosures are extremely rare, the trader is willing to wait a long time before
engaging in research, and so information acquisition and price informativeness
are low. Increasing (the frequency of) public disclosure initially increases
the opportunity cost of waiting, which leads to more frequent research and
higher price informativeness. However, when public disclosures are sufficiently
frequent, further increases reduce the incentive to acquire information since
the trader does not expect to have enough time to exploit her information
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Figure 1
Timeline of the game
The figure illustrates the sequence of moves in the game, in the case that the trader’s research succeeds before
the asset value is publicly disclosed, τ <T .

advantage. This suggests that when recommending policy changes that affect
the market’s information environment, regulators should account for not just
the various dimensions along which investors can acquire information, but also
their dynamic incentives to do so.

2. Model

Our framework is similar to Banerjee and Breon-Drish (2020), modified to
incorporate dynamic research. Figure 1 presents a timeline of the stages, which
we now describe in detail. There are two assets: a risky asset and a risk-free
asset with interest rate normalized to zero. The risky asset pays off a terminal
value V ∼N (0,�0) at random time T , where T is independently exponentially
distributed with rate r >0.11 We assume that all market participants have
common priors over the distribution of payoffs and signals.

There is a single, risk-neutral strategic trader. Let Xt denote the cumulative
holdings of the trader, where we normalize her initial position to X0 =0. We
consider only absolutely continuous trading strategies, dXt =θtdt , so that the
optimal trading problem reduces to choosing the trading rate θt .12 In addition
to the strategic trader, there are noise traders whose cumulative holdings Zt

follow

dZt =νt dWZt . (1)

11 While we consider the case of a fixed asset value, V , for simplicity, there is no difficulty in accommodating an
asset value that evolves over time as a Gaussian process dVt =(a−bVt )dt +σV dWV t for constants a,b, and σV ,
and independent Brownian motion WV t . Furthermore, none of our results differs qualitatively in such a setting.
While the random date T is important for tractability, we do not expect our results to differ qualitatively in a setting
with fixed T . However, such a model will generally be difficult to solve because the optimal research problem
effectively reduces to stopping problem on a finite horizon. Such problems are well known to be analytically
intractable (e.g., the optimal exercise policy for a finite-maturity American option).

12 Back (1992) shows that such trading strategies are optimal.
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In contrast to benchmark strategic trading models, and following Collin-
Dufresne and Fos (2016), the volatility νt of the noise trading process is
stochastic. Specifically, we assume that νt follows a geometric Brownian motion
(GBM)

dνt

νt

=μνdt +σνdWνt . (2)

We assume that WZt and Wνt are independent Brownian motions. Since ν

drives uninformed “trading volume,” (see, e.g., Collin-Dufresne and Fos 2016),
variation in ν is a natural and empirically relevant channel of introducing time
variation in the value of conducting research as we shall discuss in more detail
below.13 For ease of exposition, we will follow Collin-Dufresne and Fos (2016)
and refer to ν as trading volume, μν as the drift in trading volume and σν as
the volatility of trading volume in what follows. We assume that νt is publicly
observable to all market participants. This is without loss since νt is positive
and enters all relevant equilibrium expressions only through ν2

t , which is the
equilibrium order flow volatility and which can be inferred perfectly from the
realized quadratic variation of order flow. Moreover, we require −∞<μν <r

to ensure the existence of equilibrium, which we will discuss in more detail
below.

In contrast to the existing literature, the strategic trader is not endowed with
private information but must engage in research. Specifically, the strategic trader
can pay a flow cost C (ζ )dt to search for information with intensity ζ. That is,
conditional on engaging in research at with intensity ζt at time-t , information
arrives in the next instant with probability ζt dt . Formally, the information arrival
process is a doubly stochastic Poisson process with rate ζt ≥0 optimally chosen
by the trader. Let τR denote the time that the trader first engages in research.

Conditional on successful research (i.e., signal arrival) she privately obtains
a potentially noisy signal S =V +ε, where ε∼N

(
0,σ 2

ε

)
is independently

distributed. Furthermore, at the time of information arrival the trader (optimally)
enters and begins trading in the financial market. τ denotes the time of
entry, with τ =∞ corresponding to no entry (e.g., because research was never
successful, or the payoff was revealed before research delivered a signal).14

13 For some intuition, consider a discrete-time analog of the continuous-time setting with length h between periods.
Noise trade each period is Zt+h −Zt =νt

√
hεt+h for εt+h ∼N (0,1). This implies (expected) trading volume per

unit of time is
Et
[∣∣Zt+h−Zt

∣∣]
h

=
νt

√
2
π h

h
=νt

√
2

hπ
, which is linear in νt . It is a well-known artifact of continuous-

time settings (h→0) in which positions follow diffusions that trading volume is infinite. However, squared volume

per unit of time is well-defined and equal to the quadratic variation of the noise trade process,
Et

[(
Zt+h−Zt

)2]
h

=

ν2
t , which is consistent with our treatment of νt as a natural measure of trading activity.

14 Treating no entry as an infinite realization for the stopping time, τ =∞, is standard for arrival/stopping problems.
See, for example, the discussion of the first passage time of a Brownian motion with drift on p. 196 of Karatzas
and Shreve (1998), or more concretely, the discussion of the exercise time of an American option on p. 341 of
Shreve (2004) for applications.
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A competitive, risk-neutral market maker sets the price of the risky asset equal
to the conditional expected payoff given the public information set. Let FP

t

denote the public information filtration, which is that induced from observing
the aggregate order flow process Yt =Xt +Zt , stochastic trading volume νt , and
the entry of the informed trader 1{τ≤t}. Note that we assume that the market
maker can detect entry by the strategic trader into the financial market, but we
do not assume that the market maker can observe her research intensity.15 The
price at time t <T is therefore given by

Pt =E
[
V
∣∣FP

t

]
. (3)

Let F I
t denote the augmentation of the filtration σ (FP

t ∪σ (S)). Thus, F I
t

represents the strategic trader’s information set, post-entry.
We require the trader’s research strategy ζt to be weakly positive and adapted

to FP
t . Importantly, note that we allow the trading intensity to depend on all

of the information available to the trader, but as we shall see below, it will
only depend on uninformed trading volume (i.e., νt ) in equilibrium. Moreover,
conditional on not having received any information so far, the trader is permitted
to disengage from research and then re-engage at any time of her choosing.

We require the trader’s pre-entry trading strategy be adapted to FP
t and her

post-acquisition trading strategy be adapted to F I
t . To eliminate doubling-type

strategies that accumulate unbounded losses followed by unbounded gains,
we also require the following, standard, admissibility condition on trading
strategies

E

[∫ ∞

0
e−ruθ2

udu

]
<∞.

Our definition of equilibrium is standard, but modified to account for
endogenous entry.

Definition 1. An equilibrium is (a) an admissible research strategy ζt and
trading strategy Xt for the trader and (b) a price process Pt , such that, given
the trader’s strategy the price process satisfies (3) and, given the price process,
the research strategy and trading strategy maximize the expected profit

E

[∫ T

0
(V −Pu)θudu

]
=E

[∫ ∞

0
e−ru (V −Pu)θudu

]
. (4)

Let V̂ ≡E[V |S] and Ω ≡var(V |S) denote the conditional beliefs about V

given observation of the signal S. Let �t ≡var

(
V̂

∣∣∣∣FP
t

)
denote the market

maker’s uncertainty about V̂ , and, using the law of total variance, let �t =�t +Ω

15 In fact, because entry is detectable and the market maker’s pricing problem depends on entry, but not the research
intensity, the equilibrium is identical regardless of whether or not the market maker correctly conjectures (or
directly observes) the trader’s chosen intensity.
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denote her uncertainty about the payoff itself. Then, given the information
structure, we have:

V̂ =
�0

�0 +σ 2
ε

S, (5)

Ω =
�0σ

2
ε

�0 +σ 2
ε

, (6)

and for all times 0≤ t ≤τ , prior to information arrival, we have

�t =�0 ≡�0
�0

�0 +σ 2
ε

, t ∈ [0,τ ].

The dynamics of �t after the trader observes information will be pinned down
as part of the equilibrium, as the market maker learns about S from observing the
order flow. Finally, by the Law of Iterated Expectations, the market-maker’s
conditional expectation of the asset value can be reduced to her conditional
expectation of V̂ :

Pt =E

[
V̂
∣∣FP

t

]
. (7)

One can interpret � as a measure of the trader’s informational advantage over
the market, in the event that her research succeeds. If the signal is completely
uninformative, σ 2

ε →∞, �t →0. Conversely, when the signal is perfectly
informative (as in, e.g., Kyle 1985), we have �t =�0 prior to information arrival,
so that the market maker’s uncertainty about the value estimate reduces to her
uncertainty about the value itself.

2.1 Discussion of assumptions
We interpret T as the date of an unscheduled, value-relevant public disclosure
or announcement, which eliminates the trader’s informational advantage.
Intuitively, we think of the model as capturing one “round” of a repeated
version of the model in which there are a sequence of public announcements
at different, random times. One can show that under standard assumptions,
each round of a formal, repeated model is isomorphic to the benchmark model
we analyze, which indicates that our assumption of a single announcement is
without loss.16 It is not critical that the asset pays off or that trading stops at

16 Specifically, consider a repeated version of the model with 0<N ≤∞ “rounds,” where each round ends with a
public announcement of payoff-relevant news. The asset payoff is the sum of N components, which we interpret
as the innovation to the asset value in each round

V =
N∑

n=1

Vn

with Vn ∼N (0,�0) i.i.d. The Vn are publicly disclosed at a sequence at random times Tn =
∑n

j=1�Tj with the
�Tj ∼exp(r) i.i.d. One can show that the optimal research and trading strategies and equilibrium price dynamics
in such a setting follow from applying the results of our single-announcement model round-by-round to the
components Vn. Full details are available on request.
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T , but only that the trader’s informational advantage disappears. We shall refer
to the rate r as the rate, or frequency, of public disclosure. The assumption
that T is exponentially distributed is made for tractability, because it makes
the trader’s problem time stationary. In contrast, a deterministic horizon would
be a more appropriate specification for scheduled, periodic disclosures (e.g.,
earnings announcements) and could generate interesting deadline effects for
the trader’s research and trading decisions. However, the introduction of an
additional state variable (calendar time) makes the trader’s optimal research
problem analytically intractable, so we leave this analysis for future work.

Allowing for stochastic variation in uninformed trading volume (i.e.,
stochastic ν) provides a natural, empirically relevant channel through which
the value of becoming informed and entering the market evolves over time. For
instance, Collin-Dufresne and Fos (2015) show that activist investors, who are
plausibly informed, time their trades during periods of high liquidity. Intuitively,
conducting research and trading on acquired information is more attractive
when there is more trading by liquidity or sentiment traders, which improves
market liquidity. We expect similar trade-offs to arise in other settings with
a directly time-varying value of private information, for example, in which
the asset value V has (publicly observable) stochastic volatility. It is also
straightforward to generalize to a general continuous process for νt , but at
the expense of closed-form solutions to the optimal research problem in most
cases.

Because the trader begins without an informational advantage and without
any additional motives for trade, her expected profit from following any trading
strategy before information arrival is zero. Hence, without loss, we assume
that she refrains from trading prior to receiving information.17 Moreover,
in our setting, it is optimal for the trader to begin trading immediately on
information arrival instead of waiting to enter the financial market.18 These
features help maintain tractability and allow us to cleanly study the interaction
between research dynamics and market outcomes. In practice, investors,
especially sophisticated institutions, might trade before acquiring information
(e.g., to provide liquidity, make markets, hedge existing positions) or not
trade after acquiring information (e.g., to time their trading around scheduled
announcements) for many reasons. An analysis of how these forces interact with
the incentives to conduct research, though interesting, are beyond the scope of
the current paper and left for future work.

We assume that the strategic trader’s entry decision is detected by the
market maker. This is motivated by theoretical and empirical considerations.
First, as Banerjee and Breon-Drish (2020) show in a related setting with

17 No trade would be strictly optimal if trading involved even an arbitrarily small trading cost, either explicit or
implicit, prior to information arrival.

18 Immediate trading is a result in our model since there is no benefit to waiting to trade after information is acquired,
but there is a cost: the trading opportunity disappears if the information is publicly disclosed.
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dynamic information acquisition, when there is a fixed component to the
cost of information acquisition, there does not exist an equilibrium when
entry is not observable by the market maker. Intuitively, in this case,
the strategic trader can always deviate from any conjectured equilibrium
strategy by either preemptively entering or delaying entry. Second, in
practice, entry by large investors into new markets is publicly scrutinized
by the financial media. The addition of star traders, portfolio managers, and
executives also garners significant media attention. Even if not covered by the
popular press, participation by large traders is often known to other market
participants.19 Third, many institutional investors are subject to regulatory
reporting requirements, and disclosures about trading positions and capital
adequacy can provide (potentially noisy) information about trading activity.
Finally, it is worth noting that if given the choice, a trader might prefer to
strategically disclose the extent of her informational advantage and the timing of
her entry. For instance, Xiong and Yang (2020) show that in a setting with static
information acquisition and immediate entry, a strategic trader may prefer to
publicly disclose the precision of her private signal (which they refer to as “overt
acquisition”) rather than keeping this choice private (“secret acquisition”).

Finally, for expositional clarity, we assume that the strategic trader does not
explicitly discount future profits. First, this facilitates direct comparison of our
results with those of benchmark Kyle-style models, which do not typically
feature discounting. Second, one can show that in a setting in which the trader
maximizes discounted expected trading profits with explicit subjective discount
rate δ≥0, the structure of the equilibrium (specifically, Propositions 1 and 2) is
identical and simply replaces the implicit discount rate r with the sum of implicit
and explicit rates, r̂ ≡r +δ. The remaining formal results on research dynamics,
price informativeness, and liquidity that we present are also straightforward
extensions, and yield qualitatively similar implications.20

3. Equilibrium

In this section we construct an overall equilibrium of the model by working
backward. In Section 3.1, we characterize the financial market equilibrium
given an entry time τ . In 3.2, we solve for the benchmark static research problem
in which the trader commits whether or not to conduct research at time t =0.
Finally, in Section 3.3, we characterize the optimal, dynamic research strategy
of the trader.

19 For instance, major broker-dealers that provide block trading services (or “upstairs trading desks”) directly
observe trading demand from institutional investors, and so can detect “entry” or increased participation.
Similarly, prime brokers observe the cash and securities positions of their clients, and counterparties in
over-the-counter (OTC) derivative transactions disclose their interests to each other through ISDA agreements.

20 Details are available on request.
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3.1 Preliminary analysis
In the following result, we characterize the financial market equilibrium,
conditional on an arbitrary acquisition time.

Proposition 1. Fix an information arrival time τ ∈T and for t ≥τ let Gt =
e−2r(t−τ )

2(r−μν ) ν2
t . As long as μν <r , there exists a post-entry equilibrium (i.e., for

t ∈ [τ,T )) in which the price of the risky asset follows dPt =λtdYt and optimal

trading rate follows dXt =θtdt =βt

(
V̂ −Pt

)
dt , where

λt =e−r(t−τ )

√
�t

Gt

=e−(r−μν )(t−τ )

√
2(r−μν)�0

ν2
t

, βt =
λtν

2
t

�t

(8)

the market maker’s conditional variance of the trader’s valuation �t ≡
var
(
V̂ |FP

t

)
is given by

�t =e
−∫ t

τ e−2r(s−τ ) ν2
s

Gs
ds

�0 =e−2(r−μν )(t−τ )�0, (9)

and the trader’s value function is given by

J
(
V̂ ,Pt ,�t ,λt

)
=

1

2λt

((
V̂ −Pt

)2
+�t

)
. (10)

The unconditional, gross expected trading profit from becoming informed at
any time t prior to information arrival is

J̄ (·)≡E

[
J
(
V̂ ,Pt ,�0,λτ

)∣∣FP
t

]
=

√
�0

2(r−μν)
νt . (11)

A few comments about the result are in order. First, the restriction μν <r is
required to guarantee the existence of equilibrium. If it did not hold, the expected
growth in noise trading would cause the trader to optimally refrain from trading
to wait for a noisier market in the future. In such an equilibrium, the market
maker would optimally set price impact to zero, since she does not face any
informed trading. However, this cannot be an equilibrium, since the informed
trader could profitably deviate from her prescribed strategy and trade against
the unresponsive pricing rule.

Second, conditional on the information arrival time, r and μν enter the
financial market equilibrium only through r−μν . Intuitively, this is because in
the trading game, changes in r and μν both effectively change the trader’s
degree of patience with respect to her trading activity. For instance, when
r increases, the trader becomes less patient because she is more concerned
about being preempted by the public announcement before she can trade a
sufficient quantity, and her expected profit decreases. When μν increases, the
trader becomes more patient because all else equal she desires to time her trades
to times of high noise trading activity, and her expected profit increases.
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Third, both price impact λt and trading aggressiveness βt take intuitive
forms. The price impact is higher (trading aggressiveness lower) if the trader’s
informational advantage is stronger (i.e., �t is higher) or there is less noise trade
(i.e., νt is lower). Fourth, if the public announcement never arrives, T =∞, all of
the trader’s information is incorporated into the price in the limit, that is, �t →0
as t →∞. Finally, the expected gross trading profits conditional on information
arrival, J , drives the trader’s research activity. The above result highlights that
the value of observing the signal S increases with its informativeness (i.e.,
�), uninformed trading volume (i.e., νt ), the drift in trading volume (i.e., μν)
and decreases in the frequency of public disclosure (i.e., r) which captures the
expected duration of the trader’s information advantage.

3.2 Benchmark: Static information choice
As a benchmark for comparison, we first characterize the optimal information
acquisition choice when it is a one-shot, static decision. Specifically, suppose
the strategic trader chooses whether or not to pay a fixed cost C to immediately
acquire signal S at time zero. The following result characterizes the optimal
acquisition strategy in this case.

Corollary 1. (Static Information Acquisition) Suppose the investor chooses
whether to pay a fixed, lump cost C to immediately acquire signal S at date
zero. Then, she chooses to acquire information if and only if ν0 ≥νS , where

νS =C

√
2(r−μν)

�0
. (12)

The optimal acquisition boundary νS increases in C and r , decreases in μν and
�0, and is invariant to σν .

The above result is intuitive and follows immediately from comparing the
expected benefit of acquiring information in Equation (11) at time zero to the
cost C. The trader acquires information only when uninformed trading volume
is sufficiently high, and the acquisition threshold νS increases in the cost C and
the disclosure rate r , but decreases in the trader’s informational advantage �0

and the drift of trading volume μν . Intuitively, the optimal strategy is analogous
to following the NPV rule - only acquire information if the expected value of
being informed is higher than the expected cost.

The volatility of trading volume σν has no affect on static information
acquisition. Because increases in σν symmetrically increase the likelihood of
high and low noise trade activity, it does not affect the expected trading profit,
and therefore does not affect the trader’s acquisition decision. As we will see,
this contrasts with our dynamic setting, in which the volatility of trading volume
plays an important role in the value of conducting research.

Moreover, note also that with static acquisition, increasing the rate of public
disclosures r reduces the ability of the trader to exploit his informational
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advantage because the (expected) trading horizon is shorter and therefore tends
to discourage information acquisition. This is consistent with the standard
intuition from models with static information acquisition, where more public
disclosure “crowds out” private learning by investors. As we show below, this
monotonic relation between information acquisition and trading horizon does
not hold when the trader can choose the timing of her research activity.

3.3 Optimal research strategy
In this section, we characterize the optimal research strategy of the trader. The
trader’s research intensity problem is:

JU ≡sup
{ζs }

Et

[
1{τ<T }J̄ (ντ )−

∫ min{τ,T }

t

C (ζs)ds

]
. (13)

That is, the trader dynamically optimizes her research intensity, ζt , to maximize
the expected gross trading profit, which she enjoys if and only if information
arrives before the payoff is revealed, τ <T . However, she also pays a flow
research cost C(ζ ), which depends on the chosen intensity, up to the point
that information arrives or the payoff is revealed, whichever comes first. The
corresponding HJB equation, which is the PDE that characterizes the trader’s
value function JU conditional on still being uninformed (i.e., on not yet having
observed a signal nor the payoff being revealed), is given by

0=sup
ζ≥0

r
(
0−JU

)
+ζ
(
J̄ −JU

)−C (ζ )+DJ. (14)

where DJ =μννJν + 1
2σ 2

ν ν2Jνν is the generator of the ν process, applied to the
function J . Conditional on not being informed, over the next instant, either
the trader’s value becomes zero with probability rdt (if the value is publicly
disclosed) or she acquires information with probability ζdt if she is currently
conducting research (i.e., if ζ >0) by paying flow cost C (ζ )dt .

In principle, given a cost specification, one proceeds by jointly characterizing
(a) the optimal choice ζ ∗ and (b) the uninformed trader’s value function JU .
For instance, if we assume C (·) is strictly increasing, strictly convex, twice
continuously differentiable and has C (0)=C ′ (0)=0, then we can characterize
the optimal intensity ζ ∗ using the first-order condition:

C ′(ζ ∗
t

)
=
(
J̄ −JU

)
. (15)

Since C (·) is strictly convex, we can define the inverse cost f (·)=
[
C ′]−1

(·).
Then, plugging into the HJB equation above yields

0=r
(
0−JU

)
+f
(
J̄ −JU

)(
J̄ −JU

)−c
(
f
(
J̄ −JU

))
+DJ, (16)

which is a partial differential equation that characterizes JU .
Unfortunately, an analytical solution for JU (·) is not available for arbitrary

cost specifications. For tractability, we focus on the special case of a
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proportional cost of research. Specifically, suppose the trader can choose
research intensity ζ ∈[0,ζ̄

]
at a flow cost C (ζ )dt =cζdt , where c>0 is the

cost of each unit of intensity.21 In this case, we show that the optimal research
strategy takes a particularly transparent, intuitive form. The trader engages in
research if and only if trading volume exceeds a threshold ν∗, as characterized
by the next result.

Proposition 2. (Optimal research intensity) Suppose that the investor chooses
research intensity ζ ∈[0,ζ̄

]
at a flow cost C (ζ )dt =cζdt . Then, the optimal

research strategy is characterized by a threshold: the trader engages in research
at rate ζ if and only if uninformed trading volume νt ≥ν∗ and does not engage
in research otherwise, where

ν∗ =
β1

β1 −1

β2

β2 −1

r + ζ̄ −μν

r + ζ̄
c

√
2(r−μν)

�0
, (17)

β1 =
1

2
− μν

σ 2
ν

+

√(
1

2
− μν

σ 2
ν

)2

+
2r

σ 2
ν

, and (18)

β2 =
1

2
− μν

σ 2
ν

−
√(

1

2
− μν

σ 2
ν

)2

+
2
(
r + ζ̄

)
σ 2

ν

. (19)

The optimal threshold ν∗ is increasing in c, ζ̄ , σν , and μν , decreasing in �,
and U shaped in r . Moreover, trader’s value function, prior to the arrival of the
signal, is given by

JU (νt )=

⎧⎨⎩
cζ̄β2

(β1−1)(β2−β1)(r+ζ̄)
(

νt

ν∗
)β1 when νt <ν∗

cζ̄β1
(β2−1)(β2−β1)(r+ζ̄)

(
νt

ν∗
)β2 + ζ̄ νt

r−μν+ζ̄

√
�0

2(r−μν ) − cζ̄

r+ζ̄
when νt ≥ν∗ .

(20)

The optimal threshold ν∗ reflects the two sources of optionality embedded
in research: (1) the option to delay and (2) the option to abandon. To gain
some intuition, it is useful to compare the expression for ν∗ to the threshold for
static information acquisition νS and to the threshold for a hypothetical, infinite
intensity research technology (i.e., the threshold as ζ̄ →∞) under which the
signal arrives with probability one the instant that the trader engages in research.

The static information acquisition threshold νS =C
√

2(r−μν )
�0

, characterized

in Corollary 1, reflects the fact that the trader has neither the ability to delay
research nor the ability to abandon it, once started. Specifically, this is the

21 One could also interpret this as a first-order approximation to more flexible cost functions that are well-behaved,
as earlier described. Due to the linear cost function, our equilibrium is also isomorphic to one that would arise
in a model with a single available research intensity ζ .
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threshold that the trader would optimally choose when she must make a one-shot
decision to immediately acquire or never acquire information. Next, consider
the threshold that the trader would optimally choose if she had access to a
dynamic research technology with infinite intensity. In this case, the trader
has the option to delay conducting research, but when she chooses to do so,
information arrives immediately with probability one, with no opportunity to
abandon or reverse the research decision. The following corollary characterizes
the optimal threshold for such dynamic information acquisition.

Corollary 2. Suppose the investor can pay a fixed, lump cost C to
immediately acquire signal S at a time of her choosing. Then, the optimal
information acquisition strategy is characterized by a threshold: the trader
acquires information if and only if uninformed trading volume νt ≥ν∗∞, where

ν∗
∞ =

β1

β1 −1
C

√
2(r−μν)

�0
, and β1 =

1

2
− μν

σ 2
ν

+

√(
1

2
− μν

σ 2
ν

)2

+
2r

σ 2
ν

. (21)

The optimal threshold ν∗∞ is increasing in C, σν , and μν , decreasing in �, and
U shaped in r .

The “infinite intensity” dynamic acquisition threshold can be written as ν∗∞ =
β1

β1−1νS , which differs from the static acquisition threshold νS by a coefficient
β1

β1−1 >1. The coefficient reflects the trade-off embedded in the option to delay:
at any moment, the trader can acquire information now and begin exploiting her
informational advantage, or wait until the value of information increases (when
νt increases). The value of this option to wait leads to an optimal acquisition
threshold that is higher than in the case of static acquisition (i.e., ν∗∞ >νS): the
higher threshold reflects not only the expected value of acquiring information
(as in the “NPV” decision rule) but also the additional real option value of being
able to wait and acquire at a later date. Intuitively, the trader optimally waits past
the threshold at which the “naive” expected value of being informed is equal
to the explicit cost of information because acquiring information involves the
additional opportunity cost of giving up the option to wait longer. Naturally, she
waits until the “all in” expected payoff, accounting for this opportunity cost, is
weakly positive.

The value of the option to wait, and therefore the threshold, increases with
both the drift μν and volatility σν of uninformed trading volume. These results
are intuitive. A higher drift μν implies future trading volume is likely to be
higher, which increases the option value of waiting. A higher μν also increases
the expected trading profit, conditional on information arrival, which tends to
reduce the threshold, but this effect is dominated by the option value effect
for the range of values considered in the plot.22 Similarly, a higher volatility

22 In general, the dependence of the threshold on μν can be nonmonotonic (U shaped).

926

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/35/2/908/6171164 by U

niversity of C
alifornia, San D

iego Library user on 22 January 2022



[07:51 18/12/2021 RFS-OP-REVF210031.tex] Page: 927 908–961

Dynamics of Research and Strategic Trading

σν of trading volume makes the option to wait more valuable. These results
stand in contrast to the static benchmark, in which there is no optionality
in the information acquisition decision, and therefore the optimal acquisition
threshold (i.e., νS) decreases with the drift and does not depend on the volatility
of trading volume.

The optimal threshold with dynamic information acquisition is nonmono-
tonic in the frequency of public disclosure r . This is in contrast to the static
acquisition case, where the marginal effect of increasing the frequency of
public disclosure is to reduce the expected duration of the trader’s information
advantage and, consequently, increase the acquisition threshold. We refer to this
as the “trading horizon” effect. An additional, novel effect of changes in public
disclosure emerges with dynamic acquisition. Intuitively, the marginal effect
of a higher disclosure frequency (higher r) is to increase the cost of waiting to
engage in research because it increases the likelihood that the information is
publicly revealed before the investor has a chance to acquire and trade on it. This
effect tends to push the acquisition threshold downward because it incentivizes
the trader to conduct research sooner. We refer to this as the “impatience” effect.

The shape of the overall relation between disclosure frequency and optimal
research threshold depends on the relative magnitudes of these two marginal
effects. When the disclosure frequency is very low, the “impatience” effect
dominates: an increase in r leads to a decrease in the threshold because the
value of waiting grows more rapidly than the conditional expected trading
profits shrink. However, when the disclosure frequency is sufficiently high,
the “trading horizon” effect dominates and further increases in r increase the
threshold.

Note that while the optimal trading strategy (and equilibrium price) and
the expected profit in the event of successful research depend on r−μν (see
Proposition 1), the impact of r and μν for the optimal research threshold ν∗∞ and
the value function JU is slightly richer but qualitatively similar. Specifically,

holding the expected profit conditional on information arrival (i.e.,
√

�0
2(r−μν ) )

fixed, changes in r and μν affect the trader’s dynamic incentives to engage
in research because they effectively change the trader’s patience. Intuitively,
higher frequency of disclosures makes the trader less patient (since the public
disclosure is more likely to arrive over the next instant), but a higher drift
in noise trading volume μν makes the trader more patient (since information
becomes more valuable when there is more noise trading).

The “infinite intensity” threshold ν∗∞ reflects the effect of the option to delay,
relative to the static benchmark. The general research technology we consider
embeds an additional option to abandon: if the trader has engaged in research
but it has not been successful (i.e., the signal has not yet arrived), she can always
choose to stop conducting research at any point in time. The option to abandon
reduces the expected cost of initiating research and, consequently, lowers the
optimal threshold. That is, knowing that she can walk away from research at
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any time, the trader’s incentive to wait is lower than in the infinite intensity
case.

To see why, note that the expected total cost of conducting research (at the
time the trader first initiates research τR) is equal to23

E

[∫ min{τ,T }

τR

cζ̄1{νs≥ν∗}ds

∣∣∣∣ντR =ν∗
]

=
β2

β2 −β1

cζ̄

r + ζ̄
. (22)

That is, the trader pays flow cost cζ̄ at any time s that she conducts research
νs >ν∗, as long as information has not yet arrived and the asset value has
not been disclosed, s <min{τI ,T }. Here, cζ̄

r+ζ̄
is the total expected flow cost of

conducting research without the option to abandon (i.e., if the trader would have
to pay a flow cost of cζ̄ dt at all times after initiating research until it was either
successful or the value was publicly realized). The coefficient 0<

β2
β2−β1

<1

reflects the effect of the option to abandon.24 Intuitively, the expected total cost
of starting research is lower because the trader can choose to stop conducting
research at a time of her choosing.

Finally, note that as the research intensity becomes arbitrarily large, the total
expected cost of research is

lim
ζ̄→∞

β2

β2 −β1

cζ̄

r + ζ̄
=c, (23)

and the optimal research threshold approaches the “infinite intensity” one from
below, that is,

lim
ζ̄→∞

ν∗ (c)=
β1

β1 −1
c

√
2(r−μν)

�0
=ν∗

∞ (c). (24)

This implies that the “infinite intensity” technology of Corollary 2 is the limit
of the general research technology as we make the research intensity arbitrarily
high, but keep fixed the per unit flow cost, c, of research intensity. The above
also implies that for any finite intensity research technology with identical per-
unit flow cost, the additional option to abandon lowers the optimal research
threshold, that is,

ν∗(c)=
β2

β2 −1

r + ζ̄ −μν

r + ζ̄
ν∗

∞(c)≤ν∗
∞(c). (25)

23 This expression follows from Proposition 4 below.

24 More precisely, it reflects the option to abandon and then restart research at any point in time. If the abandon
decision was irreversible (i.e., if we do not allow the trader to resume research if she has abandoned it once),

then the multiplier would instead be
β2

β2−1 , which, naturally, is smaller as the expected cost is lower if she can

never reinitiate research.
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(a) (b)

Figure 2

Total expected cost of research β2
β2−β1

cζ̄

r+ζ̄
and dynamic research threshold ν∗ as a function of maximum

intensity ζ

This figure plots the expected total cost of research
β2

β2−β1
cζ̄

r+ζ̄
and the dynamic research threshold ν∗ as a

function of the maximum research intensity ζ . Unless specified, other parameters are set to μ=0.05, �0 =1,
c=C =1, r =0.2, and σν =0.1.

The extent to which ν∗(c) is lower than ν∗∞(c) is driven by the maximal research
intensity ζ̄ : as research intensity is higher, ν∗(c) increases and approaches
ν∗∞(c). At first glance, it may appear surprising that when the trader has a
more effective research technology, she actually waits for more extreme noise
trading before engaging in research. However, the intuition follows directly
from the discussion above. When ζ increases the option to abandon becomes
less valuable. That is, as ζ increases, in the event that the trader initiates research,
it becomes more likely that information will arrive before she has a chance to
abandon. Figure 2 plots the threshold ν∗ as a function of the maximum intensity
ζ for various values of the disclosure frequency r .

Figure 3 illustrates the various thresholds and how they depend on some of the
underlying parameters. Specifically, the left panels plot the static information
acquisition threshold νS as a function of the drift μν and volatility σν of
uninformed trading volume, and the frequency of public disclosure r , whereas
the right panels plot the corresponding dynamic information acquisition
threshold ν∗∞ and the dynamic research thresholds ν∗ for various values of
research intensity (ζ̄ ∈{0.25,1,4}). Consistent with Lemma 1, the optimal static
acquisition threshold is decreasing in μν , independent of σν , and increasing in
r . In contrast, allowing for dynamic information acquisition implies that the
acquisition threshold is increasing in μν , increasing in σν and U shaped in
r , as established in Theorem 2 and Corollary 2. As discussed above, these
qualitative differences arise because of the dynamic nature of the information
acquisition and research decisions and reflect the effect of the trader’s ability
to delay acquiring research. Finally, note that the threshold is increasing in the
research intensity parameter ζ̄ , which reflects the effect of the secondary option
embedded in research, namely, the trader’s ability to abandon at a time of her
choosing.
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(a) (b)

(c) (d)

(e) (f)

Figure 3
Optimal static acquisition threshold, νS , and dynamic research threshold, ν∗
The figure plots the optimal, static acquisition threshold νS and the optimal, dynamic research threshold ν∗ as a
function of public disclosure frequency (i.e., r), and the drift (i.e., μν ) and volatility (i.e., σν ) of trading volume.
Unless specified, other parameters are set to μ=0.05, �0 =1, c=C =1, r =0.2, and σν =0.1.

4. Dynamics of Research

In this section, we characterize the dynamics of research and information arrival.
In the first subsection, we begin by studying the properties of the time that
the trader first engages in research, and show that if the initial level of noise
trading is sufficiently low, there is positive probability that she never engages
in research. In Section 4.2, we study the expected total amount of time that the
trader devotes to research, and establish novel predictions that are not easily
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captured by standard models of static acquisition. Finally, Section 4.3 properties
of the information arrival time (i.e., the time that research is successful, if
ever) and the likelihood that the trader ever becomes informed, and Section ??
outlines some testable implications of the model and highlights connections to
the empirical literature on research and informed trading.

4.1 Time to first research
We begin with a characterization of τR , which is the first time that the trader
initiates research.

Proposition 3. Let τR =inf {t ∈ [0,T ) :νt ≥ν∗} be the first time that the trader
initiates research, with τR =∞ denoting no research. Supposing that ν0 <ν∗ so
that the trader does not begin research immediately, the probability density of
τR is

P(τR ∈dt)=e−rt log(ν∗/ν0)

σν

√
2πt3

exp

{
− 1

2t

(
log(ν∗/ν0)−(μν − 1

2σ 2
ν

)
t
)2

σ 2
ν

}
. (26)

For any initial trading volume ν0, the probability that the trader ever engages
in research is

P(τR <∞)=

{(
ν0
ν∗
)β1 0≤ν0 <ν∗

1 ν0 ≥ν∗ . (27)

In standard, static models of information acquisition, the trader engages in
research with probability one or zero. In contrast, unless initial trading volume
is sufficiently high to trigger immediate investment in research (i.e., ν0 ≥ν∗),
the trader engages in research with a probability that is strictly between zero and
one in our dynamic setting. We illustrate the implications of the above result in
Figure 4, which plots the probability that the trader ever conducts research as a
function of underlying parameters. Panel A plots the probability as a function
of the initial level of noise trading ν0 for different values of maximal research
intensity ζ̄ , while panel B plots the probability as a function of disclosure
frequency r .

Panel A shows that the likelihood of initiating research increases with initial
trading volume ν0. This is intuitive: the higher is ν0 , the more likely noise
trade is to reach the research threshold ν∗. Panel B shows that the probability
of initiating research is hump shaped in r . The research probability inherits the
nonmonotonicity of the research threshold ν∗ because of the “trading horizon”
and “impatience” effects. For low disclosure frequencies, the impatience effect
dominates and increases in r increase the probability that the trader conducts
research, while for high values of r , the trading horizon effect dominates
and further increases in r reduce the probability that she conducts research.
These results stand in contrast to those from a static model, in which only
the trading horizon effect operates, and increases in disclosure frequency r
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(a) (b)

(c) (d)

Figure 4
Probability that the trader conducts research, P(τR <∞)
The figure plots the unconditional probability that the trader ever conducts research as a function of initial noise
trading (i.e., ν0), public disclosure frequency (i.e., r) and maximum research intensity (i.e., ζ ). Unless specified,
other parameters are set to μν =0.05, �0 =1, c=C =1, r =0.2, ζ =1, and σν =0.1.

always weakly decrease the probability of information acquisition. Intuitively,
this is the “crowding out” effect of public information on private information
acquisition and research.

Panels C and D plot the likelihood of research as a function of the volatility
of uninformed trading volume, σν , for both low and high costs of research.
There are two effects of increasing σν . First, it increases the threshold ν∗, as
discussed above, which tends to reduce the likelihood of conducting research.
We refer to this as a “threshold” effect. However, when the volatility of νt

increases, it increases the likelihood that trading volume hits any given level,
which tends to increase the likelihood of research. We refer to this as the
“volatility” effect. As can be seen in panel C, for sufficiently low cost, the
volatility effect dominates, which generates an unambiguously negative relation
between σν and the probability of research. However, for sufficiently high cost,
the threshold effect dominates for low σν and the volatility effect dominates
for high σν , which generates a hump-shaped relation with the likelihood of
research.25 These patterns are in sharp contrast to research in a static setting,
where neither effect is present, and information acquisition does not depend on
the volatility of trading volume.

25 A similar tension between the “threshold” and “drift” effects arises when one studies changes in the drift, μν , of
trading volume.

932

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article/35/2/908/6171164 by U

niversity of C
alifornia, San D

iego Library user on 22 January 2022



[07:51 18/12/2021 RFS-OP-REVF210031.tex] Page: 933 908–961

Dynamics of Research and Strategic Trading

Finally, note that all four panels imply that, holding other parameters fixed,
higher research intensity can decrease the likelihood of engaging in research.
This follows from the behavior of the research threshold ν∗ as a function of
ζ : increases in ζ increase the threshold, which decreases the probability that
noise trade ever hits the threshold and triggers research activity. Note that these
implications are distinctive consequence of the dynamic nature of research.

4.2 Expected time conducting research
Next, we study the amount of time that the trader expects to devote to

research. Define R(ν)=E

[∫ min{τ,T }
t

1{νs≥ν∗}ds |νt =ν
]

as expected amount of

time devoted to research from time t onward. Because of time stationarity, this
quantity does not explicitly depend on t , only the value of νt . The following
Proposition characterizes the function R as a function of the current level of
uninformed trading volume.

Proposition 4. Suppose that information has not yet arrived and the asset
value has not yet been revealed, t <min{τ,T }. Then, the expected amount of
time devoted to research from time-t onward is

R(ν)=

{
β2

β2−β1

1
r+ζ

(
ν
ν∗
)β1 0≤ν <ν∗

1
r+ζ

− β1
β1−β2

1
r+ζ

(
ν
ν∗
)β2 ν ≥ν∗ (28)

We can relate the unconditional expected research time to the probability of
conducting research by writing

R(ν0)=P(τR <∞)E

[∫ min{τ,T }

t

1{νs≥ν∗}ds |τR <∞
]

=P(τR <∞)×
⎧⎨⎩

1
r+ζ

β2
β2−β1

0≤ν0 <ν∗

1
r+ζ

(
1− β1

β1−β2

(
ν
ν∗
)β2
)

ν0 ≥ν∗ .

Hence, the expected time devoted to research is the product of the probability of
research and the expected time devoted to research conditional on conducting
research. Figure 5 illustrates the unconditional expected time devoted to
research as a function of key underlying parameters. Not surprisingly, the
effects of parameters on the expected time in research closely track those on the
likelihood of initiating research. Specifically, as the plots suggest, the expected
time in research is increasing in the initial uninformed trading volume ν0, hump
shaped in disclosure frequency r , and decreasing in the quality of research
technology as measured by the maximal research intensity ζ̄ .

The implications for disclosure frequency and research intensity are
distinctive implications of the dynamic nature of research. If the investor were
restricted to make a one-shot, “research or not” decision at the beginning
and forced to commit to conducting research until acquiring information, we
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(a) (b)

Figure 5

Expected time devoted to research, R(ν0)=E

[∫ min{τ,T}
0 1{νs≥ν∗}ds |ν0

]

The figure plots the unconditional expected time devoted to research as a function of initial trading volume
(i.e., ν0), public disclosure frequency (i.e., r) and maximum research intensity (i.e., ζ ). Unless specified, other
parameters are set to μ=0.05, �0 =1, c=C =1, r =0.2, ζ =1 and σν =0.1.

would expect that expected time conducting research would be (a) decreasing
in disclosure frequency and (b) decreasing in the maximal research intensity ζ̄ .
These results highlight the importance of accounting for the dual optionality
embedded in the research decision.

4.3 Time to information arrival
We now characterize properties of the information arrival time τ in the following
Proposition.

Proposition 5. The unconditional probability that the trader ever receives
information is

P(τ <∞)=

⎧⎨⎩
ζ

r+ζ

β2
β2−β1

(
ν0
ν∗
)β1 0≤ν0 <ν∗

ζ

r+ζ

(
1− β1

β1−β2

(
ν0
ν∗
)β2
)

ν0 ≥ν∗ (29)

Figure 6 illustrates the unconditional probability that information arrives.
Information arrival is driven by two effects: the probability that the trader
engages in research, and the probability that the trader receives information,
conditional on ever engaging in research

P(τ <∞)=P(τR <∞)P(τ <∞|τR <∞) (30)

=P(τR <∞)×
⎧⎨⎩

ζ

r+ζ

β2
β2−β1

0≤ν0 <ν∗

ζ

r+ζ

(
1− β1

β1−β2

(
ν0
ν∗
)β2
)

ν0 ≥ν∗ . (31)

Hence, the effects of parameter changes on the probability of information arrival
are partially driven by the research probability, illustrated in Figure 4 above.
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(a) (b)

(c) (d)

Figure 6
Probability that trader receives information, P(τ <∞)
The figure plots the unconditional probability that the trader ever receives information as a function of initial
trading volume (i.e., ν0), public disclosure frequency (i.e., r), and maximum research intensity (i.e., ζ ). Unless
specified, other parameters are set to μ=0.05, �0 =1, c=C =1, r =0.2, ζ =1, and σν =0.1.

Differences in behavior from the probability of engaging in research are driven
by the conditional probability of information arrival P(τ <∞|τR <∞).

Panel A plots the effect of changing the initial trading volume ν0. In this case,
the conditional probability of information arrival, given research, operates in
the same direction (weakly) as the probability of research. If the trader is not
initially engaged in research (i.e., ν0 <ν∗), then the only effect of increasing ν0 is
to increase the probability that she ever conducts research, and the information
arrival probability is increasing in ν0. As ν0 increases above ν∗, the probability
of ever conducting research is one, but the probability of remaining in the
research region, and therefore of information arrival, strictly increases. The
overall effect is an unambiguous positive relation between ν0 and the probability
of information arrival.

Panel B plots the probability of information arrival as a function of the
disclosure frequency r . In all cases, the probability is hump shaped, an effect
that is driven by the hump shape of the probability of ever conducting research.
Indeed, one can demonstrate that the conditional probability of information
arrival P(τ <∞|τR <∞) decreases in r in all cases. Intuitively, conditional
on conducting research, an increase in disclosure frequency increases the
probability that the payoff information will be publicly revealed before the
trader’s research activity bears fruit. However, the hump-shaped relation
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between research probability and disclosure frequency dominates, and the
information arrival probability is also hump shaped.

Panels C and D plot the probability of information arrival as a function of
the volatility of trading volume σν . These effects are largely inherited from
the effects of σν on the probability of research; however, there is an additional
effect that, conditional on conducting research, more volatile trading volume
tends to make it more likely that νt will drop below the research threshold at
times, which tends to reduce the probability of information arrival. Similarly to
how σν affects the probability of research in Figure 4, for sufficiently low cost,
there is an unambiguously negative relation between σν and the probability of
information arrival. However, for sufficiently high cost, the fact that that highly
volatile volume makes it more likely that the trader will abandon research can
lead to a negative relation, even though the analogous relation between research
activity and σν was hump shaped.

Finally, note that across the panels, the probability of information arrival
increases with the maximum research intensity ζ . This is in sharp contrast to
the earlier results, which implied that the likelihood of initiating research (and
the expected time conducting research) were decreasing in ζ̄ . Intuitively, the
result is driven by the fact that conditional on conducting research, a higher
research intensity increases the probability that information arrives. This effect
is sufficiently strong to overcome the fact that the probability of conducting
research P(τR <∞) is decreasing, as illustrated in Figure 4.

Combined with the observations from the previous sections, this implies
that higher likelihood of research initiations and higher average time in
research do not necessarily correspond to higher likelihood of information
acquisition or informed trading. As we discuss next, this has potentially
important implications for how we interpret existing evidence and suggests
novel testable hypotheses.

4.4 Empirical predictions
Empirically testing our model predictions is challenging because it may
be difficult for an econometrician to measure research by traders or
detect market entry, even when these are detectable by other market
participants.26 A growing empirical literature suggests that one may be able
to directly proxy for research activity using search activity or downloads
of regulatory filings, for example, Bloomberg queries (Ben-Rephael, Da,
and Israelsen 2017), online requests to the EDGAR system (e.g., DeHaan,
Shevlin, and Thornock 2015; Loughran and McDonald 2017), and even
Google or Yahoo Finance searches (e.g., Da, Engelberg, and Gao 2011;

26 Importantly, note that our model and, consequently, the implications we will discuss below, presume only that
other market participants can detect entry/increased participation by large investors, not necessarily that outside
econometricians can do so. Our model makes no assumptions at all about the detectability of research activity. As
we discussed in Section 2.1, market participants can often detect entry or increased participation by others (e.g.,
market makers, prime brokers, and OTC counterparties observe trading demand from institutional investors).
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Drake, Roulstone, and Thornock 2012; Lawrence, Ryans, and Sun 2017). To
the extent that increased demand for such public information is accompanied
by private research activity (or essentially represents private information
generation via more effective processing/interpretation of public releases),
these measures provide a noisy proxy for research activity. Other, less
directly visible research activity could include FOIA requests for regulatory
filings (Gargano, Rossi, and Wermers 2016); increased access to corporate
management through investor conferences (Bushee, Jung, and Miller 2011;
Bushee, Jung, and Miller 2017), private analyst/investor days (Kirk and
Markov 2016), or roadshows (Bushee, Gerakos, and Lee 2018); or even
easier access to headquarters locations through flight or high-speed rail
introductions (Ellis, Madureira, and Underwood 2020; Xu 2019). Finally, a
number of recent papers (e.g., Gargano and Rossi 2018; Fedyk 2017) are able to
directly link individual- investor-level proxies of news consumption to trading
behavior.

One could similarly use regulatory filings to proxy for the entry and
participation of large investors in the financial market. For instance, Schedule
13D filings can be used to identify trading by large investors who have acquired
more than 5% of any class of securities of a publicly traded company (e.g., as
in Collin-Dufresne and Fos 2015; Brav et al. 2008). Similarly, changes in the
panel of quarterly Schedule 13F filings (required for any institution with at
least $100 million under management) can be used to estimate large position
changes associated with information acquisition by large institutional investors
such as hedge funds (e.g., Griffin and Xu 2009; Agarwal et al. 2013), and
one can use Thomson and CRSP data to do the same for mutual funds (e.g.,
Wermers 2000). Further, by distinguishing between initiation of new positions
and changes in existing holdings, such filings allow one to, at least partially,
separate entry from changes in trading intensity.

Our model’s predictions about research activity and information arrival are
of one of two types. One category consists of predictions that are common to
existing, static models of information acquisition. For instance, the likelihood
and duration of research activity increases with uninformed trading volume
and prior uncertainty, and decreases with the cost of conducting research. This
implies research can be triggered by public news that increases uncertainty
about the payoff of the risky asset or induces more trading by retail or other
uninformed investors. Moreover, shocks that make research more costly, either
directly or indirectly, are likely to reduce the incidence and duration of research.
Given that much of the existing theoretical literature has focused on variants of
static information acquisition, existing empirical work has largely focused on
these types of predictions.

The other category of predictions is a consequence of dynamics and helps
distinguish our analysis from earlier work. First, depending on the relative cost
of research, the likelihood of research is either decreasing or hump shaped in
the volatility of trading volume, after controlling for the level of trading volume
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itself. This is a consequence of the trader’s ability to wait to acquire information,
and is absent from models of static information acquisition.

Second, sorting stocks on the frequency of (unscheduled) disclosures, should
reveal a nonmonotonic relation with research activity: stocks with the fewest
or the most disclosures per year should be associated with less research by
investors than those in the middle. This is in contrast to settings with static
acquisition, where a higher frequency of public disclosures should be associated
with less research activity. Standard models predict that when public disclosures
provide information about the same component of payoffs that traders can
learn about, more public disclosure “crowds out” information acquisition. Our
analysis characterizes conditions under which more frequent disclosures can
“crowd in” information acquisition by changing the dynamic incentives to
engage in research. Notably, this channel is distinct from the effect in settings in
which investors can learn about multiple components of payoffs (e.g., Goldstein
and Yang 2015; Banerjee, Davis, and Gondhi 2018; Goldstein and Yang 2019),
and in which more public disclosure along one dimension can endogenously can
“crowd in” information acquisition along another dimension. It is also different
from the observation that in some cases, public disclosures can increase (and
not decrease) uncertainty and, therefore trigger more research.27

Third, a particularly stark prediction of our model is that higher likelihood or
duration of research activity driven by changes in research technology (ζ ) need
not be associated with higher likelihood of informed trading. This is easily
seen by contrasting Figure 4 (or Figure 5) with Figure 6. This implication
helps us better understand the conflicting empirical results about the research
activities of mutual funds and hedge funds. For instance, Kacperczyk and Seru
(2007) suggest that for mutual funds, reliance on information from public
sources tends to be associated with low performance, while Crane, Crotty,
and Umar (2019) demonstrate the opposite is true for hedge funds. Our model
can help reconcile these findings if we assume that mutual funds access to
relatively less effective research technology (i.e., lower ζ̄ technology) relative
to hedge funds. In this case, the model predicts that while mutual funds should
be more likely to conduct research, it is less likely that their research will
succeed. Similarly, Drake et al. (2020) find that research by sophisticated
investors predicts future firm performance, but not research by less sophisticated
investors. Overall, our model suggests caution when using measures of research
activity to proxy for information acquisition. In a setting in which research takes
place dynamically and need not succeed, simply observing research activity
(e.g., EDGAR searches, Bloomberg queries) does not necessarily imply that
traders are better informed. However, research activity followed by evidence
of trading/information arrival does do so.

27 In some models, more information can increase uncertainty (e.g., Veronesi (1999)) about fundamentals, and
increased uncertainity could generate more information acquisition.
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5. Price Informativeness and Market Liquidity

In this section, we turn our attention to the consequences of dynamic research
for market quality, focusing on price informativeness and market liquidity.
These are important quantities of interest to regulators, who have the ability
to influence reporting frequency (i.e., r) and at least indirectly, the cost and
effectiveness of conducting research (i.e., c and ζ ) by altering disclosure rules.

We measure price informativeness by the fraction of total information that
the market has learned about the asset by date t

P It =
�0 −�t

�0
(32)

and liquidity by price impact λt . We study two properties of price informative-
ness and liquidity. First, we characterize the dynamic behavior of PIt and λt and
how it depends on underlying parameters. While these properties are econom-
ically intuitive, they may be difficult to identify empirically from a regulator’s
perspective. Hence, we also study a situation in which the regulator targets the
average or “typical” PI and λ for firms. These quantities are (arguably) easier
to measure and more consistent with policy decisions in practice, which are
typically “unconditional” and without reference to specific firms or specific
points in time. We characterize the behavior of these expected values, allowing
for the possibility (but not requiring) that the regulator discounts the future.

The following proposition characterizes the dynamic behavior of the market
quality variables over time.

Proposition 6. The evolution of price informativeness PIt is given by

dP It =

{
0 0≤ t <τ

�0
�0+Ω

(
1+2(r−μν)e−2(r−μν )(t−τ )

)
dt τ ≤ t <T

and the evolution of price impact λt is given by

dλt

λt

=

{
0 0≤ t <τ(
σ 2

ν −r
)
dt −σνdWνt τ ≤ t <T .

The proposition has a number of implications. First, price informativeness is
weakly increasing in time, and strictly increasing after the trader observes
information. This is intuitive, and reflects the fact that more information is
impounded into the price over time. Second, PIt increases at a decreasing
rate, which follows from the fact that a fixed amount of information can be
revealed, and the rate at which it does so becomes small once the market has
already learned a great deal. However, the rate of increase at each instant t may
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be hump shaped in disclosure frequency r . Specifically, while the frequency
of disclosure that maximizes the rate of increase in price informativeness is
intermediate, it depends on firm specifics (i.e., μν) and on calendar time t ,
which makes it difficult to target from a policy perspective.

Third, the price impact is stochastic, and its drift depends on the difference
between the variance of trading volume σ 2

ν and the disclosure frequency
r. An increase in noise trading volatility (σ 2

ν ↑) or a decrease in disclosure
frequency (r ↓) makes the trader more patient and creates an incentive to
trade less aggressively. To sustain equilibrium, the resultant price impact must
increase over time to give the trader an incentive to trade today.28 Moreover,
note that the drift in λ can either be positive or negative, depending on the
relative magnitude of r and σ 2

ν . This is similar to the setting in Banerjee
and Breon-Drish (2020), but in contrast to many existing models in the
literature.29 The model suggests that all else equal, more frequent disclosures
are associated with declining price impact over time.

Finally, it is interesting to note that, given the information arrival time τ , the
evolution of price informativeness or price impact do not depend on the cost of
conducting research. While a decrease in the cost c makes research more attrac-
tive, it does not affect the rate at which information is impounded into prices
once research is successful. As such, it may be difficult to evaluate the effec-
tiveness of policies that change the cost of information acquisition by studying
the impact on the dynamic behavior of price informativeness or price impact.

While the dynamics of price informativeness and price impact have econom-
ically intuitive interpretations, they may be difficult to target with policy and so
not practical from a regulatory perspective. Arguably, it may be more natural
to consider how the average values of these market quality variables respond
to underlying parameters, and hence changes in regulatory policy.30 With this
view in mind, suppose that the regulator applies a discount rate ρ ≥0 (the case
of no discounting, ρ =0 is allowed) to future PIt and λt . We are interested in
studying the average price informativeness and price impact, given by31

28 More precisely, this property of λ follows from “trade timing indifference,” a property of continuous-time Kyle
(1985) style frameworks that was first noted by Back (1992). That is, over any interval of time, the trader must
always be indifferent between following her prescribed equilibrium trading strategy or refraining from trading
over the interval and then following her prescribed strategy. Economically, timing indifference arises because,
to sustain equilibrium, there cannot be any predictability in the level or slope of the price function if the trader
refrains from trading. If there were, then she could deviate from her proposed equilibrium strategy by waiting
and then exploit such predictability.

29 For example, λ is constant in Kyle (1985), a martingale in Back (1992), a supermartingale in Back and Baruch
(2004), and a submartingale in Collin-Dufresne and Fos (2016).

30 This is also consistent with the treatment of market quality variables in one-shot models, in which the single
value of, for example, PI and/or λ is typically interpreted as capturing an average or typical value.

31 It may seem more natural to use market depth 1/λt as our liquidity measure. However, because depth is infinite
before the strategic trader enters the market, defining a summary measure of average or expected depth becomes
difficult.
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(a) (b)

(c) (d)

Figure 7
Expected discounted price informativeness, PI

The figure plots the discounted, expected price informativeness PI as a function of the initial trading volume
(i.e., ν0), public disclosure frequency (i.e., r), maximum research intensity (i.e., ζ ), and flow cost of research
(i.e., c). Unless specified, other parameters are set to μ=0.05, �0 =1, Ω =1/2, c=C =1, r =0.2, σν =0.1, and ρ =1.

PI =E

[
(r +ρ)

∫ T

0
e−ρsP Isds

]
, (33)

λ=E

[
(r +ρ)

∫ T

0
e−ρsλsds

]
. (34)

Note that the multiplicative r +ρ term in these expressions ensures that the
discount factors, both explicit (because of ρ) and implicit (because of r),
integrate to one so that these expressions behave as averages rather than

sums (e.g., for a constant k, we have E

[
(r +ρ)

∫ T

0 e−ρskds
]

=k). While both

expressions are available in closed form, they are rather complicated, so we
relegate the expressions to Proposition A.2 in the appendix and here focus on
the key economic forces.

Figure 7 illustrates how price informativeness varies with key parameters.
Note that we can decompose it into pre- and post-information arrival terms

PI =E

[
(r +ρ)

∫ min(τ,T )

0
e−ρsP Isds

]
+E

[
(r +ρ)

∫ T

min(τ,T )
e−ρsP Isds

]
, (35)
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=E

[
(r +ρ)e−ρmin(τ,T )

∫ T

min(τ,T )
e−ρ(s−min(τ,T ))PIsds

]
, (36)

where the first equality splits the integral at the information arrival time (or
the disclosure date, if it occurs first), and the second equality uses the fact
that price informativeness is zero prior to information arrival to set the first
term to zero and rearranges the discount factor in the second term. This
expression shows that two forces drive average price informativeness: (a) the
arrival of information and its timing, captured by the discount factor e−ρmin(τ,T ),
and (b) the average price informativeness between information arrival and
the disclosure date

∫ T

min(τ,T )e
−ρ(s−min(τ,T ))PIsds. Hence, (a) any change in

parameters that increases the likelihood or speed of information arrival tends to
increases the average price informativeness and (b) any change in parameters
that incentivizes the trader to trade more aggressively when she is informed, and
thereby speed up the incorporation of her information into prices, also tends
to increase average price informativeness. Intuitively, as the trader becomes
more impatient in either research or trading, price informativeness increases.
This is illustrated in Figure 7, which plots PI as a function of initial noise
trade, disclosure frequency, maximum research intensity, and the flow cost of
research. The effects of changes in these parameters is qualitatively similar
to their effects on the probability of information arrival (see, e.g., Figure 6
above).

Figure 8 illustrates how expected discounted price impact varies with
parameters. As with price informativeness, we can decompose λ into pre- and
post-arrival terms and express it as

λ=E

[
(r +ρ)e−ρmin(τ,T )

∫ T

min(τ,T )
e−ρ(s−min(τ,T ))λsds

]
, (37)

which indicates that we can also interpret average price impact as due to the
likelihood and timing of information arrival, and the average price impact
conditional on arrival. However, changes in trader impatience can have opposite
effects on these two terms, and so the overall effect on price impact can be more
subtle. Consider panel A, which plots the average price impact as a function
of the initial amount of noise trade. An increase in ν0 has two effects: (1)
it makes it more likely that the trader conducts research and therefore that
a signal arrives (and arrives quickly), which tends to increase average price
impact, but (2) it increases the expected amount of volume during the post-
arrival stage, which tends to reduce price impact. For low values of ν0, the
first effect dominates, while for high values of ν0 the second effect dominates,
leading to a hump-shaped relation between λ and initial noise trade.

Similarly, consider Panel (b), which plots λ against the maximum research
intensity ζ . As discussed above, an increase in ζ : (a) tends to make the trader
wait longer to conduct research (and therefore tends to delay information arrival,
all else equal), which tends to reduce average price impact, but (b) conditional
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(a) (b)

(c) (d)

Figure 8
Expected discounted price impact, λ

The figure plots the discounted, expected price impact λ as a function of the initial trading volume (i.e., ν0),
public disclosure frequency (i.e., r), maximum research intensity (i.e., ζ ), and flow cost of research (i.e., c).
Unless specified, other parameters are set to μ=0.05, �0 =1, Ω =1/2, c=C =1, r =0.2, σν =0.1, and ρ =1.

on initiating research it tends to speed up information arrival, which tends to
increase average price impact. For low values of ζ the second effect dominates,
and for high values of ζ the first effect may (but need not) dominates. This
produces either a hump-shaped or monotonically increasing relation between
research intensity and price impact.

Note that for both price informativeness and price impact, the nonmonotonic
relation with disclosure frequency r remains (panels C in Figures 7 and 8).
This is again due to tension between the “trading horizon” and “impatience”
effects. The impatience effect dominates for low values of r , while the
trading horizon effect dominates for high values of r , leading to hump-shaped
relations between disclosure frequency and price informativeness PI and price
impact λ.

5.1 Policy implications
Our analysis of price informativeness and market liquidity above highlights a
number of important implications from a policy perspective.

First, the nonmonotonic relation between the frequency of public disclosures
(i.e., r) and price informativeness highlights a novel channel through which
changes to disclosure requirements can affect price informativeness. As
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discussed above, in settings in which the public disclosure pertains to the
component of fundamentals that investors can learn about, the existing literature
usually documents a “crowding out” effect, whereby more public disclosure
decreases private information acquisition and lowers price informativeness.
Our analysis highlights that this is a consequence of restricting attention to
static information acquisition, and that the impact of public disclosures can
be more nuanced in settings in which research is dynamic and information
can be acquired over time.32 This result also sheds light on how regulatory
changes that are intended to reduce information asymmetry by requiring more
public disclosure (e.g., Regulation Fair Disclosure, or Reg FD, in 2000) may
be counterproductive. For instance, our results are consistent with the evidence
in Duarte et al. (2008), who document that the introduction of Reg FD was
actually associated with higher likelihood of informed trading (as measured by
the Easley, Hvidkjaer, and O’hara 2002 PIN measure), especially for NASDAQ
stocks.

Second, note that unlike conventional wisdom, increasing the frequency
of public disclosures (i.e., increasing r) or encouraging more trading (i.e.,
increasing ν0 by making it easier for retail/uninformed investors to trade) need
not improve liquidity. The standard intuition (from many static settings) is that
greater public disclosure “levels the playing field” by reducing adverse selection
between informed and uninformed investors, thereby improving liquidity.
Similarly, increasing access for liquidity traders tends to lower price impact
in Kyle (1985) and related settings. However, with endogenous research and
dynamic information acquisition, these types of changes can have the opposite
effect on liquidity, as suggested by panels A and C of Figure 8.

Finally, the analysis underscores the inherent tension between price
informativeness and market liquidity that is common to other settings with
asymmetrically informed traders. Specifically, consider a regulator who would
like to improve both price informativeness and market liquidity. On the one
hand, to improve price informativeness, the regulator would like to encourage
research and information acquisition by the trader. On the other hand, doing
so harms market liquidity since it increases the extent of adverse selection.
As a result, regulatory changes that improve price informativeness will have a
negative impact on market liquidity and vice versa.

This is generally true in our setting as well. Comparing Figures 7 and 8, note
that changes in disclosure horizon (i.e., r) and the cost of research (i.e., c) change
price informativeness and market impact in the same direction, and so these
changes have opposite effects on informativeness and liquidity. However, this
is not always the case for trading volume (i.e., ν0) and the quality of research
technology, as measured by the maximal research intensity ζ̄ . Specifically,

32 For example, Figure 3 implies that when the trader is restricted to a static information choice, the acquisition
threshold increases in the frequency of disclosure, r , which decreases the likelihood of acquisition and,
consequently, price informativeness.
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note that when ν0 is sufficiently high, further increases in trading volume can
lead to higher price informativeness and higher liquidity (panel A in the two
plots). Similarly, while improving research technology (i.e., making ζ̄ higher)
always increases price informativeness (panel B in Figure 7), it can sometimes
also improve liquidity by lowering the price impact (panel B of Figure 8).
As discussed above, these features are a consequence of the dynamic nature
of research and information acquisition, and so are likely to be missing from
analysis that focuses on information acquisition as a static choice.33 To the
extent that research and information gathering are inherently dynamic activities,
our analysis implies that policy changes that affect the level of retail trading
volume or the ability of investors to conduct research can have more nuanced
impact on price informativeness and liquidity than previous work suggests.

6. Concluding Remarks

We develop a model of research by a strategic trader that captures two important
features: research is dynamic and probabilistic. As a result, the optimal choice
of information acquisition embeds a number of real options: the option to delay
research, the option to abandon research if unsuccessful, and the option to restart
when trading opportunities improve. Relative to traditional settings in which
information acquisition is a static choice, we show that incorporating these
features has important consequences for our understanding of how markets
produce and reflect information.

First, the likelihood and duration of conducting research is increasing in
the volatility of trading volume, even after controlling for the level of volume.
Second, an increase in the frequency of public disclosures can “crowd in”
or “crowd out” private information acquisition: when the initial frequency
is low, an increase encourages more research, but if the initial frequency is
sufficiently high, it has the opposite effect. Finally, our analysis recommends
caution in interpreting empirical evidence of research activity (e.g., Bloomberg
search volume or EDGAR queries) as evidence of information acquisition,
since research success is probabilistic. In fact, we show that when variation in
research activity is driven by the effectiveness of traders’ research technology,
observed research activity can be negatively related to likelihood of information
acquisition.

Our analysis also highlights important trade-offs from a policy perspective.
Contrary to the conventional wisdom (derived from static acquisition
settings), we show that more frequent public disclosures can increase price

33 Avdis and Banerjee (2019) derive a related result in the context of a multitrader, strategic trading model. They
show that an increase in “clarity” (or a decrease in receiver specific noise) leads to higher correlation in the
private information across traders, which leads to more aggressive trading via competition and, consequently,
greater liquidity. While our result is complementary to theirs, the forces that underlie the positive relation between
liquidity and price informativeness in our model are distinct because they are not driven by competition across
traders (we have only one trader).
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informativeness by encouraging research, even when such disclosures reflect
information that traders can learn about. Second, we show that efforts to improve
liquidity by “leveling the field” though more public disclosure or encouraging
trading by uninformed investors can be counterproductive, because they can
encourage research activity and, consequently, lead to higher equilibrium price
impact. Finally, we show that unlike standard settings in which policy changes
tend to have opposite effects on price informativeness and liquidity, improving
the effectiveness of research or encouraging uninformed trading can lead to
improvements along both dimensions in a dynamic setting.

Our paper is an early step in exploring the implications of research and
information acquisition dynamics on trading a market behavior, and suggests a
number of natural avenues for future research. A natural direction is to explore
other specifications of research and information acquisition technologies. While
we believe that our model captures important, economically relevant features
of research in markets, investors have access to many different types of
information sources and research technologies. For instance, in a companion
paper (Banerjee and Breon-Drish, 2020), we characterize how information
acquisition and trading vary in a setting in which the trader can choose the
precision of a flow of information. In that setting, the optimal precision varies
stochastically in response to uninformed trading volume, but price impact
and market uncertainty are unaffected by the choice of precision. It would be
interesting to explore the effect of richer information acquisition technologies
on equilibrium market dynamics.

One could also explore alternative assumptions about the timing and nature of
public disclosures (i.e., about the terminal date, T ). We model disclosure as an
unscheduled public announcement, but one could also entertain the notion of a
fixed disclosure time corresponding to, for example, an earnings announcement
or other scheduled disclosure.34 While we expect similar tension between
“trading horizon” and “impatience” effects in such a setting, a full exploration
could potentially provide richer insights. It would also be interesting to consider
the problem of a regulator who endogenously chooses a disclosure policy to
maximize some social objective function, or a firm manager who chooses a
firm-level disclosure policy.

It also would be interesting to explore how our results change if the amount
of fundamental uncertainty, the precision of private information, and the cost
of conducting research depend on the trading horizon.35 One might expect that
less frequent, longer horizon disclosures are associated with more uncertainty
about fundamentals. A natural parametrization to capture this feature is to scale
the variance of fundamentals and errors (i.e., �0 and σ 2

ε ) by 1/r and the flow

34 As we discussed above in Section 2, a model with a fixed terminal date T will generally be intractable analytically,
since the optimal research problem effectively reduces to an optimal stopping problem on a finite horizon.

35 We thank an anonymous referee for this suggestion.
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cost of research (i.e., c) by
√

1/r (i.e., with the volatility of fundamentals).36

In this case, then our findings remain qualitatively unchanged and most of
the formal results are literally identical.37 This suggests that trading-horizon-
dependent parameters will not change our basic conclusions, at least for
plausible parameterizations. However, we leave a full exploration of such issues
to future work.

Another important extension would be to consider competition among
multiple strategic traders. In a recent paper, Xiong and Yang (2020) explore the
implications of endogenous precision choice in a static model with multiple
strategic traders. We expect the results from a dynamic model with imperfect
competition to share many qualitative features of the current analysis, as long
as private information is not perfectly correlated across traders (see Foster
and Viswanathan [1993]; Back, Cao, and Willard [2000] for the effect of
imperfect competition in strategic trading settings), while generating a set of
novel implications for strategic research dynamics. However, extending the
analysis to a dynamic setting is quite challenging, and so we leave it for future
work.

Appendix A. Proofs

This appendix collects together all of the formal results that are not presented in the main text.

A.1. A Preliminary Result
“Discounted expectations” of the form E

[
e−uTJ (a+bXTJ

)|Xt =x
]

for various Poisson jump times
TJ , constants a,b and u, and where Xt is a geometric Brownian motion, play a role in a number
of our key results. In this section, we derive a general expression for expectations of this form to
streamline later proofs.

Proposition A.1. Fix x∗ ∈R and let TJ be the first jump time of a doubly stochastic Poisson
process with piecewise constant intensity

ζ (Xt )=c0 +cL1{Xt <x∗} +cH 1{Xt ≥x∗}, (A1)

36 The linear scaling for fundamentals and errors can be motivated by the fact that variances scale linearly with time
when uncertainty is modeled as a constant-coefficient diffusion process. Hence, if one considers V as arising from
an (unmodeled) diffusion process, the linear scaling is natural. Whether a scaling for c is appropriate is ultimately
a question of whether it is an economically reasonable order of magnitude for dependence on r . Scaling with
the square root appears to be economically reasonable because a Kyle trader’s gross expected profit upon receipt

of information scales with fundamental volatility (not variance) (e.g., in our model, we have J =

√
�0

2(r−μν ) νt

earlier. See also the discussion of the value of information in Banerjee and Breon-Drish 2020), and it is effectively
this profit to which she compares costs when making research decisions.

37 More generally, consider an arbitrary, increasing scaling function f (1/r), where we specify V ∼N
(
0,�0f (1/r)

)
,

ε∼N
(

0,σ2
ε f (1/r)

)
and C (ζ )=ζc

√
f (1/r). Then it follows immediately that the optimal research threshold ν∗

is identical to the one in Proposition 2, and as a result, the characterization of research dynamics in Section 4
are identical to our benchmark model. Similarly, the average price informativeness PI is also identical in this
setting. Moreover, we can show that λ, while not identical, is still a hump-shaped function of r . The reason is
that when fundamental uncertainty increases with horizon, it has the effect of weakening the standard “trading
horizon” effect (since, in the event of information arrival, price impact is higher when the information has a high
prior variance) but leaving the novel “impatience effect” unchanged. This increases the relative importance of
the impatience effect and preserves the hump-shaped dependence on r .
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where the process Xt is a geometric Brownian motion

dXt =μXtdt +σXtdWt . (A2)

Then, for any a,b∈R and u≥0, we have

E
[
e−uTJ (a+bXTJ

)|X0 =x
]

=

{ c0+cL

c0+cL+u
a+ c0+cL

c0+cL+u−μ
bx+ALxγL 0≤x <x∗

c0+cH

c0+cH +u
a+ c0+cH

c0+cH +u−μ
bx+BH xγH x ≥x∗ , (A3)

where

AL ≡ cH −cL
γH −γL

(
uγH

(c0+cL+u)(c0+cH +u) a+ (γH −1)(u−μ)
(c0+cL+u−μ)(c0+cH +u−μ) bx∗

)( 1
x∗
)γL , (A4)

BH ≡ cH −cL
γH −γL

(
uγL

(c0+cL+u)(c0+cH +u) a+ (γL−1)(u−μ)
(c0+cL+u−μ)(c0+cH +u−μ) bx∗

)( 1
x∗
)γH , (A5)

γL =
1

2
− μ

σ 2
+

√
2(c0 +cL +u)

σ 2
+

(
1

2
− μ

σ 2

)2

, and (A6)

γH =
1

2
− μ

σ 2
−
√

2(c0 +cH +u)

σ 2
+

(
1

2
− μ

σ 2

)2

. (A7)

Proof of Proposition A.1. We would like to compute E
[
e−uTJ (a+bXTJ

)
]
. Note that we can

express it as

E
[
e−uTJ (a+bXTJ

)
]

=E

[
E

[
e−uTJ (a+bXTJ

)

∣∣∣∣{Xt }t≥0

]]
(A8)

=E

[∫ ∞

0
P(TJ ∈ds|{Xt }t≥0)e−us (a+bXs )

]
(A9)

=E

[∫ ∞

0
ζ (Xs )e−∫ s

0 ζ (Xr )dr
e−us (a+bXs )ds

]
(A10)

=E

[∫ ∞

0
e
−∫ s

0 (u+ζ (Xr ))dr
ζ (Xs )(a+bXs )ds

]
(A11)

where the first equality uses the law of iterated expectations and conditions on the entire history
of {Xt }; the second equality uses the fact that conditional on the history of {Xt } the only random
variable is TJ , and computing the conditional expectation therefore reduces to integrating over TJ ;
the third equality uses the fact that conditional on {Xt }, the path of the intensity is {ζt } is known and

therefore P(TJ ≥s|{Xt })=e
−∫ s

0 ζ (Xr )dr from which P(TJ ∈ds|{Xt })=ζ (Xs )e−∫ s
0 ζ (Xr )dr

ds; and the
final equality gathers terms. Define the function

f (t,x)=E

[∫ ∞

t

e−∫ s
t (u+ζ (Xr ))dr ζ (Xs )(a+bXs )ds

∣∣∣∣Xt =x

]
. (A12)

The Feynman-Kac theorem yields a differential equation that f must follow, which, owing to the
time stationarity of Xt and time homogeneity of ζ (·), is an ordinary differential equation (ODE)
in x

0=ζ (x)(a+bx)−(ζ (x)+u)f +μxfx +
1

2
σ 2x2fxx . (A13)
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That is, there is no explicit time dependence in the functionf .38 Because the “killing rate”u+ζ (x) is
discontinuous at x∗, the solution to this equation will, in general, be only continuously differentiable
at the point x∗ and twice continuously differentiable elsewhere.39 We now proceed with the solution
to the ODE. It naturally splits into two regions, depending on whether x ≷x∗.

0=

{
(c0 +cL)(a+bx)−(c0 +cL +u)f +μxfx + 1

2 σ 2x2fxx x <x∗

(c0 +cH )(a+bx)−(c0 +cH +u)f +μxfx + 1
2 σ 2x2fxx x ≥x∗ . (A14)

We can solve the ODE by first characterizing the solution within each region and then ensuring
that the resultant function is sufficiently well-behaved across the boundary. Within each region the
ODE is linear, so the solution is equal to the sum of any particular solution and the general solution
to the homogenous version of the equation. Hence, we proceed by characterizing particular and
general solutions in each region, imposing the boundary conditions to eliminate certain terms, and
then conclude by imposing that the overall solution must be continuously differentiable across the
boundary x∗. It is easy to verify that particular solutions in each region are{ c0+cL

c0+cL+u
a+

c0+cL
c0+cL+u−μ

bx x <x∗
c0+cH

c0+cH +u
a+

c0+cH
c0+cH +u−μ

bx x ≥x∗ (A15)

and general solutions are of the form{
ALxγL+ +BLxγL− 0≤x <x∗

AH xγH+ +BH xγH− x ≥x∗,
(A16)

where

γL± =
1

2
− μ

σ 2
±
√

2(c0 +cL +u)

σ 2
+

(
1

2
− μ

σ 2

)2

(A17)

γH± =
1

2
− μ

σ 2
±
√

2(c0 +cH +u)

σ 2
+

(
1

2
− μ

σ 2

)2

(A18)

The overall solution is therefore of the form

f =

{
ALxγL+ +BLxγL− +

c0+cL
c0+cL+u

a+
c0+cL

c0+cL+u−μ
bx 0≤x <x∗

AH xγH+ +BH xγH− +
c0+cH

c0+cH +u
a+

c0+cH
c0+cH +u−μ

bx x ≥x∗ , (A19)

where the A’s and B’s are constants to be determined. Natural boundary conditions for the ODE
are

lim
x→0

f = lim
x→0

(
c0 +cL

c0 +cL +u
a+

c0 +cL

c0 +cL +u−μ
bx

)
=

c0 +cL

c0 +cL +u
a (A20)

lim
x→∞fx = lim

x→∞
∂

∂x

(
c0 +cH

c0 +cH +u
a+

c0 +cH

c0 +cH +u−μ
bx

)
=

c0 +cH

c0 +cH +u−μ
b (A21)

38 Note that by reversing the steps above, it is easily seen that this function characterizes

E

[
e−u

(
TJ −t

)(
a+bXTJ

)∣∣∣∣Xt =x

]
. That is, the discounted conditional expectation, where we discount

back only to time t . Because of time stationarity of Xt and the fact that TJ is the jump time of a Poisson process,
this expression does not depend on calendar time.

39 See, for example, theorem 4.9 in chap. 4 of Karatzas and Shreve (1998). The theorem establishes this for the case
in which Xt is a standard Brownian motion (and to which one can reduce our case by appropriate transformations
of the Xt process), or the general treatment of Glau (2016).
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since in each limit it becomes arbitrarily unlikely that Xt will ever again transition to the other
region. Hence, the discounted conditional expectation should converge to that for a constant arrival
intensity.40 The boundary conditions (A20) and (A21) imply BL =0 and AH =0. Next, the solution
should be continuously differentiable across x∗, which gives two equations to pin down AL and
BH

ALxγL+ +
c0+cL

c0+cL+u
a+

c0+cL
c0+cL+u−μ

bx =BH xγH− +
c0+cH

c0+cH +u
a+

c0+cH
c0+cH +u−μ

bx (A23)

γL+ALxγL+−1 +
c0+cL

c0+cL+u−μ
b=γH−BH xγH−−1 +

c0+cH
c0+cH +u−μ

b (A24)

Solving this system yields

AL = cH −cL
γH−−γL+

(
uγH−

(c0+cL+u)(c0+cH +u) a+
(γH−−1)(u−μ)

(c0+cL+u−μ)(c0+cH +u−μ) bx∗
)

(x∗)−γL+ (A25)

BH = cH −cL
γH−−γL+

(
uγL+

(c0+cL+u)(c0+cH +u) a+ (γL+−1)(u−μ)
(c0+cL+u−μ)(c0+cH +u−μ) bx∗

)
(x∗)−γH− (A26)

and letting γH =γH− and γL =γL− to condense notation gives us the result. �

A.2. Proofs of the Main Results
Proof of Proposition 1. The post-entry financial market equilibrium is essentially a special case
of the “flow signals” setting of Banerjee and Breon-Drish (2020). Nominally, their result applies
to settings in which (a) the trader can dynamically optimize a flow of signals after observing her
initial signal and (b) both the trader and market maker learn the true value at the limit when the
economy continues without end (T →∞). To apply their results, (a) let the cost of ongoing flow
signals tend to infinity c(·)↑∞, which implies that the trader’s only information source is her initial
signal, and (b) use risk neutrality and the fact that the market maker has coarser information than
the trader to redefine the asset value V as the conditional expected value given observation of the
signal V̂ =E[V |S]. The equilibrium now immediately follows with the market maker’s conditional
variance of V̂ , �t =var(V̂ |FP

t ), taking the place of her variance of the asset value itself. �

Proof of Proposition 2. Let J (·)=Kνt , with K ≡
√

�0
r−μν

, be the unconditional expected profit
given information arrival at time t . Given an arbitrary strategy {ζs} that is adapted to σ ({νt }), her
overall expected profit is

E

[
1{τ<∞}J (ντ )−

∫ min{τ,T }

0
c(ζs )ds

]
. (A27)

We would like to express this in a more standard form. To do this, it is helpful to “delink” the
information arrival time τ and the public disclosure date T . Let TI be the first jump time of a
Poisson process with the posited intensity ζs for all s ≥0 (i.e., the arrival time if one were to follow
the strategy {ζs} regardless of whether the disclosure has occurred). We can express

E
[
1{τ<∞}J (ντ )

]
=E
[
1{TI <T }J (νTI

)
]

(A28)

40 In the case of a constant intensity c the time TJ is independently, exponentially distributed with rate c, and by
integrating out TJ the expectation that we desire to compute reduces to

E

[
e−uTJ (a+bXTJ

)
]

=E
[∫∞

0 ce−cs e−us (a+bXs )ds
]

=
∫∞

0

(
ce−(c+u)sa+ce−(c+u−μ)sbX0

)
ds, (A22)

which is a sum of two growing perpetuities. Computing the values of these perpetuities produces the expressions
in the text.
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=E
[
e−rTI J (νTI

)
]

(A29)

=E

[∫ ∞

0
e
−∫ s

0 (r+ζu)du
ζsJ (νs )ds

]
, (A30)

where the second equality uses the fact that T is independently exponentially distributed, and the
last equality follows from steps analogous to those used in the derivation of Equation (A11) above.
Similarly,

E

[∫ min{τ,T }

0
c(ζs )ds

]
=E

[∫ min{TI ,T }

0
c(ζs )ds

]
(A31)

=E

[∫ ∞

0
1{s≤min{TI ,T }}c(ζs )ds

]
(A32)

=E

[∫ ∞

0
e
−∫ s

0 (r+ζu)du
c(ζs )ds

]
, (A33)

where the second equality writes the limits of integration using indicator function notation and
the final equality follows from steps analogous to those used in the derivation of Equation (A11)
above, using the fact that min{TI ,T } is the first jump time of the sum of two independent Poisson
processes, one with intensity ζ that tracks information arrival and one with intensity r that tracks
the public disclosure. Since the research strategy was arbitrary the above expressions allow us to
state the trader’s research problem in a compact, standard form

JU ≡sup
{ζs }

E

[∫ ∞

0
e
−∫ s

0 (r+ζu)du(ζsJ (νs )−c(ζs ))ds

]
. (A34)

We now proceed to characterize the optimal research strategy. We begin by making use of the usual
HJB equation to derive a candidate optimal research strategy and the corresponding value function.
We then verify that the candidate strategy and value function so constructed do in fact characterize
an optimum. With linear cost function c(ζ )=cζ and constraint ζ ∈ [0,ζ ], the HJB equation for this
problem is

0= sup
ζ∈[0,ζ ]

{
r
(
0−JU

)
+ζ (J −JU )+JU

ν μνν+
1

2
JU

ννσ
2
ν ν2 −cζ

}
. (A35)

We conjecture that the optimal research strategy follows a threshold rule. That is, there exists some
ν∗ ≥0, to be determined, such that

ζ ∗(ν)=

{
0 0≤ν <ν∗

ζ ν ≥ν∗ (A36)

We further conjecture that the value function takes the time homogenous form of

JU (ν)=

{
Aνβ1 0≤ν <ν∗

Bνβ2 + ζ

r−μν+ζ
Kν− cζ

r+ζ
ν ≥ν∗ (A37)

for constants A and B to be determined, and where β1 and β2 are defined in eqs. (18) and (19). It
remains to characterize the candidate threshold ν∗ and constants A and B. To do this, we enforce
that the candidate value function should be twice continuously differentiable across the threshold
ν∗. Equating the level and first derivative are analogous to the standard value-matching and smooth-
pasting conditions of optimal stopping. Furthermore, because the state can transition freely back
across the threshold ν∗ (i.e., this is effectively a switching problem, not a stopping problem), one
also requires a “high-contact” condition that the second derivative be continuous. We emphasize
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that these conditions, while intuitive, are simply conjectures for how the value function should
behave, and we later verify that the function so constructed is in fact optimal. We have

Aνβ1 =Bνβ2 +
ζ

r−μν +ζ
Kν− cζ

r +ζ
(value matching) (A38)

β1Aνβ1−1 =Bβ2ν
β2−1 +

ζ

r−μν +ζ
K (smooth pasting) (A39)

β1(β1 −1)Aνβ1−2 =Bβ2(β2 −1)νβ2−2 (high contact) (A40)

Solving for the three unknowns yields

ν∗ =
β1

β1 −1

β2

β2 −1

c

K

r +ζ −μν

r +ζ
(A41)

A=
cζ

r +ζ

β2

(β1 −1)(β2 −β1)

1

(ν∗)β1
(A42)

B =− cζ

r +ζ

β1

(β2 −1)(β1 −β2)

1

(ν∗)β2
. (A43)

We can now check that the conjectured research intensity in fact achieves the maximum on the
right-hand side of Equation (A35) and the conjectured JU solves the HJB equation. To confirm
that the conjectured ζ ∗ maximizes the right-hand side of Equation (A35), it suffices to show that
J −JU −c is strictly increasing in ν and is equal to zero at ν∗. Given the constraint on ζ , it will
then follow immediately that the posited threshold strategy achieves the maximum. For ν <ν∗, we
have

∂

∂ν
(J −JU −c)=K−Aβ1ν

β1−1 (A44)

=K− cζ

r +ζ

β1

β1 −1

β2

β2 −β1

1

(ν∗)β1
νβ1−1 (A45)

>K− cζ

r +ζ

β1

β1 −1

β2

β2 −β1

1

(ν∗)β1
(ν∗)β1−1 (A46)

=K− cζ

r +ζ

β1

β1 −1

β2

β2 −β1

1

ν∗ (A47)

=K−K
ζ

r +ζ −μν

(A48)

>0 (A49)

and analogous calculations hold for ν ≥ν∗. Straightforward, but tedious, algebra also verifies
that J −JU −c=0 at ν∗. Hence, the conjectured research strategy maximizes the right-hand side
of (A35). Given the research strategy, we can also verify that the conjectured value function satisfies
the HJB equation (A35). For instance, for ν <ν∗ we have

r
(
0−JU

)
+ζ ∗(ν)(J −JU )+JU

t +JU
ν μνν+

1

2
JU

ννσ
2
ν ν2 −cζ ∗(ν) (A50)

=−rJU +JU
ν μνν+

1

2
JU

ννσ
2
ν ν2 (A51)
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=−rAνβ1 +Aβ1ν
β1−1μνν+

1

2
Aβ1(β1 −1)νβ1−2σ 2

ν ν2 (A52)

=Aνβ1

(
−r +μνβ1 +

1

2
σ 2

ν β1(β1 −1)

)
(A53)

=0 (A54)

where the last line follows from the fact that β1 solves 0=−r +μνβ1 + 1
2 σ 2

ν β1(β1 −1) by
construction. A similar calculation confirms that the equation holds for ν ≥ν∗. To verify that
the conjectured research strategy is, in fact, optimal, consider an arbitrary strategy {ζ̂s}∈ [0,ζ ] and

apply Ito’s Lemma to the function e
−∫ t

0 (r+ζ̂u)du
JU (νt )

e
−∫ t

0 (r+ζ̂u)du
JU (νt )−JU (ν0) (A55)

=
∫ t

0
e
−∫ s

0 (r+ζ̂u)du

(
−(r + ζ̂s )JU +JU

ν μνν+
1

2
JU

ννσ
2
ν ν2
)

ds (A56)

+
∫ t

0
e
−∫ s

0 (r+ζ̂u)du
JU

ν νσνdWνs (A57)

≤−
∫ t

0
e
−∫ s

0 (r+ζ̂u)du
ζ̂s

(
J −c

)
ds+

∫ t

0
e
−∫ s

0 (r+ζ̂u)du
JU

ν νσνdWνs (A58)

where the inequality follows from Equation (A35) and the fact that the strategy ζ̂u is arbitrary.
Rearranging and using the fact that JU (νt )≥0 we have∫ t

0
e
−∫ s

0 (r+ζ̂u)du
ζ̂s

(
J −c

)
ds ≤JU (ν0)+

∫ t

0
e
−∫ s

0 (r+ζ̂u)du
JU

ν νσνdWνs (A59)

Because
∣∣∣e−∫ s

0 (r+ζ̂u)du
ζ̂s

(
J −c

)∣∣∣≤e−rsζ (Kνs +c) and E
[∫∞

0 e−rsζ (Kνs +c)ds
]
<∞ (because of

μν <r), the dominated convergence theorem implies

E

[∫ ∞

0
e
−∫ s

0 (r+ζ̂u)du
ζ̂s

(
J −c

)
ds

]
= lim

t→∞E

[∫ t

0
e
−∫ s

0 (r+ζ̂u)du
ζ̂s

(
J −c

)
ds

]
(A60)

Combined with Equation (A59), this implies

E

[∫ ∞

0
e
−∫ s

0 (r+ζ̂u)du
ζ̂s

(
J −c

)
ds

]
≤JU (ν0)+ lim

t→∞E

[∫ t

0
e
−∫ s

0 (r+ζ̂u)du
JU

ν νσνdWνs

]
(A61)

=JU (ν0) (A62)

where the final equality follows from the fact that for each t ≥0 we have

E

[∫ t

0

(
e
−∫ s

0 (r+ζ̂u)du
JU

ν νsσν

)2
ds

]
<E

[∫ t

0
e−2rs (Kνsσν )2ds

]
<∞ (A63)

and therefore the stochastic integral is a martingale (see, e.g., corollary 3 in chap. II.6 of Protter
2003). Owing to the representation for the expected trading profits of an arbitrary strategy in
Equation (A34), it follows from Equation (A62) that our candidate value function JU is an upper
bound for expected profit for the trader under any arbitrary strategy {ζ̂t }∈ [0,ζ ] and associated
arrival time τ

JU (ν0)≥E

[
1{τ<∞}J (ντ )−

∫ min{τ,T }

0
c(ζ̂s )ds

]
. (A64)
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It remains to show that the candidate strategy yields expected profit equal to JU (ν0). Return to
Equation (A58), in which the inequality now becomes an equality because our candidate strategy
attains the maximum in the HJB equation. Rearranging, we have∫ t

0
e
−∫ s

0 (r+ζu)du
ζs

(
J −c

)
ds =JU (ν0)+

∫ t

0
e
−∫ s

0 (r+ζu)du
JU

ν νσνdWνs −e
−∫ t

0 (r+ζu)du
JU (νt )

(A65)

Again, taking expectations and considering t →∞, to demonstrate the optimality of the strategy,

it suffices to show limsupt→∞E

[
e
−∫ t

0 (r+ζu)du
JU (νt )

]
=0 since JU ≥0. However, this follows

immediately since

e
−∫ t

0 (r+ζu)du
JU (νt )≤e−rt J =e−rtKνt (A66)

where JU ≤J follows from the fact that J −JU is strictly increasing, as shown above, and J (0)−
JU (0)=0. Therefore,

limsup
t→∞

E[e−∫ t
0 (r+ζu)du

JU (νt )]≤ limsup
t→∞

Kν
(μν−r)t
0 =0 (A67)

since μν <r , which establishes the optimality of the posited research strategy. �
Proof of Proposition 3. Research occurs the first time that ν hits ν∗ from below, as long as this
occurs before time T when the asset payoff is revealed. We begin by characterizing the distribution
of the first hitting time TR =inf{t ≥0:νt ≥ν∗} and then account for the possibility that payoff is
publicly revealed before this time. Note that

νt ≥ν∗ ⇔ logνt ≥ logν∗ (A68)

⇔ log(ν0)+

(
μν − 1

2
σ 2

ν

)
t +σνWνt ≥ log(ν∗) (A69)

⇔ 1

σν

(
μν − 1

2
σ 2

ν

)
t +Wνt ≥ 1

σν

log(ν∗/ν0) (A70)

so that it is equivalent to find the first time that a standard Brownian motion with drift 1
σν

(
μν − 1

2 σ 2
ν

)
hits 1

σν
log(ν∗/ν0). It follows from Karatzas and Shreve (1998, p. 197, equation (5.12)) that

P(TR ∈dt)=

∣∣∣ 1
σν

log(ν∗/ν0)
∣∣∣

√
2πt3

exp

{
− 1

2t

(
1

σν

log(ν∗/ν0)− 1

σν

(
μν − 1

2
σ 2

ν

)
t

)2
}

(A71)

=
log(ν∗/ν0)

σν

√
2πt3

exp

{
− 1

2t

(
log(ν∗/ν0)−(μν − 1

2 σ 2
ν

)
t
)2

σ 2
ν

}
, (A72)

where the second equality rearranges some terms and uses the fact that ν∗ ≥ν0 by assumption,
so log(ν∗/ν0)≥0 Furthermore, from Karatzas and Shreve (1998, p. 197, equation (5.13)) or by
integrating the density above, we have

P(TR <∞)=exp

{
1

σ 2
ν

(
μν − 1

2
σ 2

ν

)
log(ν∗/ν0)−

∣∣∣∣ 1

σ 2
ν

(
μν − 1

2
σ 2

ν

)
log(ν∗/ν0)

∣∣∣∣} (A73)

=exp

{
1

σ 2
ν

((
μν − 1

2
σ 2

ν

)
−
∣∣∣∣μν − 1

2
σ 2

ν

∣∣∣∣)log(ν∗/ν0)

}
(A74)

=
(
ν∗/ν0

) 1
σ2
ν

((
μν− 1

2 σ2
ν

)
−
∣∣∣μν− 1

2 σ2
ν

∣∣∣)
(A75)
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=

⎧⎨⎩(ν∗/ν0)
2

σ2
ν

(
μν− 1

2 σ2
ν

)
μν − 1

2 σ 2
ν <0

1 μν − 1
2 σ 2

ν ≥0
(A76)

Now, accounting for the possibility that the payoff is publicly revealed before νt reaches ν∗, we
can write the first research time as

τR =TR1{TR≤T } +∞×1{TR>T } (A77)

Hence, for t ∈ [0,∞),

P(τR ∈dt)=P(TR ∈dt,T ≥TR) (A78)

=P(T ≥TR |TR ∈dt)P(TR ∈dt) (A79)

=e−rt
P(TR ∈dt) (A80)

which delivers the expression in the proposition after substituting for P(TR ∈dt) from above.
Similarly,

P(τR <∞)=P(T >TR)=
∫ ∞

0
P(T >s)P(TR ∈ds)=

∫ ∞

0
e−rs

P(TR ∈ds), (A81)

and the expression in the proposition now follows from straightforward, but tedious, integration.
Note that because

P(τR <∞)=P(TR <T )=E[P(TR <T |TR)]=E[e−rTR ], (A82)

one can also derive the expression for P(τR <∞) as a limiting case of Proposition A.1, where a =1,
b=0, u=r , and the underlying stochastic process Xt ≡νt . To do this, set x∗ =ν∗, and allow the
arrival intensity to become arbitrarily large for νt ≥ν∗ and equal zero elsewhere: c0 =cL =0 and
cH →∞. �
Proof of Proposition 4. Let ζs =ζ1{νs≥ν∗} denote the optimal research strategy, and TI be the jump
time for a Poisson process with this intensity for all s ≥0 (i.e., if one were to follow the strategy
regardless of the disclosure date T ). The amount of time devoted to research can be expressed as

R(ν)=E

[∫ min{TI ,T }

0
1{νs≥ν∗}ds

]
(A83)

=E

[∫ ∞

0
1{s≤min{TI ,T }}1{νs≥ν∗}ds

]
(A84)

=E

[
E

[∫ ∞

0
1{s≤min{TI ,T }}1{νs≥ν∗}ds

∣∣∣∣{νt }t≥0

]]
(A85)

=E

[∫ ∞

0
e
−∫ s

0 (r+ζu)du1{νs≥ν∗}ds

]
(A86)

=
1

ζ
E

[∫ ∞

0
e
−∫ s

0 (r+ζu)du
ζsds

]
, (A87)

where the first equality is the definition of expected research time, the second equality writes the
upper limit of the integral using indicator function notation, and the third equality uses the law of
iterated expectations and conditions on the entire history of {νt }. The fourth equality uses the fact
that min{τ,T } is the first jump time of the sum of two independent Poisson processes, one with
intensity ζ that tracks the information arrival date and one with intensity r that tracks the disclosure
date. The final equality simply multiplies and divides by ζ and uses the definition of the research
intensity process ζs . We can now evaluate the expectation as a special case of Proposition A.1 with
a =1, b=0, u=r , and the underlying stochastic process Xt ≡νt . To do this, set x∗ =ν∗, and set the
intensity parameters as c0 =cL =0 and cH =ζ . �
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Proof of Proposition 5. As in the previous proof, let ζs =ζ1{νs≥ν∗} denote the optimal research
strategy, and TI be the jump time for a Poisson process with this intensity for all s ≥0 (i.e., if one
were to follow the strategy regardless of the disclosure date T ). The probability of information
arrival can be expressed as

P(τ <∞)=P(TI <T ) (A88)

=E[P(TI <T |TI )] (A89)

=E[e−rTI ]. (A90)

The explicit expression in the statement of the proposition now follows as a special case of
Proposition A.1 with a =1, b=0, u=r , and the underlying stochastic process Xt ≡νt . To do this,
set x∗ =ν∗, and set the intensity parameters as c0 =cL =0 and cH =ζ . �
Proof of Proposition 6. Note that

PIt =
�0 −�t

�0
=

(�0 +Ω)−(�t +Ω)

�0 +Ω
=

�0 −�t

�0 +Ω
.

The result now follows from applying Ito’s lemma to the expressions for �t and λt from
Proposition 1. �

A.3. Expressions for Price Informativeness and Market Liquidity
This subsection derives expressions for discounted expected price informativeness and price impact,
and for the dynamics of price informativeness and price impact, that are used for the plots in Section
5. As in earlier proofs, we let ζs =ζ1{νs≥ν∗} denote the optimal research strategy and let TI denote
the first jump time of a Poisson process with intensity ζs for all s ≥0. We formalize the results in
the following Proposition:

Proposition A.2. The discounted, expected price informativeness is:

PI ≡E

[
(r +ρ)

∫ T

0
e−ρsP Isds

]
(A91)

=
�0

�0 +Ω

2(r−μν )

r +ρ+2(r−μν )
E

[
e−(r+ρ)TI

]
, (A92)

where E
[
e−(r+ρ)TI

]
can be evaluated as a special case of Proposition A.1 with a =1,b=0,u=r +ρ

and Xt ≡νt , with x∗ =ν∗, c0 =cL =0, and cH =ζ . And the discounted, expected price impact is

λ≡E

[
(r +ρ)

∫ T

0
e−ρsλsds

]
(A93)

=
√

2(r−μν )�0
1

2r +ρ−σ 2
ν

E

[
e−(r+ρ)TI

1

νTI

]
, (A94)

where E

[
e−(r+ρ)TI 1

νTI

]
can be evaluated as a special case of Proposition A.1 with a =0,b=1,u=

r +ρ and Xt ≡ 1
νt

, with x∗ = 1
ν∗ , c0 =cH =0, and cL =ζ .

Proof of Proposition A.2. Consider first price informativeness. Note that prior to information
arrival, t ≤min{TI ,T }, we have PIt =0, so it suffices to compute

E

[
(r +ρ)

∫ T

0
e−ρsP Isds

]
=(r +ρ)E

[
1{TI ≤T }

∫ T

TI

e−ρsP Isds

]
(A95)
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=(r +ρ)E

[∫ ∞

0
1{TI ≤T }1{TI ≤s}1{s≤T }e−ρsP Isds

]
(A96)

=(r +ρ)E

[∫ ∞

0
1{TI ≤s}1{s≤T }e−ρsP Isds

]
(A97)

=(r +ρ)E

[∫ ∞

0
1{TI ≤s}e−(r+ρ)sP Isds

]
(A98)

=(r +ρ)E

[∫ ∞

0
1{TI ≤s}e−(r+ρ)sP Isds

]
(A99)

Recall that PIs =
�0−�s

�0
and

�t =Ω +�t (A100)

=

{
Ω +�0 0≤ t <τ

Ω +e−2(r−μν )(t−τ )�0 t ≥τ
(A101)

=

{
Ω +�0 0≤ t <min{T ,TI }
Ω +e−2(r−μν )(t−TI )�0 t ≥TI , if TI ≤T

. (A102)

Hence,

(r +ρ)E

[∫ ∞

0
1{TI ≤s}e−(r+ρ)sP Isds

]
(A103)

=(r +ρ)
�0

�0
E

[∫ ∞

TI

e−(r+ρ)s
(

1−e−2(r−μν )(s−TI )
)
ds

]
(A104)

=(r +ρ)
�0

�0
E

[
e−(r+ρ)TI

∫ ∞

TI

e−(r+ρ)(s−TI )
(

1−e−2(r−μν )(s−TI )
)
ds

]
(A105)

=(r +ρ)
�0

�0
E

[
e−(r+ρ)TI

2(r−μν )

(r +ρ)(r +ρ+2(r−μν ))

]
(A106)

=
�0

�0

2(r−μν )

r +ρ+2(r−μν )
E

[
e−(r+ρ)TI

]
(A107)

Consider now discounted price impact E

[
(r +ρ)

∫ T

0 e−ρsλsds
]
. Recall that

λt =

⎧⎨⎩0 0≤ t <τ

e−(r−μν )(t−τ )
√

2(r−μν )�0
ν2
t

t ≥τ
(A108)

=

⎧⎨⎩0 0≤ t <min{T ,TI }
e−(r−μν )(t−TI )

√
2(r−μν )�0

ν2
t

t ≥TI , if TI ≤T
. (A109)

We have

E

[∫ T

0
e−ρsλsds

]
=E

[
1{TI ≤T }

∫ T

TI

e−ρsλsds

]
(A110)
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=
√

2(r−μν )�0E

[
1{TI ≤T }

∫ T

TI

e−ρse−(r−μν )(s−TI ) 1

νs

ds

]
(A111)

=
√

2(r−μν )�0E

[∫ ∞

0
1{TI ≤T }1{TI ≤s}1{s≤T }e−ρse−(r−μν )(s−TI ) 1

νs

ds

]
(A112)

=
√

2(r−μν )�0E

[∫ ∞

0
1{TI ≤s}e−(r+ρ)se−(r−μν )(s−TI ) 1

νs

ds

]
(A113)

=
√

2(r−μν )�0E

[
e−(r+ρ)TI

∫ ∞

TI

e−(r+ρ+(r−μν )(s−TI )) 1

νs

ds

]
. (A114)

The process 1
νt

is a geometric Brownian motion

d

(
1

νt

)
=
(
σ 2

ν −μν

) 1

νt

dt −σν

1

νt

dWνt , (A115)

so, for s ≥TI ,

1

νs

=
1

νTI

e

(
σ2
ν −μν− 1

2 σ2
ν

)
(s−TI )−σν

(
Wνs−WνTI

)
, (A116)

and therefore

E

[
e−(r+ρ)TI

∫ ∞

TI

e−(r+ρ+(r−μν )(s−TI )) 1

νs

ds

]
(A117)

=E

[
e−(r+ρ)TI

1

νTI

∫ ∞

TI

e−(r+ρ+(r−μν )(s−TI ))e(σ2
ν −μν )(s−TI )ds

]
(A118)

=
1

2r +ρ−σ 2
ν

E

[
e−(r+ρ)TI

1

νTI

]
. (A119)

�
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