
Journal of Financial Economics 138 (2020) 458–482 

Contents lists available at ScienceDirect 

Journal of Financial Economics 

journal homepage: www.elsevier.com/locate/jfec 

Strategic trading and unobservable information acquisition 

� 

Snehal Banerjee, Bradyn Breon-Drish 

∗

University of California – San Diego, Rady School of Management, CA 92093, United States 

a r t i c l e i n f o 

Article history: 

Received 16 July 2019 

Revised 17 September 2019 

Accepted 4 October 2019 

Available online 20 May 2020 

JEL classification: 

D82 

D84 

G12 

G14 

Keywords: 

Dynamic information acquisition 

Strategic trading 

Observability 

Commitment 

a b s t r a c t 

We allow a strategic trader to choose when to acquire information about an asset’s payoff, 

instead of endowing her with it. When the trader dynamically controls the precision of a 

flow of information, the optimal precision evolves stochastically and increases with market 

liquidity. Because the trader exploits her information gradually, the equilibrium price im- 

pact and market uncertainty are unaffected by her rate of acquisition. If she pays a fixed 

cost to acquire “lumpy” information at a time of her choosing, the market can break down: 

we show that no equilibria exist with endogenous information acquisition. Our analysis 

suggests caution when applying insights from standard strategic trading models to settings 

with information acquisition. 

© 2020 Elsevier B.V. All rights reserved. 
� We thank Brett Green for numerous, invaluable discussions during 

an early stage of this project. We also thank Stathi Avdis, Kerry Back, 

Jesse Davis, Darrell Duffie, Joey Engelberg, Slava Fos, Itay Goldstein, Ron 

Kaniel, Mariana Khapko, Igor Makarov, Seymon Malamud, Sophie Moinas, 

Dmitry Orlov, Christine Parlour, Chris Parsons, Uday Rajan, Allan Timmer- 

mann, Dimitri Vayanos, and participants at Collegio Carlo Alberto, Uni- 

versity of California at Davis, London School of Economics and Political 

Science, the New Economic School, University of California at Riverside, 

University of Colorado Boulder, the Higher School of Economics, Univer- 

sity of Hong Kong, Chinese University of Hong Kong, Hong Kong Univer- 

sity of Science and Technology, Frankfurt School of Finance and Manage- 

ment, Luxembourg School of Finance, the University of Minnesota Junior 

Finance Faculty Conference, the Financial Intermediation Research Society 

2017 meeting, Barcelona Graduate School of Economics Summer Forum, 

the 2017 Western Finance Association meeting, the 2017 Tel Aviv Univer- 

sity Finance Conference, the 2018 American Finance Association meeting, 

the 2018 Finance Symposium at INSEAD, the 2018 University of Califor- 

nia Santa Barbara Laboratory for Aggregate Economics and Finance Con- 

ference, and the 2019 Southwest Economic Theory Conference for helpful 

suggestions. This paper subsumes part of an earlier paper, titled “Dynamic 

Information Acquisition and Strategic Trading.” All errors are our own. 
∗ Corresponding author. 

E-mail addresses: snehalb@ucsd.edu (S. Banerjee), 

bbreondrish@ucsd.edu (B. Breon-Drish). 

https://doi.org/10.1016/j.jfineco.2020.05.007 

0304-405X/© 2020 Elsevier B.V. All rights reserved. 
1. Introduction 

The canonical strategic trading framework, introduced 

by Kyle (1985) , is foundational for understanding how mar- 

kets incorporate private information. The vast literature 

that builds on this framework provides many important in- 

sights into how informed investors trade strategically on 

their private information in a variety of market settings 

and the consequences for asset prices. 1 The framework has 

also been used to guide a large body of empirical analy- 

sis and policy recommendations about liquidity, price in- 

formativeness, market design, and disclosure regulation. 

A key limitation of this setting is that the strategic 

trader is endowed with private information before trad- 

ing begins, instead of acquiring it endogenously at a time 

of her choosing. The value of acquiring private informa- 

tion can change over time and with economic conditions. 

Information about an asset’s payoff is likely to be more 
1 The literature is truly vast. As of September 2019, the paper has more 

than 10,500 citations on Google Scholar. 

https://doi.org/10.1016/j.jfineco.2020.05.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jfec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2020.05.007&domain=pdf
mailto:snehalb@ucsd.edu
mailto:bbreondrish@ucsd.edu
https://doi.org/10.1016/j.jfineco.2020.05.007
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valuable when fundamental uncertainty is higher and

speculative trading opportunities are more attractive (e.g.,

if uninformed, noise trading in the asset increases). 2 As

such, investors naturally optimize not only how they trade

on their private information, but also when they acquire

such information. 

To study this behavior, we extend the continuous-time

Kyle (1985) framework to allow for unobservable, costly

information acquisition. Section 2 introduces our model.

A single risky asset is traded by a risk-neutral, strategic

trader and a mass of noise traders. The asset payoff is pub-

licly revealed at a random time. 3 We allow the volatility

of noise trading to evolve stochastically over time (e.g., as

in Collin-Dufresne and Fos, 2016 ). This captures the notion

that the profitability of trading opportunities and, conse-

quently, the value of acquiring information for the trader

evolve over time. A risk-neutral market maker competi-

tively sets the asset’s price, conditional on aggregate order

flow and public information. 

In contrast to the previous literature, we do not as-

sume that the strategic trader is endowed with private in-

formation. Instead, she can choose to acquire information

in one of two ways. Section 3 considers settings in which

the trader can acquire information “smoothly,” that is, she

dynamically chooses the precision of a flow of signals, sub-

ject to a flow cost of precision. This specification captures

settings in which traders can gradually scale up or down

the attention or scrutiny they pay to their sources of infor-

mation, e.g., by focusing on a specific stock or industry in

response to sudden increases in turnover or specific news

events. In contrast, Section 4 considers the case of “lumpy”

acquisition costs; that is, the trader can acquire discrete,

payoff relevant signals at a fixed cost (á la Grossman and

Stiglitz, 1980 ) but optimally chooses the timing of this ac-

quisition. This captures situations in which information ac-

quisition involves fixed costs, e.g., hiring new analysts, in-

vesting in new technology, or conducting research about

a new market or asset class. Crucially, in either case, we

assume the market maker cannot observe or immediately

detect the trader’s information acquisition choices. Instead,

this must be inferred from the observed order flow. 4 

Our results show that the type of information acquisi-

tion technology affects not only the nature of equilibrium,

but its very existence. When information costs are smooth,

the trader’s optimal choice of precision evolves stochasti-

cally with trading opportunities and is higher when unin-

formed trading volatility and market liquidity are higher.
2 The latter channel is consistent with the observation that institutional 

investors often concentrate their trading in high volume securities and 

sometimes even pay exchanges to trade against retail order flow. 
3 The assumption of a random horizon is largely for tractability and is 

not qualitatively important for our primary results. What is key is that 

a random horizon induces the trader to discount future profits. We ex- 

pect our results to carry over to settings with a fixed horizon that feature 

discounting for other reasons (e.g., if the trader has a subjective discount 

factor or the risk-free rate is nonzero). Section 4.2.5 discusses how our 

results are affected when there is no discounting. 
4 The unobservability of acquisition plays an important role. In a com- 

panion paper ( Banerjee and Breon-Drish, 2019 ), we consider a setting 

in which entry (and implicitly the associated information acquisition) 

is publicly observable, and we explore the implications of allowing the 

strategic trader to choose when to enter a new trading opportunity. 
However, because the trader optimally exploits her infor-

mational advantage smoothly, the equilibrium price impact

and market uncertainty are invariant to the rate at which

she acquires information. In contrast, when information

costs are lumpy, dynamic information acquisition generally

leads to equilibrium breakdown. We show that there can-

not exist any Markovian equilibria with endogenous infor-

mation acquisition and strategic trading, including those in

which the trader can employ mixed acquisition strategies. 5

The analysis in Section 3 implies that allowing for en-

dogenous information acquisition has novel implications

for the dynamics of market liquidity and how well prices

reflect information about fundamentals. As is common in

the literature, we capture market liquidity using price im-

pact (i.e., Kyle’s λ). Moreover, following Weller (2017) , we

study the behavior of two related but distinct notions of

how well prices reflect information about fundamentals:

price informativeness, which is an absolute measure of the

total information content of prices, and informational effi-

ciency, which is a relative measure of the fraction of the

strategic trader’s private information revealed by prices. 6

When the trader is endowed with information, as in stan-

dard strategic trading models, more precise private infor-

mation is associated with higher price impact and, conse-

quently, lower market liquidity. Moreover, both price infor-

mativeness and informational efficiency increase over time

as the strategic trader gradually loses her informational ad-

vantage over the market maker. 

These predictions do not hold when information acqui-

sition is endogenous. First, we show that the trader op-

timally increases the precision of her signal when noise

trading volatility is high and price impact is low, be-

cause this is when trading on private information is more

valuable. This implies that adverse selection and liquid-

ity can be positively related in our model: shocks to un-

informed trading volatility simultaneously lead to higher

liquidity (lower λ) and increased information acquisition.

These predictions are broadly consistent with the evidence

presented by Ben-Rephael, Da and Israelsen (2017) , who

show that their measure of abnormal institutional investor

attention is higher on days with higher abnormal trading

volume, and Drake, Roulstone and Thornock (2015) who

show that search activity on the Electronic Data Gather-

ing, Analysis, Retrieval system (EDGAR) is higher following

days with high turnover. 7 
5 Our nonexistence result is more general, and applies in any setting 

in which so-called trade-timing indifference holds. We focus attention on 

Markovian settings for analytical tractability in establishing trade-timing 

indifference and for consistency with prior work. Moreover, we allow 

the equilibrium strategies to depend on an arbitrarily large (though fi- 

nite) number of state variables. As such, the focus on Markov equilibria is 

less restrictive than it may initially appear. The class of mixed strategies 

we rule out include equilibria that involve discrete mixing in which the 

trader acquires at a countable collection of times, continuous mixing in 

which the trader acquires information with a given intensity over some 

interval of time, or both. 
6 More precisely, we define price informativeness as the percentage re- 

duction in the market maker’s posterior variance by date t , and infor- 

mational efficiency as the ratio of the market maker’s posterior precision 

about payoffs to the strategic trader’s posterior precision. 
7 While information available on Bloomberg and EDGAR is nominally 

public, since at least Kim and Verrecchia (1994) , it has been recognized 
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Second, we show that the equilibrium price impact and 

market uncertainty are unaffected by the rate at which the 

trader acquires information. Because she can strategically 

respond to changes in price impact by trading more or less 

aggressively, she trades gradually to maximize the value 

of her private information. As a result, even though the 

trader’s rate of information acquisition depends on trad- 

ing opportunities (e.g., noise trading volatility), the rate at 

which the market maker learns about fundamentals does 

not. An immediate consequence is that informational ef- 

ficiency and price informativeness can move in opposite 

directions when information acquisition is endogenous. 

While price informativeness always increases over time, in- 

formational efficiency can decrease when the trader ac- 

quires private information more quickly than the market 

maker learns from order flow. Moreover, the disconnect 

between price efficiency and informativeness is more likely 

when uninformed trading volatility is high and the trader 

faces more uncertainty about the asset payoff. Importantly, 

this set of predictions flows naturally from the strategic 

behavior of the trader and distinguishes our model both 

from ones with exogenous information endowment and 

from models of dynamic acquisition that feature compet- 

itive trading (e.g., Han, 2018 ). 

The nonexistence results of Section 4 further empha- 

size the importance of carefully considering endogenous 

information acquisition and, specifically, how one models 

it. Our analysis uncovers two key economic forces that ap- 

ply to settings in which information costs are lumpy and 

which generally lead to equilibrium breakdown. First, if a 

trader can acquire information earlier than the market an- 

ticipates without being detected, she can exploit her infor- 

mational advantage by trading against a pricing rule that 

is insufficiently responsive. We refer to this as a preemp- 

tion deviation and show that it rules out any equilibria in 

which she acquires information after the initial date. While 

particularly transparent in our setting, this force is likely to 

rule out pure-strategy acquisition equilibria with delay in 

more general settings (e.g., with multiple strategic or non- 

strategic traders). 

Second, because she optimally smoothes her trades over 

time, a strategic trader’s gains from being informed over 

any short period are small when trading opportunities are 

frequent. In continuous time, this leads to trade-timing 

indifference; that is, over any finite interval of time, an 

informed strategic trader is indifferent between trading 

along her equilibrium strategy or refraining from trade 

over that interval and then trading optimally going for- 

ward. 8 This implies that instead of acquiring information at 
that a natural source of private information for a trader is a superior abil- 

ity to process public information. Hence, in the recent literature on search 

activity it is common to interpret searches as a proxy for private informa- 

tion acquisition. Evidence exists that identifying private information with 

superior processing of public information is reasonable. For instance, in 

the context of short-selling, Engelberg, Reed and Ringgenberg (2012) doc- 

ument that short-sellers’ information advantage is, in large part, due to 

their skill in utilizing publicly available information. 
8 This property of the standard Kyle (1985) framework was first noted 

by Back (1992) . It also applies to settings in which the strategic trader is 

risk averse, or the market maker is risk averse or not perfectly competi- 

tive, or both. Economically, timing indifference arises because, in equilib- 
the time prescribed in (any conjectured) equilibrium, the 

trader can instead wait over an interval, and then acquire 

information. This delay deviation is strictly profitable be- 

cause she does not incur a loss in expected trading gains, 

but benefits (in present value) by delaying the cost of in- 

formation acquisition. 

Our nonexistence result rules out a large class of equi- 

libria. Moreover, as we discuss in Section 4.2 , trade timing 

indifference and the delay deviation are pervasive. They 

arise naturally under more general assumptions about the 

market maker’s preferences, the trader’s risk aversion and 

information endowment, the frequency of trading (i.e., 

when trading is frequent, but not continuous), and in the 

absence of discounting. 

We conclude by discussing some implications for fu- 

ture work. Our analysis highlights the importance of ex- 

plicitly accounting for endogenous information acquisition 

in models of strategic trading. The trading equilibrium with 

endogenous acquisition, when it exists, is qualitatively dif- 

ferent from one in which investors are endowed with 

private information. This is particularly important for em- 

pirical and policy analysis. One cannot simply interpret ex- 

isting models as reduced form variants of models with en- 

dogenous information acquisition. Furthermore, the sharp 

contrast in conclusions across the smooth and lumpy cost 

cases emphasizes that the choice of the information acqui- 

sition technology is not simply a matter of modeling con- 

venience or tractability but has important consequences 

for equilibrium outcomes. 

Our paper is at the intersection of two closely related 

literatures. The first follows Kyle (1985) and focuses on 

strategic trading by investors who are exogenously en- 

dowed with information about the asset payoff (e.g., see 

Back, 1992; Back and Baruch, 2004; Caldentey and Stac- 

chetti, 2010; Collin-Dufresne and Fos, 2016 ). The second 

follows Grossman and Stiglitz (1980) and studies endoge- 

nous information acquisition in financial markets. In con- 

trast to our setting, these papers restrict investors to ac- 

quire information (or commit to a sequence of signals) be- 

fore the start of trade. 9 

Two notable exceptions are Banerjee and Breon-Drish 

(2019) and Han (2018) . A companion to our paper, Banerjee 

and Breon-Drish (2019) consider a strategic trading envi- 

ronment but study dynamic information acquisition and 

entry that is detectable by the market maker. Importantly, 

when information costs are lumpy but entry is observable, 

they show that equilibria can be sustained. Moreover, the 

model features delayed entry and information acquisition 

by strategic traders. 
rium, there cannot be any predictability in the level or slope of the price 

function if the trader refrains from trading. If there were, then she could 

deviate from any proposed trading strategy by waiting and then exploit 

such predictability. 
9 For instance, Back and Pedersen (1998) and Holden and Subrah- 

manyam (2002) allow investors to precommit to receiving signals at 

particular dates, while Kendall (2018) , Dugast and Foucault (2018) , and 

Huang and Yueshen (2018) incorporate a time-cost of information. 

Veldkamp (2006) considers a sequence of one-period information acqui- 

sition decisions. In all these cases, the information choices occur before 

trading and so acquisition is effectively a static decision. 
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Han (2018) considers a dynamic model in which het-

erogeneously informed, competitive investors á la Hellwig

(1980) , as generalized by Breon-Drish (2015) , dynamically

choose to allocate attention in response to changes in ag-

gregate uncertainty. He shows that investors acquire more

precise information when uncertainty is high (as in our

smooth acquisition case), which feeds back through prices

to lower uncertainty in future periods. This contrasts with

our setting in which the rate at which the trader learns is

higher when her uncertainty is high, but future public (i.e.,

the market maker’s) uncertainty is unaffected by the rate

of information acquisition. This is due to the fact that, in

our setting, the strategic trader optimally smoothes her use

of information over time. This illustrates an important dif-

ference between dynamic information acquisition in mod-

els of strategic versus competitive trading. 

Finally, because the market maker does not know how

informed the strategic trader is, our paper is related to a

recent literature that studies markets in which some par-

ticipants face uncertainty about the existence or informed-

ness of others (e.g., Chakraborty and Yılmaz, 2004; Alti,

Kaniel and Yoeli, 2012; Li, 2013; Banerjee and Green, 2015;

Back, Crotty and Li, 2017; Dai, Wang and Yang, 2019 ). Of-

ten, uncertainty about whether others are informed can be

nested in a more general model in which investors learn

not only about fundamentals, but also about the informa-

tion that others have. However, this need not always be

the case, as this higher order uncertainty can lead to equi-

librium nonexistence and market breakdown in some set-

tings. 10 

2. Model setup 

Our framework is based on the continuous-time Kyle

(1985) model with a random horizon, as in Back and

Baruch (2004) and Caldentey and Stacchetti (2010) , gener-

alized to allow for stochastic volatility in noise trading as

in Collin-Dufresne and Fos (2016) . 11 There are two assets:

a risky asset and a risk-free asset with interest rate nor-

malized to zero. The risky asset pays off a terminal value

V ~ N (0, �0 ) at random time T , where T is exponentially

distributed with rate r and independent of V . 12 We assume

that all market participants have common priors over the

distribution of payoffs and signals. 
10 Dai, Wang and Yang (2019) show an analogous result when a risk- 

neutral, competitive market maker faces uncertainty about the existence 

of an (exogenously) informed, strategic trader. They show that equilib- 

rium existence can be restored when the market maker is a monopolist. 

In our setting, because the strategic trader chooses when to acquire infor- 

mation, nonexistence can obtain even when the market maker is a mo- 

nopolist. 
11 We introduce stochastic volatility so that the value of information 

varies over time in a non-trivial, but tractable and economically reason- 

able, way. In a previous version of this paper, we showed that similar re- 

sults hold when there is an ongoing flow of public news about the asset 

value itself. 
12 While we consider the case of a fixed asset value V for comparability 

to previous work, there is no difficulty in accommodating an asset value 

that evolves over time as dV t = (a (t) − b(t) V t ) dt + σV (t) dW Vt for some 

general, deterministic functions a, b , and σ V and independent Brownian 

motion W Vt . Furthermore, none of our results differ qualitatively in such 

a setting. It is also straightforward to extend our results to allow for a 

general, continuous distribution for T . 

 

 

 

 

 

 

 

 

 

 

 

There is a single, risk-neutral strategic trader. Let X t

denote the cumulative holdings of the trader, and sup-

pose the initial position X 0 = 0 . In addition to the strategic

trader, noise traders hold Z t shares of the asset at time t ,

where 

dZ t = νt dW Zt , (1)

and noise trading volatility νt can follow a general, positive

stochastic process. We assume 

dνt 

νt 
= μν( t, νt ) dt + σν( t, νt ) dW νt , (2)

where W Zt and W νt are independent Brownian motions,

and the coefficients are such that there exists a unique,

strong solution to the stochastic differential equation

(SDE). 13 Moreover, we assume that νt is publicly observ-

able to all market participants. This is without loss because

νt is the equilibrium order flow volatility and can be in-

ferred perfectly from the realized quadratic variation of or-

der flow. 

The key difference from the existing literature is that

the trader is not endowed with information about V . In-

stead, we assume that she can acquire costly information

about V at a time of her choosing. We separately con-

sider two types of information technology available to the

trader. In Section 3 , the cost of information acquisition is

“smooth.” The trader observes a flow of signals { S t } and

chooses the (instantaneous) precision of these signals, ηt ,

optimally, subject to a flow cost incurred at a rate c ( η) dt .

This captures settings in which traders can dynamically ad-

just the level of attention or scrutiny they pay to informa-

tion available to them. In Section 4 , we assume that the

cost of acquisition is “lumpy.” The trader has access to a

(discrete) signal S 0 at fixed cost c > 0, but the trader op-

timally chooses the time τ at which to acquire it. This ap-

proximates settings in which information acquisition in-

volves a fixed cost, e.g., to conduct new research, hire

additional analysts, or invest in new technology. We for-

mally describe the assumptions about acquisition costs in

Sections 3 and 4 . 

A competitive, risk-neutral market maker sets the price

of the risky asset equal to the conditional expected payoff

given the public information set. Let F 

P 
t denote the pub-

lic information filtration, which is that induced from ob-

serving the aggregate order flow process Y t = X t + Z t and

stochastic noise trading volatility νt , i.e., F 

P 
t is the augmen-

tation of the filtration σ ({ νt , Y t }). Crucially, whether or not

the trader has acquired information (or how much infor-

mation has been acquired) is not directly observable. In-

stead, as part of updating his beliefs about the asset value,

the market maker must use the public information to in-

fer how informed the trader is. The price at time t < T is

given by 

P t = E 

[
V 

∣∣F 

P 
t 

]
. (3)

Let F 

I 
t denote the augmentation of the filtration σ (F 

P 
t ∪

σ ( { S t } ) ) . Thus, F 

I 
t represents an informed trader’s infor-
13 For concreteness, we specify that the shocks to ν are Brownian and 

that the ν process is Markov, but there is no difficulty in extending the 

shocks to be general martingales and allowing for history-dependence as 

in Collin-Dufresne and Fos (2016) . 



462 S. Banerjee and B. Breon-Drish / Journal of Financial Economics 138 (2020) 458–482 

 

mation set. Following Back (1992) , we require an admis- 

sible trading strategy to be a semimartingale adapted to 

the trader’s filtration, which is a minimal condition for 

stochastic integration with respect to X to be well defined. 

That is, in the case of smooth information acquisition, her 

strategy must be adapted to F 

I 
t , and in the case of lumpy 

information acquisition her pre-acquisition trading strategy 

must be adapted to F 

P 
t and her post-acquisition strategy 

adapted to F 

I 
t . Our definition of equilibrium is standard, 

but modified to account for endogenous information acqui- 

sition. 

Definition 1 . An equilibrium is (i) an information acquisition 

strategy and an admissible trading strategy X t for the trader 

and (ii) a price process P t , such that, given the trader’s strat- 

egy the price process satisfies Eq. (3) and, given the price pro- 

cess, the trading strategy and acquisition strategy maximize 

the expected profit 

E 

[
( V − P T ) X T + 

∫ 
[0 ,T ] 

X u − dP u 

]
. (4) 

In the case of smooth costs, the information acquisition 

strategy is a F 

I 
t -measurable precision process ηt ≥ 0. In 

the case of lumpy costs, the information acquisition strat- 

egy is a probability distribution over the set T of F 

P 
t - 

measurable stopping times. 14 We place additional structure 

on the class of admissible trading strategies and informa- 

tion acquisition strategies in the following Sections. 

Finally, we let J ( t , · ) denote the value function for a 

trader of type s : 

J(t, ·) = E 

[
( V − P T ) X T + 

∫ 
[ t,T ] 

X u − dP u 

]
= E 

[∫ 
[ t,T ] 

( V − P u − ) dX u + [ X, V − P ] [ t,T ] 

]
= E 

[∫ 
[ t, ∞ ) 

e −r(u −t) ( V − P u − ) dX u 

+ 

∫ 
[ t, ∞ ) 

e −r(u −t) d[ X, V − P ] u 

]
(5) 

where the first equality follows from the integration by 

parts formula for semimartingales and the second from the 

fact that T is independently exponentially distributed. 

2.1. Discussion of assumptions 

Our model assumptions make the analysis in 

Section 3 tractable and allow us to compare our results to 

the existing literature in a unified setting. However, our 

nonexistence results in Section 4 apply to more general 

settings in which we relax most of our assumptions on 

the payoff structure and the process for noise trade. For 

instance, here we focus on stochastic volatility as the 

key determinant of the trader’s information choice, be- 

cause it is a natural, empirically relevant channel through 
14 As we discuss further in Section 4 , this notion of lumpy informa- 

tion acquisition allows the trader to follow mixed acquisition strategies 

by randomizing over stopping times in T . 
which the value of acquiring information changes over 

time. Similarly, the assumption that the asset payoff

V is normally distributed is standard in the literature, 

and provides a natural benchmark. As we describe in 

Appendix B , the nonexistence results of Section 4 obtain 

even when we allow the risky payoff to evolve over time 

and be a general (sufficiently smooth) function of the 

private information of the trader and an arbitrary number 

of publicly observable signals (news). Moreover, as we 

discuss in Section 4.2 , similar nonexistence results obtain 

under alternative assumptions about the market maker’s 

objective function, the trader’s preferences, discreteness 

in trading opportunities, and (non)discounting of future 

payoffs. 

To isolate and emphasize the implications of endoge- 

nous information acquisition, we follow the literature by 

assuming that the market participants begin with common 

priors, and the trader is not endowed with any private in- 

formation. In practice, traders can be endowed with some 

private information in addition to acquiring costly infor- 

mation. We expect that our results would be qualitatively 

similar in settings in which the trader is initially endowed 

with certain types of payoff-relevant, private information. 

For instance, the analysis in Section 3 can allow for an 

initial lump of private information, with either exogenous 

or endogenous precision, in the form of a conditionally 

normal signal about V . Our key results on the dynamics 

of liquidity and market uncertainty would be qualita- 

tively identical in such a setting. As we discuss further in 

Section 4.2.3 , we expect the key economic forces that lead 

to nonexistence in the case of lumpy costs also apply in 

settings in which the strategic trader is initially endowed 

with some private information about the asset payoff. Al- 

lowing for private information that is not directly relevant, 

but could affect the trader’s acquisition strategy (e.g., about 

the acquisition cost or the trader’s preferences), is substan- 

tially more challenging and beyond the scope of our paper. 

3. Smooth acquisition 

In this section, we consider a setting in which the infor- 

mation acquisition cost is smooth. 15 We assume the trader 

can observe a flow of signals of the form 

dS t = V d t + 

√ 

1 

ηt 
d W st , (6) 

where W st is a standard Brownian motion, independent 

of W νt and W Zt and ηt is the instantaneous precision 

of the signal process. Given her information set F 

I 
t = 

σ ( { S s , νs , Y s } 0 ≤s ≤t ) , the trader dynamically chooses the pre- 

cision process ηt , subject to a flow cost incurred at a rate 

c ( η) dt . We assume that the cost function c : [0, ∞ ) → [0,

∞ ) is twice continuously differentiable with c ≥ 0, c ′ ≥ 0, 

c ′′ > 0. We also assume that c ′ ( 0 ) = 0 and lim η→∞ 

c ′ ( η) = 

∞ , which ensures that c ′ ( η) has a well defined, continu- 

ously differentiable inverse function f ( ·) ≡
[
c ′ 
]−1 

( ·) on all 

of [0, ∞ ). 
15 We thank Dmitry Orlov for suggesting that we explore this approach. 
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3.1. Characterizing the equilibrium 

Our analysis of the equilibrium largely follows that in

Collin-Dufresne and Fos (2016) , generalized when neces-

sary for endogenous precision choice. Denote the trader’s

conditional beliefs about the payoff V by V t ≡ E [ V |F 

I 
t ] and

�t ≡ var [ V |F 

I 
t ] . Denote the market maker’s conditional be-

liefs about the trader’s value estimate by V̄ t ≡ E [ V t |F 

P 
t ] and

	t ≡ var [ V t |F 

P 
t ] and denote his conditional variance of the

asset value itself as �t = var [ V |F 

P 
t ] . By the law of iterated

expectations, V t is also the market maker’s conditional ex-

pectation of the asset value itself, and by the law of total

variance �t = �t + 	t . 

Following the literature, we will search for an equilib-

rium in which (i) the optimal trading strategy is of the

form: 

d X t = θt d t, where θt = βt ( V t − P t ) , (7)

where β t is a F 

P 
t -adapted process, (ii) the optimal preci-

sion choice ηt is a F 

P 
t -adapted process, (iii) the pricing rule

is 

dP t = λt dY t , (8)

where λt is a F 

P 
t -adapted process, and (iv) both the trader

and market maker learn the asset value if the economy

continues indefinitely (i.e., �t → 0, �t → 0). 16 We require

that the trading strategy satisfies a standard admissibility

condition to rule out doubling-type strategies that accu-

mulate unbounded losses followed by unbounded gains: 

E 

[ ∫ ∞ 

0 

e −rs θ2 
s ds 

] 
< ∞ . (9)

We need to show that (i) given the conjectured trading

and information acquisition strategy, the optimal pricing

rule takes the conjectured form, and (ii) given the conjec-

tured pricing rule, the optimal trading and information ac-

quisition strategy take the conjectured form. We sketch the

derivation in the text, and Appendix A presents a formal

proof. We proceed by first considering the market maker’s

filtering problem, then the trader’s optimization problem,

and then jointly enforcing the optimality conditions de-

rived for each agent. 

3.2. The market maker’s problem 

The market maker must filter the asset value from the

order flow. Because the trader is better informed than the

market maker, the law of iterated expectations implies that

it is sufficient that he filter the trader’s value estimate from

order flow. The market maker must compute 

E 

[
V 

∣∣F 

P 
t 

]
= E 

[
E 

[
V 

∣∣F 

I 
t 

]∣∣F 

P 
t 

]
= E 

[
V t 

∣∣F 

P 
t 

]
(10)
16 We are not restricting the trader to best responses with F P t -adapted 

coefficients. Rather, given the conjectured pricing rule, we establish that 

the trader’s best response is of the given linear form, with both β t and ηt 

being F P t -adapted. Hence, even though information acquisition is not di- 

rectly observable, in equilibrium the market maker effectively knows the 

trader’s optimal precision choice at each instant. Given the class of preci- 

sion cost functions that we consider, conjecture (iv) can be derived as a 

result in equilibria that result under conjectures (i)–(iii). For expositional 

clarity and to eliminate notational clutter, we formulate it as a conjecture 

to be verified. 

 

 

from observing 

dY = dX + dZ = βt (V t − P t ) dt + νt dW Zt . (11)

Using standard filtering theory ( Liptser and Shiryaev, 2001 ,

Chapter 12), under the conjectured acquisition strategy, the

trader’s beliefs evolve according to 

dV t = 

√ 

ηt �t d ˆ W V t , (12)

d�t = −ηt �
2 
t dt, (13)

where d ˆ W V t is a Brownian motion under the trader’s fil-

tration. Under our maintained conjecture (to be verified)

that ηt is F 

P 
t -adapted, we can further apply standard filter-

ing theory to conclude that the market maker’s conditional

mean and variance, ( V t , 	t ) of V t , are therefore character-

ized by 

d ̄V t = 

βt 	t 

ν2 
t 

(
dY t − βt 

(
V̄ t − P t 

)
dt 
)
, (14)

d	t = 

(
ηt �

2 
t −

βt 	2 
t 

ν2 
t 

)
dt. (15)

Enforcing efficient pricing, i.e., P t = V t , and setting coeffi-

cients equal to the conjectured pricing rule yields 

λt = 

βt 	t 

ν2 
t 

(16)

with 

d	t = 

(
ηt �

2 
t − λ2 

t ν
2 
t 

)
dt. (17)

3.3. The trader’s problem 

Let M t = V t − P t . Given the conjectured pricing rule and

the dynamics of the trader’s beliefs ( V t , �t ) in Eqs. (12) and

(13) , note that 

d M t = d V t − d P t = 

√ 

ηt �t d ˆ W V t − λt ( θt d t + νt d W Zt ) , (18)

where ˆ W V t and W Zt are independent Brownian motions un-

der the trader’s filtration. Conjecture that the trader’s value

function is of the form 

J = 

M 

2 
t + κ1 t 

2 λt 
+ κ2 t (19)

for some locally deterministic processes κ jt with zero in-

stantaneous volatility, i.e., d κ jt = k jt d t, to be determined.

The Hamilton–Jacobi–Bellman (HJB) equation implies 

0 = sup 

θ∈ R ,η> 0 

E t 

⎡ ⎢ ⎣ 

−rJd t + J κ1 
d κ1 t + J κ2 

d κ2 t 

+ J M 

d M t + J ( 1 /λ) d ( 1 /λt ) 

+ 

1 
2 

J MM 

( dM t ) 
2 + J M ( 1 /λ) d M t d ( 1 /λ) t 

+ θt M t d t − c ( η) d t 

⎤ ⎥ ⎦ 

(20)

= sup 

θ∈ R ,η> 0 

E t 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

(
−r 

M 

2 
t + κ1 t 

2 λt 
d t + 

M 

2 
t + κ1 t 

2 
d ( 1 /λt ) 

)
+ 

(
M t 

λt 
dM t + θt M t dt 

)
+ 

(
1 

2 λt 
d κ1 t + 

1 
2 

1 
λt 

( d M t ) 
2 
)

+ ( dκ2 t − ( rκ2 t + c ( η) ) dt ) 
+ M t dM t d ( 1 /λ) t 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

(21)
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where the second equality substitutes for the derivatives 

of J and the dynamics of the processes, and groups terms. 

The first order condition with respect to θ t is 

−J M 

λt + M t = 0 , (22) 

which holds trivially because J M 

= M t /λt . The first order 

condition with respect to η is 

1 
2 

J MM 

�2 − c ′ ( ηt ) = 0 (23) 

where J MM 

= 1 /λt . Because c ′′ ( η) > 0, the second order 

condition that the Hessian with respect to ( θ , ν) is neg- 

ative semi-definite is always satisfied at any interior opti- 

mum. Furthermore, because c ′ (0) = 0 , the optimal preci- 

sion is always interior (i.e., the trader never finds it op- 

timal to choose ηt = 0 ). So, given the conjectured value 

function, the optimal choice of precision is given by 

η∗
t = f 

(
�2 

t 

2 λt 

)
. (24) 

Because λt is F 

P 
t -adapted, it follows that �t and the pro- 

cess ηt so defined are as well. 

Finally, we have E t [ dJ t + (θt M t − c(η)) dt ] = 0 as re- 

quired in Eq. (21) if we can find (i) a process for ( 1 
λt 

, �t ) 

that satisfies the forward-backward stochastic differential 

equation: 

E t 

[ 
d 

1 

λt 

] 
= 

r 

λt 
dt (25) 

d �t = d 	t + d �t = −λ2 
t ν

2 
t dt (26) 

and (ii) processes κ jt that satisfy: 

dκ1 t = −
(
ηt �

2 
t + λ2 

t ν
2 
t 

)
dt (27) 

dκ2 t = ( rκ2 t + c(ηt ) ) dt (28) 

with κ jt → 0. 

3.4. Equilibrium conditions 

In our setting, �t can be expressed as 

�t = 	t + �t − �∞ 

= 	t + 

∫ ∞ 

t 

ηs �
2 
s ds, (29) 

where the first equality uses the law of total variance � = 

	 + � and the conjecture �t → 0, and the second equal- 

ity uses the dynamics of �t to substitute for the integral. 

Intuitively, this implies that the market maker’s conditional 

variance of V (i.e., �t ) is equal to the trader’s forward look- 

ing informational advantage, which consists of her current 

advantage 	 t plus the advantage that will accrue to her 

from future learning 
∫ ∞ 

t ηs �2 
s ds . 

If we define λt = e −rt 

√ 

�t 
G t 

for some process G t to be 

determined, then the equations for λt and �t (i.e., ) sep- 

arate: √ 

G t = E t 

[∫ ∞ 

t 

1 

2 

e −2 rs ν
2 
s √ 

G s 

ds 

]
(30) 

d�t 

�
= −e −2 rt ν

2 
t 

G 

dt (31) 

t t 
with boundary conditions lim t→∞ 

G t = 0 and �0 = var (V ) . 

Intuitively, as in Collin-Dufresne and Fos (2016) , G t is a 

measure of the amount of future noise trading volatil- 

ity that is relevant for the trader when formulating her 

optimal trading strategy. If one can find such processes 

then the market depth process (1/ λt ) so defined satisfies 

Eq. (25) . This implies the following result. 

Theorem 1 . Suppose there exists a solution G t to Eq. (30) , and

suppose νt is uniformly bounded between ν > ν > 0 , then 

there exists an equilibrium in which: 

(i) the equilibrium pricing rule is given by Eq. (8) , where 

λt = e −rt 

√ 

�t 

G t 
, �t = e −

∫ t 
0 e 

−2 rs ν
2 
s 

G s 
ds �0 ; (32) 

(ii) the optimal precision process is given by ηt = f 

(
�2 

t 
2 λt 

)
, 

where f ( ·) ≡
[
c ′ 
]−1 

( ·) , �0 = �0 , �t evolves according to 

Eq. (13) , and �t → 0 almost surely; 

(iii) the optimal trading rule is given by Eq. (7) , where 

βt = 

λt ν
2 
t 

	t 
, 	0 = �0 , 	 t evolves according to Eq. (17) , and 

	 t → 0 almost surely; and 

(iv) the informed trader’s value function is given by 

Eq. (19) , where the κ jt are given by: 

κ1 t = �t + �t (33) 

κ2 t = −E t 

[ ∫ ∞ 

t 

e −r(s −t) c(ηs ) ds 

] 
(34) 

This theorem characterizes equilibrium assuming exis- 

tence of a solution G t to Eq. (30) . The following lemma es- 

tablishes existence under some additional conditions. 

Lemma 1 . If νt is uniformly bounded between ν < ν, then 

there exists a solution G t that satisfies e −2 rt ν
2 r ≤ G t ≤ e −2 rt ν

2 r . 

Furthermore, when there exists a solution G t (with ν bounded 

or not), then we have G t = γ 2 (t, νt ) for a function γ ( · ) that

solves the partial differential equation 

γt + νμν(t, ν) γν + 

1 

2 

ν2 σ 2 
ν (t, ν) γνν + 

1 

2 

e −2 rt ν2 

γ
= 0 , 

lim 

t→∞ 

γ (t, ν) = 0 . (35) 

If νt has a deterministic drift coefficient, i.e., 

dνt 

νt 
= μν(t) dt + σν(t, νt ) dW νt , (36) 

which satisfies 
∫ ∞ 

t e 
∫ s 

t 2(μν (u ) −r) du ds < ∞ for all t ≥ 0, then 

there exists a solution G t available in closed form as G t = 

B (t) ν2 
t , where 

B (t) = e −2 rt 

∫ ∞ 

t 

e 
∫ s 

t 2(μν (u ) −r) du ds. (37) 

A few comments about the lemma are in order. First, 

the uniform upper and lower bounds on νt are sufficient 

to guarantee existence of a solution, but are not necessary. 

The case with deterministic drift does not necessarily sat- 

isfy either of them, but we are able to construct a solution 

in closed form as in the lemma. Second, assuming that a 

solution G t exists, a uniform lower (upper) bound on νt 

ensures the lower (upper) bound on G t . That is, we need 
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17 This is similar to the observation made by Collin-Dufresne and Fos 

(2015) , who show that Schedule 13D investors are more likely to trade on 

days when liquidity is high and empirical estimates of standard adverse 

selection measures are low. Because their model has no information ac- 

quisition, the degree of information asymmetry falls over time (i.e., in- 

formational efficiency increases over time). Because the trader acquires 

information more aggressively when λ is low, in our model an increase 

in information asymmetry can coincide with a decrease in price impact. 
to bound νt from only one side to bound G t from the same

side. Third, the PDE representation for G t holds when there

is a solution, bounded or not, and relies on the fact that

the ν process is Markov. Finally, while the deterministic-

drift case may seem a bit artificial at first glance, it nests

natural benchmark cases of geometric Brownian motion

(i.e., μν ( t ) ≡ μν , σν ( t, νt ) ≡ σν ) and general martingale

dynamics (i.e., μν ( t ) ≡ 0). 

3.5. Implications of endogenous information acquisition 

We now show that allowing for endogenous informa-

tion acquisition has important implications for price im-

pact, informational efficiency and the total informativeness

of prices. Moreover, our analysis suggests that one must

be careful in interpreting patterns in observable return-

volume characteristics as evidence for unobservable infor-

mation acquisition. 

We begin with a characterization of price impact, or

Kyle’s λ, in our setting. 

Corollary 1 . Suppose there exists a solution G t to Eq. (30) ,

and let γ ( t, νt ) = 

√ 

G t . The evolution of market depth 1 
λt 

is 

d( 1 
λt 

) 

1 
λt 

= rdt + νt σν(t, νt ) 
γν

γ
dW νt . (38)

Therefore, the evolution of price impact λt is 

dλt 

λt 
= 

(
ν2 σ 2 

ν (t, νt ) 
γ 2 

ν

γ 2 
− r 

)
dt − νt σν( t, νt ) 

γν

γ
dW νt . 

(39)

Moreover, if νt has a deterministic drift coefficient, i.e.,

μν( t, ν) = μν( t ) , then the evolution of λ simplifies to 

dλt 

λt 
= 

(
σ 2 

ν (t, νt ) − r 
)
d t − σν( t, νt ) d W νt . (40)

As in Collin-Dufresne and Fos (2016) , price impact is

instantaneously negatively correlated with innovations in

noise trading volatility. The drift in λ can be either positive

or negative and generally depends on the current state of

νt . This is in contrast to earlier strategic trading models in

which λ is either constant (e.g., in Kyle, 1985 ), a martin-

gale (e.g., in Back, 1992 ), a supermartingale (e.g., in Back

and Baruch, 2004 ) or a submartingale (e.g., Collin-Dufresne

and Fos, 2016 ). To gain some intuition, note that the equi-

librium price impact must be such that the trader is in-

different between trading immediately or waiting, a result

first established by Back (1992) . On the one hand, stochas-

tic volatility of noise trading generates an option to wait

for higher liquidity in the future. The first term in the drift

of λ, ν2 σ 2 
ν (t, ν) 

γ 2 
ν

γ 2 , tends to push price impact up over

time to discourage waiting. On the other hand, the random

terminal date induces early trading (because future periods

are effectively discounted). To offset this incentive, the sec-

ond term in the drift (i.e., −r) pushes price impact lower

on average. Which effect dominates depends on the rela-

tive size of the two effects and in general on the current

state of noise trading volatility νt . 
Our analysis highlights that neither price impact nor re-

turn volatility are necessarily good measures of adverse se-

lection when information acquisition is endogenous. The

optimal choice of precision ηt = f 

(
�2 

t 
2 λt 

)
is negatively re-

lated to price impact λt . Intuitively, the trader acquires

more precise information when the market is more liq-

uid. As such, shocks to the volatility of noise trading that

lead to a decrease in price impact may simultaneously lead

to more precise information being acquired, and conse-

quently, an increase in adverse selection. 17 Similarly, note

that when νt has a deterministic drift coefficient, instanta-

neous price variance is also deterministic since: 

σ 2 
P = λ2 

t ν
2 
t = 

e −2 rt �t ν2 
t 

G t 
= e −2 rt �0 e 

− ∫ t 0 
e −2 rs 

B ( s ) 
ds 

B ( t ) 
, (41)

while information acquisition evolves stochastically and,

therefore, is unrelated to to price volatility. 

These results are especially important for empirical

analysis. Our results imply that common proxies for pri-

vately informed trading (e.g., Kyle’s λ or return volatility)

should be carefully interpreted in the presence of endoge-

nous information acquisition. This is broadly consistent

with Ben-Rephael, Da and Israelsen (2017) who docu-

ment that firms for which institutional investors exhibit

high abnormal attention also tend to have lower bid-ask

spreads. Our model implies that information acquisition

is higher when trading activity (i.e., volatility of order

flow, which is driven by noise trading volatility) is higher.

This is consistent with the evidence of Ben-Rephael, Da

and Israelsen (2017) , who show that their measure of

abnormal institutional investor attention is higher on days

with higher abnormal trading volume. Intuitively, this

is because higher noise trading volatility increases the

marginal value of acquiring private information. 

Next, we turn to the question of how the informa-

tiveness of prices evolves in our model. Because our fo-

cus is on endogenous information acquisition, our analy-

sis is well suited to understanding the distinction between

price informativeness and price efficiency. As emphasized

by Weller (2017) , price informativeness is a measure of the

total informational content of prices, and informational ef-

ficiency is a measure of how well prices aggregate existing

private information. While the two concepts are closely re-

lated, they are distinct. For instance, if investors do not ac-

quire a substantial amount of information, but there is lit-

tle noise trading, then prices can be very efficient, but not

very informative. 

A natural measure of price informativeness is 

P I t ≡ �0 − �t 

�
, (42)
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because it reflects the total amount of information that the 

market has learned about fundamentals. Similarly, a natu- 

ral measure of informational efficiency is 

IE t ≡ �t 

�t 
(43) 

because it reflects ratio of the market maker’s precision 

(i.e., �−1 
t ) to the trader’s precision (i.e., �−1 

t ). The next 

result characterizes how these measures evolve in our 

model. 

Proposition 1 . The evolution of price informativeness, PI t , is 

given by 

d P I t = −d �t 

�0 

= e −2 rt ν
2 
t �t 

G t �0 

d t (44) 

and the evolution of informational efficiency IE t is given by 

dIE t = 

d�t 

�t 
− d�t 

�t 
IE t (45) 

where d �t = −ηt �
2 
t d t and ηt = f 

(
e rt �2 

t 
2 

√ 

G t 
�t 

)
. If νt has a 

deterministic drift coefficient, i.e., μν( t, ν) = μν( t ) , then �t 

is deterministic, and information acquisition is given by ηt = 

f 

(
e rt νt �

2 
t 

2 

√ 

B ( t ) 
�t 

)
. 

The above result implies a number of novel empiri- 

cal predictions. First, somewhat surprisingly, price informa- 

tiveness is unaffected by the cost of information acquisi- 

tion. Intuitively, while the cost of information affects how 

quickly the trader acquires information, this does not af- 

fect her trading strategy because she optimally smoothes 

her use of information over time. Recall that the trader’s 

equilibrium trading rate is 

βt (V t − P t ) = ν2 
t λt 

V t − P t 

	t 
, (46) 

which is proportional to her informational advantage V t −
P t but scaled by the size of the advantage, measured in 

terms of the market maker’s conditional variance of V t (i.e., 

	 t ). When the market maker perceives a high information 

advantage (high 	 t ) he is more sensitive to order flow; the 

trader responds by trading less aggressively. When the per- 

ceived information advantage is low, prices are less sensi- 

tive to order flow, and the trader responds by trading more 

aggressively. We show that the equilibrium trading strat- 

egy is invariant to the rate of information acquisition. As a 

result, while the cost of information acquisition affects the 

rate of information acquisition by the trader, it does not af- 

fect the rate of learning by the market maker. 18 This invari- 

ance of price informativeness to information acquisition is 

a feature of information acquisition by a strategic trader 

and distinguishes our model from one in which investors 

trade competitively on their private information (e.g., Han, 

2018 ). 
18 This result is analogous to Back and Pedersen (1998) who establish 

that, in continuous-time Kyle models with a fixed amount of Gaussian 

private information to be observed by the trader, the timing of informa- 

tion arrival is irrelevant for the trader’s optimal trading strategy and mar- 

ket liquidity. 
Second, informational efficiency can increase with the 

cost of information acquisition. Note that a higher cost 

leads to a lower rate of information acquisition. 19 How- 

ever, the market maker’s rate of learning is invariant to the 

rate of information acquisition by the trader. As a result, 

the overall effect of an increase in information costs is to 

improve the relative informational position of the market 

maker versus the strategic trader. 

Third, price informativeness and informational effi- 

ciency can move in opposite directions over time. Notably, 

price informativeness unambiguously increases over time, 

as the trader continuously trades on her information and 

thereby incorporates it into the price. However, price effi- 

ciency can increase or decrease over time. When the trader 

learns sufficiently quickly (i.e., ηt �
2 
t is sufficiently large) 

relative to the market maker, informational efficiency falls. 

This disconnect between informativeness and efficiency is 

more likely when noise trading volatility is high (i.e., νt 

is high) and when the trader’s posterior uncertainty is 

high (i.e., �t is high), because these lead to more in- 

tensive private information acquisition (i.e., higher signal 

precision). 

Fig. 1 illustrates these results when noise trading 

volatility follows a geometric Brownian motion and infor- 

mation acquisition incurs a quadratic cost. As the above 

result implies, in this case, price informativeness is deter- 

ministic and informational efficiency evolves stochastically 

(as it depends on the path of νt ). The dashed line in each 

panel plots the price informativeness; the solid lines, in- 

formation efficiency along various paths of νt . Informative- 

ness increases over time, and efficiency initially tends to 

decrease and then eventually increase. While informative- 

ness is unaffected by the cost of information acquisition, 

price efficiency is higher when the cost of information is 

higher (panel A). 

Taken together, our results suggest that endogenous 

information acquisition generates novel predictions and 

empirical implications that distinguish it from standard 

strategic-trading settings with exogenous information en- 

dowment. For instance, much of the literature has inter- 

preted high price impact (high λ) as evidence of more 

asymmetric information, consistent with models in which 

strategic traders are exogenously endowed with informa- 

tion. We show that more information is acquired when 

price impact is low, which tends to increase informa- 

tion asymmetry. In most existing models of strategic trad- 

ing, price informativeness and efficiency both unambigu- 

ously increase over time. In contrast, we show that when 

the investor acquires information more quickly than it is 

incorporated into prices, endogenous information acqui- 

sition can lead to a decrease in efficiency even though 

informativeness increases over time. As such, one must 

be careful in applying the intuition developed in stan- 

dard, strategic trading models to settings in which endoge- 

nous, smooth information acquisition plays an important 

role. 
19 Because f = c −1 is the inverse cost function, an increase in the cost 

of information at all precisions appears as a decrease in f , which makes 

d � less negative. 
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Fig. 1. Evolution of price informativeness PI t and efficiency IE t . 

Price informativeness PI t is plotted as the dashed line, and information efficiency IE t paths (for different paths of νt ) are plotted as solid lines. The cost of 

information acquisition is given by c ( η) = 

c 0 
2 
η2 . Other parameters are set to �0 = 1 , r = 0 . 05 , μν = 0 , σν = 0 . 1 , and ν0 = 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Lumpy acquisition 

In this section, we study settings in which the infor-

mation acquisition technology is lumpy in that there is

a fixed cost involved with information collection (i.e., the

cost of information, starting from zero precision, includes a

nonzero, lump component). We consider a setting in which

the trader acquires a signal S at any stopping time τ ∈ T 
by paying a cost c > 0, where T denotes the set of F 

P 
t 

stopping times. 20 We assume that (before acquiring any in-

formation) the trader’s acquisition depends only on public

information up to that point. We allow for both pure and

mixed acquisition strategies by assuming the trader’s strat-

egy is a probability distribution over stopping times τ ∈
T . 21 Importantly, such strategies can involve both “con-

tinuous” mixing in which the trader acquires information

with a given intensity over an interval of times, as well

as “discrete” mixing in which the trader acquires at a

countable collection of times. If the probability distribution

over T is degenerate, then the equilibrium is one of pure-

strategy acquisition. 

We show, in contrast to the results from the Section 3 ,

there do not exist equilibria with endogenous information

acquisition in this case. Section 4.1 highlights the key eco-

nomic forces that give rise to nonexistence of equilibria.
20 The assumption that the trader observes a a single, though possibly 

multidimensional, lump of information is not crucial for our results. What 

is crucial is that obtaining information involves paying a fixed cost. As 

such, our results are robust to information technologies that provide the 

trader with a future flow of signals in return for an upfront cost of c . We 

discuss this in more detail in Section 4.2 . 
21 That is, at the beginning of the game, the trader randomly chooses 

a stopping time according to some probability distribution, and follows 

the realized strategy for the duration of the game. There are multiple, 

equivalent ways of defining randomization over stopping times. Aumann 

(1964) introduced the notion of randomizing by choosing a stopping time 

according to some probability distribution at the start of the game. Touzi 

and Vieille (2002) treat randomization by identifying the stopping strat- 

egy with an adapted, nondecreasing, right-continuous processes on [0,1] 

that represents the cumulative distribution function of the time that stop- 

ping occurs. Shmaya and Solan (2014) show, under weak conditions, that 

these definitions are equivalent. 

 

 

 

 

 

 

 

 

 

 

 

First, we show there cannot exist pure strategy equilibria

in which acquisition occurs with delay, because the trader

can deviate by preemptively acquiring information earlier

and trading against an unresponsive pricing rule. Second,

in any setting with “trade timing indifference,” as defined

below, the strategic trader can profitably deviate by wait-

ing. While her expected trading gains are unaffected due

to the indifference condition, she benefits by delaying the

cost of acquisition. This rules out the existence of both

pure strategy equilibria with immediate acquisition and

mixed strategy equilibria. The section ends with an infor-

mal discussion of the conditions that naturally give rise to

trade timing indifference in our setting. 22 

Section 4.2 explores the robustness of our nonexistence

result to alternate assumptions. We consider settings in

which (i) the strategic trader is risk-averse, (ii) the mar-

ket maker is not competitive, (iii) the informed investor is

initially informed, (iv) trading occurs sufficiently frequently

but not continuously, and (v) there is no discounting. We

show that nonexistence of equilibria is a robust outcome

with lumpy information acquisition in all of these settings.

4.1. Key economic forces 

This section presents the main economic forces that

drive nonexistence of equilibria with lumpy information

costs. Our first observation is immediate: pure strategy

equilibria in which information is acquired with some de-

lay cannot be an equilibrium. 

Proposition 2 (Preemption deviation) . There does not exist an

equilibrium in which the trader follows a pure acquisition

strategy that acquires information after time t = 0 with pos-

itive probability. That is, there does not exist any equilibrium

in pure strategies in which there is a time s > 0 such that

P (τ > s ) > 0 . 

Proof . Suppose that such an equilibrium does exist. Then

in equilibrium, the order flow is completely uninformative
22 The formal results are presented in Appendix B . 
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about V prior to time τ and therefore the pricing rule is 

insensitive to order flow before τ . In the event { τ > 0} 

(which occurs with strictly positive probability), the strate- 

gic trader can profitably deviate by unobservably acquiring 

information prior to τ and trading at an arbitrarily large 

rate with zero price impact, thereby generating unbounded 

profits. Because acquisition is unobservable by the market 

maker, he cannot respond to the deviation by adjusting the 

price impact. �

Intuitively, the result follows from the fact that when 

acquisition cannot be detected, the strategic trader cannot 

commit to acquiring information at a future date. She al- 

ways finds it profitable to deviate by preempting herself 

and acquiring information earlier. The lack of commitment 

leads to nonexistence of pure strategy equilibria with de- 

lay in information acquisition. It also immediately rules out 

equilibria in which information is never acquired. More- 

over, this incentive to preemptively acquire information is 

likely to apply more generally, e.g., in settings with multi- 

ple investors, in discrete time, and in settings with a fixed 

terminal date. 

The result implies that, with unobservable acquisition, 

the only remaining candidates for an equilibrium are those 

in which (i) the trader follows a pure acquisition strategy 

that acquires immediately, P ( τ = 0 ) = 1 , or (ii) the trader 

follows a mixed acquisition strategy. In a non-degenerate 

mixed strategy equilibrium, any stopping time τ in the set 

of stopping times on which the trader’s acquisition strat- 

egy places positive probability must have strictly positive 

probability of acquisition in any neighborhood of zero, i.e., 

for any � > 0, P (τ ∈ (0 , �)) > 0) . If any such stopping 

times did not satisfy this, then, conditional on that stop- 

ping time being realized from the original mixing random- 

ization, the trader could profitably deviate by preempting 

the conjectured strategy as in Proposition 2 . Because both 

of the remaining candidate equilibria have P (τ ∈ [0 , �)) > 

0) , if we can rule out equilibria with such a property, then 

we have eliminated all candidate equilibria. Our next re- 

sult establishes that if, in equilibrium, an informed trader’s 

problem exhibits trade timing indifference, then we can 

rule out such equilibria. 

Definition 2 . An equilibrium features trade timing indiffer- 

ence if at any date t and for each � > 0, the change 

in expected profit for an informed trader over the inter- 

val [ t, t + �) , if she does not trade over this interval and 

follows her conjectured equilibrium strategy afterward, is 

zero, i.e., if dX s t = 0 , t ∈ [ t, (t + �)) implies. 23 

E 

s 
t 

[
e −r�J s 

(
(t + �) −, ·

)
− J s 
(
t −, ·
)]

= 0 . (47) 

As first noted by Back (1992) , the above is a key fea- 

ture of continuous-time Kyle models: over any finite inter- 
23 Two points in this definition are worth clarifying. First, the – signs in 

Eq. (47) arise because we have not restricted the trader to smooth strate- 

gies. In principle, she could acquire at time t and then immediately sub- 

mit a discrete order. Because J ( t , · ) represents her forward-looking ex- 

pected profit, we must evaluate at t − to capture any discrete trade at t in 

the value function. Second, strictly speaking we require Eq. (47) to hold at 

any 
{
F P t 

}
stopping time τ . Because τ = t is a well defined stopping time 

for any given t , this implies Eq. (47) . 
val of time, the trader is indifferent between playing her 

equilibrium trading strategy or refraining from trade over 

that interval and then trading optimally from that time for- 

ward. Economically, this result arises because an equilib- 

rium pricing rule must be such that the trader does not 

perceive any exploitable predictability in the price level 

or price impact if she refrains from trading (i.e., any pre- 

dictability that can be profitably exploited, accounting for 

the random horizon). Otherwise, she would have a prof- 

itable deviation from her conjectured equilibrium trading 

strategy. It arises naturally in any (Markovian) equilibrium 

of our model. Moreover, as we highlight in Section 4.2 , it 

also arises in other related settings. 

The next result establishes the nonexistence of equilib- 

ria that feature trade timing indifference and endogenous 

information acquisition. 

Proposition 3 (Delay deviation) . Fix any � > 0 . There does 

not exist an equilibrium in which (i) trade timing indifference 

holds, and (ii) the strategic trader acquires information with 

positive probability in [0, �), i.e., in which P (τ ∈ [0 , �)) >

0) . 

Proof . Suppose an equilibrium exists and let τ ∈ T be the 

trader’s acquisition strategy. Let J̄ (t, ·) denote the gross ex- 

pected profit from acquiring information as of time t given 

that one has not acquired information previously 

J̄ (t, ·) = E 

[
J S ( t, ·) 

∣∣F 

P 
t 

]
. (48) 

We must have J U ( τ−, ·) ≤ J̄ (τ−, ·) − c, where J U ( t , · ) de-

notes the value function of the uninformed trader. Con- 

sider the following deviation by the trader: Do not ac- 

quire information at τ , do not trade in [ τ, τ + �) , and

then acquire at t = τ + � and follow the conjectured equi- 

librium trading strategy from that point forward. The ex- 

pected profit from this deviation is 

�̄dτ ≡ e −r�
E τ [ ̄J ((τ + �) −, ·) − c] − J U (τ−, ·) 

≥ e −r�
E τ [ ̄J ((τ + �) −, ·) − c] − ( ̄J (τ−, ·) − c) (49) 

= (1 − e −r�) c + E τ [ e −r� J̄ ((τ + �) −, ·) − J̄ (τ−, ·)] (50) 

= 

(
1 − e −r�

)
c > 0 , (51) 

where the final equality follows from the ob- 

servation that trade timing indifference implies 

E τ

[
E 

s 
τ

[
e −r�J s ( (τ + �) −, ·) − J s ( τ−, ·) 

]]
= 0 . �

Intuitively, the delay deviation is as follows: instead of 

acquiring information at time τ , the strategic trader can 

instead wait over the interval [ τ, τ + �) , during which she 

does not acquire and does not trade, and then acquire in- 

formation. 24 Given that future periods are discounted (due 

to the stochastic horizon T ), she benefits from delaying the 

cost of acquisition but forgoes trading gains. Due to trade 

timing indifference, the expected loss in trading gains is 

zero. Because discounted trading costs are of order �, the 

deviation leaves the trader strictly better off. 
24 The deviation holds at all times of conjectured acquisition, even those 

outside of [0, �). 
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To summarize, one can rule out existence of equilibria

with endogenous information acquisition if trade timing

indifference holds. In Appendix B , we formally characterize

sufficient conditions under which any Markovian equilib-

rium of our model must feature trade timing indifference.

We informally outline the steps here. Suppose the risky as-

set price P t is a (sufficiently smooth) function of stochastic

noise trading volatility ν and a (finite, but arbitrarily large)

set of Markovian state variables p , with evolution 

d p = μp ( t, p, ν) d t + σp ( t, p, ν) d W pt + 1 dY, (52)

which summarize the market maker’s beliefs about trader’s

private information S . 25 First, we assume that there exists

a solution to each informed trader type’s Hamilton–Jacobi–

Bellman (HJB) equation: 

0 = sup 
θ

{
−rJ s + J s t + J s ν · μν + J s p · ( μp + 1 θ ) + θ ( V − P t − ) 

+ 

1 
2 
σ 2 

ν J s νν + 

1 
2 

tr 
(
J s pp (σp σ ′ 

p + ν2 11 ′ ) 
)

+ tr 
(
J s νp σp σν1 ′ 

)}. 

(53)

We formalize this assumption in Assumption 1 in

Appendix B . It is important to note that we do not as-

sume that the HJB equation characterizes the value func-

tion, or that the trader finds it optimal to trade smoothly,

but merely that there exists a sufficiently smooth function

that satisfies the HJB equation. 

Second, Proposition 5 establishes that in any equilib-

rium, if it were to exist, an informed trader’s optimal

trading strategy is absolutely continuous, i.e., d X t = θ ( ·) d t,
where θ ( · ) denotes the trading rate, and her value func-

tion is characterized by the HJB equation. The optimality of

a smooth trading strategy extends the arguments in Kyle

(1985) and Back (1992) to our setting and arises in all

continuous-time, strategic trading models we are aware of.

Intuitively, if an informed trader does not trade smoothly

she reveals her information too quickly, which is not op-

timal. Furthermore, because Eq. (53) is linear in θ , and θ
is unconstrained, it follows that the sum of the coefficients

on θ must be identically zero and therefore the sum of the

remaining terms must also equal zero, i.e., {
−rJ s + J s t + J s ν · μν + J s p · μp 

+ 

1 
2 
σ 2 

ν J s νν + 

1 
2 

tr 
(
J s pp (σp σ ′ 

p + 1 ν2 1 

′ ) 
)

+ tr 
(
J s νp σp σν1 

′ )}=0 .

(54)

The above is simply the expected differential of the value

function of an informed investor under the assumption

that her trading rate at t is zero i.e., θt = 0 . This establishes

trade timing indifference, and Theorem 2 follows. 

Theorem 2 . There does not exist an equilibrium in which

the trader follows a pure information acquisition strategy in

which information is acquired after t = 0 with positive prob-

ability. If Assumption 1 holds, there does not exist any equi-

librium with costly information acquisition. 

The above results rule out the existence of equilibrium

in the case of unobservable information acquisition, under
25 As we discuss in the appendix, the coefficient on order-flow is nor- 

malized to one without loss of generality. Because P = g ( t, ν, p ) for a 

function g ( · ), Kyle’s lambda is given by g p · 1 . We assume that g is con- 

tinuously differentiable in t and twice continuously differentiable in the 

state variables { ν , p }. 

 

standard regularity conditions. The deviation arguments

apply generally to a large class of models that feature dis-

counting (e.g., Back and Baruch, 2004; Chau and Vayanos,

2008; Caldentey and Stacchetti, 2010 ), which implies that

the trading equilibria in these models do not naturally

arise as a consequence of costly dynamic information ac-

quisition. While these models provide useful intuition for

how exogenous (or costless) private information gets in-

corporated into prices, our analysis recommends caution

when considering settings with lumpy, endogenous infor-

mation acquisition. Moreover, our results are qualitatively

similar in related settings, as we discuss next. 

4.2. Robustness 

Preemption and delay are both robust, economically im-

portant forces that arise in dynamic settings. This section

explores the robustness of the delay deviation to alternate

settings, since establishing the existence of such a devia-

tion is sufficient to rule out both pure and mixed strategy

equilibria. 

4.2.1. Preferences of the market maker 

A possible concern about our nonexistence results is

that they are a consequence of the assumption that the

market maker is perfectly competitive and sets the price

as described in Eq. (3) . Recent work in related models sug-

gests that alternate assumptions about the market maker

(e.g., that he is a profit maximizing monopolist) could help

restore existence. 26 However, this does not recover exis-

tence of equilibria in our setting. Importantly, the argu-

ments in Propositions 2 and 3 do not rely on whether the

market maker sets prices competitively. Assumption 1 , and

consequently, Proposition 5 in Appendix B apply broadly to

settings in which the price is a sufficiently smooth function

of the underlying state variables. As such, the preemption

and delay deviations apply to a larger class of models in

which the market maker is not necessarily risk-neutral or

competitive. The key feature that is required for our delay

argument is trade timing indifference, which arises as long

as price changes and price-impact changes are not pre-

dictable when the informed strategic trader does not trade.

4.2.2. Risk aversion of the strategic trader 

Next, we explore the effect of allowing the strategic

trader to be risk-averse. Suppose that a trader with S = s

has utility u 
(
T , w 

s 
T 

)
over her terminal wealth w 

s 
T 
, where 

w 

s 
t = 

∫ t 

0 
( V − P u ) dX 

s 
u , (55)

and let her continuation value function be denoted by 

J s ( t, w t , νt , p t ) = sup 

X s 
E t 

[∫ T 

t 

u ( �, w � ) d� 

]
= sup 

X s 
E t 

[ ∫ ∞ 

t 

e −r ( � −t ) u ( �, w � ) d� 

] 
, (56)
26 For instance, Dai et al. (2019) establish nonexistence of equilibria 

when a risk-neutral, competitive market maker faces uncertainty about 

the existence of a strategic trader, but they show that existence can be 

restored when the market maker is monopolistic. 
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conditional on the economy not having ended as of t . 27 We 

argue that the delay deviation of Proposition 3 also applies 

because the equilibrium must feature trade timing indiffer- 

ence. 

Arguments analogous to Proposition 5 imply that, in 

equilibrium, any optimal trading strategy for an informed 

trader is absolutely continuous (i.e., d X s t = θ s 
t d t), and the 

value function above satisfies the following HJB equa- 

tion: 

0 = sup 

θ

⎧ ⎪ ⎨ ⎪ ⎩ 

r ( u ( t, w t ) − J s ) + J s t 

+ J s ν · μ + J s p · ( α + 1 θ ) + θ ( V t − P t − ) J w 

+ 

1 
2 
σ 2 

ν J s νν + 

1 
2 

tr 
(
J s pp (σp σ ′ 

p + ν2 11 

′ ) 
)

+ tr 
(
J s νp σp σν1 

′ )
⎫ ⎪ ⎬ ⎪ ⎭ 

. (57) 

As before, the above problem is linear in θ and so a finite 

optimum requires 

J s p · 1 + ( V t − P t − ) J w 

= 0 , (58) 

{
r ( u ( t, w t ) − J s ) + J s t + J s ν · μ + J s p · α

+ 

1 
2 
σ 2 

ν J s νν + 

1 
2 

tr 
(
J s pp (σp σ ′ 

p + ν2 11 

′ ) 
)

+ tr 
(
J s νp σp σν1 

′ )}=0 .

(59) 

Eq. (59) reflects the change in expected utility over an in- 

stant dt , accounting for the possibility that the economy 

ends with probability r dt (in which case, the change is 

u − J s because the trader gets to consume her terminal 

wealth but loses future profitable trading opportunities). 

Because the change in expected utility, given no trade, is 

zero, the trader must be indifferent between her posited 

optimal strategy and not trading over an interval and then 

following her optimal strategy, i.e., the equilibrium must 

feature trade timing indifference. As before, this implies 

no equilibrium with unobservable information acquisition, 

even when the strategic trader is risk-averse. 

4.2.3. Initial information endowment 

Our nonexistence results largely survive if the trader 

is initially endowed with some private information about 

the payoff and can choose to pay cost c > 0 to observe 

some additional piece(s) of information at a time of her 

choosing. In this case, it is easy to show that as long as 

Assumption 1 holds, such a trader always has a profitable 

delay deviation from any conjectured information acquisi- 

tion strategy. Under Assumption 1 , this once again rules 

out the existence of any equilibria (pure or mixed strat- 

egy) with costly information acquisition. Even in the ab- 

sence of Assumption 1 , we suspect, but have not been able 

to prove, that a preemption deviation argument analogous 

to the one we considered above also rules out pure strat- 

egy equilibria with acquisition after t = 0 . 
27 A subtle difference exists with the value functions that we considered 

in the risk-neutral case. In that case, we define the value function as the 

expected trading profits from time t onward, not the expected terminal 

wealth. When the trader is risk-neutral, this distinction is immaterial be- 

cause maximizing future trading profits and maximizing terminal wealth 

are equivalent. If the trader is not risk-neutral, we must explicitly keep 

track of her expected utility over the level of terminal wealth itself. 
4.2.4. Discrete time 

Next, we consider unobservable information acquisition 

in the discrete-time model of Caldentey and Stacchetti 

(2010) . As before, Proposition 2 applies; that is, never 

acquiring information, or acquiring it with a delay, can- 

not be an equilibrium. In Section C.1 , we show that in- 

formation acquisition at date zero is not an equilibrium 

when the length between trading rounds is sufficiently 

small. Even though trade timing indifference does not arise 

in a discrete time model, the argument follows that of 

Proposition 3 . Instead of acquiring immediately, the strate- 

gic trader can wait for a period of length � and reevaluate 

her decision. The expected gain from delaying acquisition 

is of order �, but the expected loss from not trading in 

the first period is of order smaller than �. As we show 

in Proposition 6 , this implies that when � is sufficiently 

small, the deviation is strictly profitable. 

The results from this analysis suggests that the conclu- 

sions of Section 4.1 do not rely on the assumption of con- 

tinuous trading. When the time between trading dates is 

sufficiently small, the trading equilibrium in the discrete- 

time setting of Caldentey and Stacchetti (2010) cannot 

arise endogenously as an outcome of unobservable, costly 

information acquisition. Given the compelling economic 

forces behind the result, we conjecture, but have not been 

able to prove, that similar arguments rule out mixed strat- 

egy acquisition when the time between trading rounds is 

sufficiently small. As in all of the above results, a posi- 

tive discount rate (which is induced by the random hori- 

zon, though could be introduced explicitly) plays a cru- 

cial role in nonexistence of equilibrium. The profitable de- 

viation arises because by delaying acquisition the present 

value of the information cost is (strictly) lower. The delay 

deviation can also restrict the existence of equilibria in set- 

tings without discounting, as we show next. 

4.2.5. No discounting 

In this section, we study unobservable information ac- 

quisition in the continuous-time version of Kyle (1985) . 

Trading takes place on the interval [0,1]. An identical ar- 

gument to that in Proposition 2 immediately implies that 

any pure strategy equilibrium cannot involve acquisition 

after time zero. Suppose that there exists a pure strategy 

equilibrium in which the trader acquires information im- 

mediately at t = 0 . In such an equilibrium, the pricing rule 

and the trader’s post-acquisition value function, i.e., J ( t, y ), 

are those from Kyle (1985) (or the special case of Back 

(1992) with normally distributed payoff). Hence, P (t, y ) = 

λy, where λ = 

√ 

�0 

σ 2 
Z 

and the ex ante (gross) expected profit 

from being informed is 

J (0 , 0) = E [ J V (0 , 0)] = 

√ 

�0 σZ . (60) 

We would like to compare the above with the ex- 

pected payoff if the trader deviates, remains uninformed 

for the duration of the trading game, and trades against 

the posited equilibrium price function. Following the argu- 

ment of Proposition 1 in Back (1992) , it is straightforward 

to construct the trader’s value function under this devia- 

tion. It is 

J d,U (t, y ) = J 0 (t, y ) = 

1 

2 

√ 

�0 

σ 2 
Z 

y 2 + 

1 

2 

√ 

�0 σ 2 
Z 
(1 − t) . (61) 
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At time zero, this becomes 

J d,U (0 , 0) = 

1 

2 

√ 

�0 σ 2 
Z 
, (62)

which is half of the informed trader’s ex ante gross profit.

That this trading profit is not zero is a consequence of the

fact that in a dynamic model the trader expects profitable

trading opportunities to arise in the future when the re-

alized noise trade pushes the price away from zero. This

implies the following result. 

Proposition 4 . Suppose that Assumption 1 holds, and c >
1 
2 

√ 

�0 σ
2 
Z 

. Then, there does not exist an equilibrium in which

information acquisition follows a pure strategy. 

Proposition 4 follows from the observation that when

the cost is sufficiently high, the net expected profit from

deviating and never acquiring information is strictly posi-

tive, i.e., 

J d,U (0 , 0) − ( ̄J (0 , 0) − c) = c − 1 

2 

√ 

�0 σ 2 
Z 

> 0 . (63)

But this implies that the trader never acquires, which

cannot be an equilibrium. The above result implies that

when c > 

1 
2 

√ 

�0 σ
2 
Z 
, the financial market equilibrium in

Kyle (1985) cannot arise as a consequence of endogenous

information acquisition. This result is a stronger version of

the delay deviation in Proposition 3 : when the cost of in-

formation is sufficiently high, it is profitable for the trader

to deviate by never acquiring information. 28 

5. Concluding remarks 

We introduce dynamic, endogenous information acqui-

sition in an otherwise standard strategic trading environ-

ment, by allowing the trader to choose when to acquire

information about the asset payoff. We consider two types

of information acquisition technology. When the strategic

trader can choose the precision of a flow of private infor-

mation subject to a smooth cost of precision, she optimally

chooses higher precision when uninformed trading volatil-

ity and market liquidity are high. Moreover, the equilib-

rium with endogenous information acquisition has quali-

tatively different implications for the dynamics of liquidity

and informational efficiency than the standard equilibrium

with endowed exogenous information. When the cost of

information is lumpy, we show that the equilibrium breaks

down. An equilibrium with strategic trading and informa-

tion acquisition (in either pure or mixed strategies) can-

not exist when a standard trade-timing indifference result

holds (e.g., in any Markovian equilibrium). Intuitively, in

this case, the trader can always profitably deviate by either

preemptively acquiring information earlier than expected,

or delaying acquisition past the prescribed time. 

The nature of equilibrium is qualitatively different with

endogenous information acquisition versus without. This is

particularly important for empirical and policy analysis, as
28 In fact, nonexistence holds even if we force the trader to make her 

acquisition decision at t = 0 , as nothing in the proof above relied on de- 

viating on intermediate dates. 

 

 

insights about market liquidity and the informational ef-

ficiency of prices change qualitatively once we introduce

information choice. Our analysis suggests a number of av-

enues for future research. 

Information acquisition technologies. As highlighted by

the stark difference in conclusions between Sections 3 and

4 , the specific nature of the information acquisition tech-

nology can have very important consequences. It would be

interesting to explore the robustness of the results and the

implications on liquidity and informational efficiency for a

larger class of acquisition technologies. 

Endowed and acquired information. The focus of this pa-

per is to highlight the implications of endogenous infor-

mation acquisition and as such, we assume that the trader

is not endowed with any private information. As we dis-

cuss in Section 2.1 , our results are qualitatively similar if

the trader is endowed with payoff relevant information.

It would be interesting to explore settings in which the

trader is endowed with private information about pref-

erences or costs that affect her information acquisition

choices. For instance, if the trader is privately informed

about her cost of information acquisition, are market un-

certainty and price impact invariant to her information ac-

quisition choices? 

Detectability of information acquisition . Market break-

down arises because the strategic trader can deviate in

her acquisition strategy without being detected. In settings

in which acquisition is detectable by other market partici-

pants, these deviations may no longer be profitable. For in-

stance, Banerjee and Breon-Drish (2019) consider a setting

in which entry into new markets is observable and show

that strategic trading equilibria can be sustained. They find

that allowing for flexibility in timing of information acqui-

sition and entry leads to novel predictions for the like-

lihood of informed trading, entry dynamics, and optimal

precision choice. 

Trading frictions. Our analysis suggests that accounting

for trading frictions (e.g., restrictions on the trading rate or

costs of trading faster) could be another important aspect

of understanding information acquisition in strategic trad-

ing environments. Introducing trading frictions in a man-

ner that eliminates trade timing indifference may restore

the existence of equilibria. 

Appendix A. Proofs of results from Section 3 

A.1. Proof of Proposition 1 

The goal of this appendix is to establish the result in

Proposition 1 . The proof largely replicates that in Collin-

Dufresne and Fos (2016) , modified as appropriate for the

endogeneity of trader beliefs. Recall the conjectures in the

text: 

dP = λt dY (A.1)

θ = βt (V t − P t ) (A.2)

χ = ηt (A.3)
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29 It is straightforward to use standard verification arguments (see, e.g., 

Caldentey and Stacchetti, 2010 ) to show that the resulting strategies are 
for F 

P 
t -adapted processes λt , β t , ηt , and a strategic trader 

value function of the form 

J = 

( V t − P t ) 
2 + κ1 t 

2 λt 
+ κ2 t (A.4) 

for some locally deterministic stochastic processes κ jt to be 

determined. 

We need to show that (i) given the conjectured trad- 

ing and information acquisition strategy, the optimal pric- 

ing rule takes the conjectured form, and (ii) given the con- 

jectured pricing rule, the optimal trading and information 

acquisition strategy take the conjectured form. We first 

consider the market maker’s filtering problem, then the 

trader’s optimization problem, and then jointly enforcing 

the optimality conditions derived for each agent. 

A.1.1. The market maker’s problem 

The market maker must filter the asset value from the 

order flow. Because the trader is better informed than the 

market maker, the law of iterated expectations implies that 

it is sufficient that he filter the trader’s value estimate from 

order flow. 

Given an arbitrary F 

P 
t -adapted precision process ηt , 

standard filtering arguments (e.g., Liptser and Shiryaev, 

2001 ) deliver the dynamics of the trader’s conditional 

mean and variance as 

dV t = 

√ 

ηt �t (ds − v t dt) = 

√ 

ηt �t d ̂  W v t (A.5) 

d� = −ηt �
2 
t dt (A.6) 

where ̂ W v t is a Brownian motion under the trader’s filtra- 

tion. 

The market maker’s objective is to compute E [ V t |F 

P 
t ] 

from observing 

dY = dX + dZ = βt (V t − P t ) dt + νt dW Zt (A.7) 

Under the conjecture that the precision process is F 

P 
t - 

adapted, we can once again apply standard filtering theory 

to conclude that the market maker’s conditional mean and 

variance, ( v , 	) , are characterized by 

d ̄V t = 

βt 	t 

ν2 
t 

(
dY t − βt ( ̄V t − P t ) dt 

)
(A.8) 

d	 = ηt �
2 
t −

β2 
t 	

2 
t 

ν2 
t 

dt. (A.9) 

Enforcing efficient pricing P t = V t and then setting co- 

efficients equal to the conjectured optimal pricing rule 

yields 

λt = 

βt 	t 

ν2 
t 

(A.10) 

with 

2 2 2 
d	t = ηt �t − νt λt . (A.11) 
A.1.2. The trader’s problem 

We use the HJB equation to determine the optimal 

strategy and value function coefficients. 29 Let M t = V t − P t 
and write the trader’s conjectured value function as 

J = 

M 

2 
t + κ1 t 

2 λt 
+ κ2 t . (A.12) 

From above, the trader’s conditional mean and variance, 

under arbitrary precision process ηt , are 

dV t = 

√ 

ηt �t (ds − V t dt) = 

√ 

ηt �t d ̂  W V t (A.13) 

and 

d�t = −ηt �
2 
t dt, (A.14) 

where ̂ W V t is an independent Brownian motion under the 

trader’s filtration. Under the conjectured pricing rule, M t 

therefore follows 

dM t = d V t − d P t (A.15) 

= −λt dY t + 

√ 

ηt �t d ̂  W V t 

= −λt θdt − λt νt dW Zt + 

√ 

ηt �t d ̂  W V t . 

Suppressing the arguments of functions, the trader’s 

HJB equation is 

0 = sup 

θ∈ R ,η> 0 

E t 

⎡ ⎢ ⎢ ⎢ ⎣ 

−rJd t + J κ1 
d κ1 t + J κ2 

d κ2 t 

+ J M 

d M t + J ( 1 /λ) d ( 1 /λt ) 

+ 

1 
2 

J MM 

( dM t ) 
2 

+ J M ( 1 /λ) d M t d ( 1 /λ) t + θM t d t 

−c ( η) dt 

⎤ ⎥ ⎥ ⎥ ⎦ 

(A.16) 

= sup 

θ∈ R ,η> 0 

E t 

⎡ ⎢ ⎢ ⎣ 

−r 
M 

2 
t + κ1 t 

2 λt 
d t − rκ2 t d t + 

1 
2 λt 

d κ1 t + d κ2 t 

+ 

M t 

λt 
d M t + 

M 

2 
t + κt 

2 
d ( 1 /λt ) 

+ 

1 
2 

1 
λt 

( dM t ) 
2 + M t dM t d ( 1 /λ) t 

+ θM t d t − c ( η) d t 

⎤ ⎥ ⎥ ⎦ 

(A.17) 

The first order conditions with respect to θ and χ re- 

quire 

−J M 

λ + M = 0 (A.18) 

and 

1 

2 

J MM 

�2 − c ′ (η) = 0 . (A.19) 

Because of the convexity of c ( · ), the second order con- 

dition that the Hessian with respect to ( θ , η) is posi- 

tive semi-definite is automatically satisfied. Using the con- 

jectured value function and inverting the marginal cost 

(c ′ ) −1 = f to solve explicitly for the precision, which is 

permissible because c ′′ > 0 and c ′ is surjective onto [0, ∞ ), 

yields 

− 1 

λt 
Mλt + M = 0 (A.20) 

η∗
t = f 

(
1 

2 λt 
�2 

t 

)
. (A.21) 
optimal and that the given function J characterizes the trader’s optimum. 
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The θ first order condition is satisfied trivially, and plug-

ging the optimal ηt (denoted by η∗
t ) back into the HJB

equation gives 

0 = E t 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

−r 
M 

2 
t + κ1 t 

2 λt 
dt − rκ2 t dt + 

1 

2 λt 
dκ1 t + dκ2 t 

+ 

M 

2 
t + κ1 t 

2 

d ( 1 /λt ) 

+ 

1 

2 λt 
( dM t ) 

2 + M t dM t d ( 1 /λ) t − c ( η∗
t ) dt 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

(
M 

2 
t + κ1 t 

)
2 

(
E t [ d ( 1 /λt ) ] − r 

λt 
dt 

)
+ 

1 

2 λt 

(
dκ1 t + 

(
η∗

t �
2 
t + λ2 

t ν
2 
t 

)
dt 
)

+ ( dκ2 t − ( rκ2 t + c ( η∗
t ) ) ) 

+ M t E t [ dM t d ( 1 /λ) t ] (A.22)

For this expression to equal zero at all points in the state

space, we require 

E t [ d ( 1 /λt ) ] = 

r 

λt 
dt (A.23)

with E t [ d M t d ( 1 /λ) t ] = 0 , and d κ1 t and d κ2 t be defined

by 

dκ1 t = −
(
η∗

t �
2 
t + λ2 

t ν
2 
t 

)
dt (A.24)

dκ2 t = (rκ2 t + c(η∗
t )) dt (A.25)

so that, after integrating and enforcing the boundary con-

ditions κ1 t → 0 and κ2 t → 0, we have 

κ1 t = 

∫ ∞ 

t 

(
η∗

s �
2 
s + λ2 

s ν
2 
s 

)
ds (A.26)

= ( �t − �∞ 

) + ( �t − �∞ 

) 

= �t + �t 

and 

κ2 t = −E t 

[ ∫ ∞ 

t 

e −r(s −t) c(η∗
s ) ds 

] 
, (A.27)

where the second equality integrates the differential equa-

tions for � and � = � + 	, and the third equality uses

the conjecture (later verified) that �t → 0 and �t → 0 in

the limit. 

A.1.3. Equilibrium conditions and derivation 

To conclude the construction of equilibrium we must

characterize functions ( λ, β , η; �, 	) that solve the sys-

tem 

λt = 

βt 	t 

ν2 
t 

, (A.28)

E t [ d ( 1 /λt ) ] = 

r 

λt 
dt, (A.29)

d	t = (ηt �
2 
t − ν2 

t λ
2 
t ) dt, (A.30)

ηt = f 

(
1 

2 λ
�2 

t 

)
, (A.31)
t  
d�t = −ηt �
2 
t dt. (A.32)

As in Collin-Dufresne and Fos (2016) , the key step is

solving for (1/ λt , 	 t ). Recall that �t = 	t + 

∫ ∞ 

t ηs �
2 
s ds .

The equations for (1/ λt , 	 t ) can be written concisely as 

E 

[ 
d 

(
1 

λ

)
t 

] 
= r 

(
1 

λ

)
t 
dt (A.33)

and 

d�t = −λ2 
t ν

2 
t dt. (A.34)

For process G t to be determined, write λt = e −rt 

√ 

�t 
G t 

,

which decouples the equations as 

E [ d 
√ 

G t ] = −1 

2 

e −2 rt ν
2 
t √ 

G 

dt (A.35)

⇔ 

√ 

G t = E t 

[∫ ∞ 

t 

1 

2 

e −2 rs ν
2 
s √ 

G s 

ds 

]
. (A.36)

and 

d�t 

�t 
= −e −2 rt ν

2 
t 

G t 
dt, (A.37)

with boundary condition on G t to be determined. The ex-

pression for � in the Proposition now follows directly from

integrating Eq. (A.37) . 

We have now specified all of ( λ, β , η; �, 	), up to

the boundary condition on G t as t → ∞ . The transversality

condition for the trader is 

lim 

t→∞ 

E 

[
e −rt J(t, M t ) 

]
= lim 

t→∞ 

E 

[
e −rt 

(
M 

2 
t + κ1 t 

2 λt 
+ κ2 t 

)]
. 

(A.38)

which it is straightforward to show is satisfied under our

maintained boundary conditions G t → 0, κ1 t → 0, κ2 t → 0.

To conclude the proof, it remains to demonstrate the

existence of a unique, positive solution � to the initial

value problem and show that lim t→∞ 

�t = 0 , as conjec-

tured. The following lemma characterizes �t and com-

pletes the proof: 

Lemma 2 . There exists a unique, positive stochastic process

�t that satisfies d �t = − f 

(
�2 

t 
2 λt 

)
�2 

t d t, �0 = var (V |F 

I 
t ) =

�0 > 0 . This process satisfies lim t→∞ 

�t = 0 . 

Proof . Fix any state (i.e., any path of ν) and consider the

initial value problem 

d�t 
dt 

= − f 

(
�2 

t 
2 λt 

)
�2 

t , �0 = �0 . Clearly

any solution �t , if one exists, is weakly positive because

�0 > 0 and at any point at which �t = 0 we have d�
dt 

=
0 so that �t cannot become strictly negative. Define the

function F (t, x ) = − f 

(
1 

2 λt 
x 2 
)

x 2 , and write the differential

equation as d�
dt 

= F (t, �) . Pick any ε > 0. On the open set

D = (−ε, ∞ ) × (−ε, ∞ ) , the function F is locally Lipschitz

continuous with respect to its second argument because

its derivative with respect to x is continuous. Continu-

ity of the derivative holds because the function f = (c ′ ) −1

has derivative f ′ (x ) = 1 /c ′ (c −1 (x )) , which is continuous by
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our assumptions on the cost function c . because our ini- 

tial condition (t 0 , x 0 ) = (0 , var (V 0 | S 0 )) lies in D , it follows

from Walter (1998) (Chapter 2, Section 6, Theorem VII) 

that there exists a unique solution to the initial value prob- 

lem on an interval [0, b ) where 0 < b ≤ ∞ . To ensure that 

b = ∞ and therefore a solution exists at all times, we must 

rule out solutions that blow up in finite time. However, be- 

cause d�
dt 

≤ 0 and � is positive, we know this cannot occur. 

Hence, there exists a unique, positive solution �( t ) to the 

initial value problem. because this is true for any state, we 

conclude that process �t so-defined state by state exists 

and is unique. 

It remains to show that lim t→∞ 

�t = 0 . Fix any state. 

because �t is positive and decreasing it has a well defined 

limit, m ≥ 0 (which, in general, depends on the state). 

Let m = lim t→∞ 

�t and suppose m > 0. Then for any ε: 

0 < ε < m we have �t > m − ε > 0 for sufficiently large t , 

which further implies that for such t , 

d�t 

dt 
= − f 

(
1 

2 λt 
�2 

t 

)
�2 

t (A.39) 

< − f 

(
1 

2 λt 
( m − ε ) 2 

)
( m − ε ) 2 

Further, note that 

1 

λt 
= e rt 

√ 

G t 

�t 

= e rt 

√ 

G t 

�0 e 
− ∫ t 0 e 

−2 rs ν
2 
s 

G s 
ds 

≥ e rt 

√ 

G t 

�0 

≥ e rt 

√ 

e −2 rt ν
2 r 

�0 

= 

√ 

1 

2 r 

ν

�0 

> 0 , (A.40) 

so that in fact 

d�t 

dt 
< − f 

(
1 

2 λt 
( m − ε ) 2 

)
( m − ε ) 2 

≤ − f 

( 

1 

2 

√ 

1 

2 r 

ν

�0 
( m − ε ) 2 

) 

( m − ε ) 2 

≡ −C (A.41) 

for constant C > 0, which is bounded away from zero. 

Hence for t ′ > t , with t sufficiently large we have 

�t ′ = �t −
∫ t ′ 

t 

f 

(
1 

2 λs 
�2 

s 

)
�2 

s ds (A.42) 

≤ �t − (t ′ − t) C, 

which is strictly negative when t ′ is also sufficiently large. 

This contradicts the positivity of �, which establishes m = 

0 . �

A.2. Proof of Lemma 1 

In the general case in which ν is uniformly bounded, 

the existence of the G t process and the stated bounds 
follow from the analogous arguments to those in Collin- 

Dufresne and Fos (2016) . 

To establish the PDE representation of G t , note that, for- 

mally, the backward stochastic differential equation that 

characterizes y t ≡
√ 

G t is 

dy t = −1 

2 

e −2 rt ν
2 
t 

y t 
d t − �t d W νt , y t → 0 (A.43) 

and a solution to this equation is a pair of processes ( y , �).

Applying Ito’s Lemma to an arbitrary (sufficiently smooth) 

function γ ( t, νt ) and matching coefficients establishes the 

PDE representation, with the boundary condition on γ
pinned down by the boundary condition on y t . 

In the case of deterministic drift, consider the process 

G t defined by 
√ 

G t = 

√ 

B (t) νt for deterministic function B 

to be determined. Plugging γ (t, ν) = 

√ 

B (t) ν into the PDE 

in the lemma yields 

γt + νμν(t) γν + 

1 

2 

ν2 σ 2 
ν (t, ν) γνν + 

1 

2 

e −2 rt ν2 

γ
= 0 

⇔ 

1 

2 

B 

′ (t) √ 

B (t) 
ν + νμν(t) 

√ 

B (t) + 

1 

2 

e −2 rt ν2 √ 

B (t) ν
= 0 

⇔ B 

′ (t) + 2 μν(t ) B (t ) + e −2 rt = 0 (A.44) 

The general solution to this ordinary differential equation 

is 

B (t) = e 
∫ t 

0 −2 μν (u ) du 

(
C −

∫ t 

0 

e −2 rs + ∫ s 0 2 μν (u ) du ds 

)
(A.45) 

where C is an arbitrary constant. The boundary condition 

on G t requires B ( t ) → 0, which implies 

lim 

t→∞ 

B (t) = lim 

t→∞ 

(
e 
∫ t 

0 −2 μν (u ) du 

(
C −

∫ t 

0 

e −2 rs + ∫ s 0 2 μν (u ) du ds 

))
= 0 

⇔ C = 

∫ ∞ 

0 

e −2 rs + ∫ s 0 2 μν (u ) du ds. (A.46) 

Therefore, we have 

B (t) = e 
∫ t 

0 −2 μν (u ) du 

∫ ∞ 

t 

e −2 rs + ∫ s 0 2 μν (u ) du ds 

= 

∫ ∞ 

t 

e −2 rs + ∫ s t 2 μν (u ) du ds 

= e −2 rt 

∫ ∞ 

t 

e −2 r(s −t)+ ∫ s t 2 μν (u ) du ds 

= e −2 rt 

∫ ∞ 

t 

e 
∫ s 

t 2(μν (u ) −r) du ds. (A.47) 

Appendix B. Proofs of results from Section 4 

In this appendix, we show that any Markovian equilib- 

rium of our model must feature trade timing indifference. 

This, together with Proposition 3 implies that there can- 

not be an equilibrium with costly information acquisition 

in our framework. We begin by generalizing the model in 

Section 2 along a few dimensions. Fix a probability space 

(�, F , P ) on which is defined an ( n + 1 )-dimensional stan-

dard Brownian motion W̄ = (W 1 , . . . , W n , W Z ) with filtra- 

tion F 

W 

t , independent random variables S and T and in- 

dependent m -dimensional random vector ν0 . Let F t de- 

note the augmentation of the filtration σ (ν0 , { W̄ s } { 0 ≤s ≤t} ) . 
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Suppose that the random variable T is exponentially dis-

tributed with rate r , and that S ∈ S ≡ Support (S) and ν0

have finite second moments. Finally, let W = (W 1 , . . . , W n )

denote the first n elements of W̄ . 

There is an m ≥ 0 dimensional vector of publicly ob-

servable signals νt = (ν1 t , . . . , νmt ) with initial value ν0

and that follows 

dν = μν(t, ν) dt + �ν(t, ν) dW t , (B.1)

where μt = (μ1 t , . . . , μmt ) and �νt = (�/ 

ν1 t 
, . . . , �/ 

νmt ) de-

note the vector of drifts and matrix of diffusion coeffi-

cients. Suppose that μ and �ν are such that there exists a

unique strong solution to this set of stochastic differential

equations (SDEs). 30 Given knowledge of the signal S and

the history of νt , the conditional expected value V t of the

risky asset’s payoff as of time t is 

 t = f (t, νt , S) (B.2)

for some function f that, for each s ∈ S, is continuously dif-

ferentiable in t and twice continuously differentiable in ν .

We assume further that f is such that V t is a martingale for

an agent informed of S . 31 

Denote the noise traders’s holdings by Z t , where 

dZ t = σZ (t, ν, Z) dW Zt , (B.3)

with σ Z ( · ) > 0 such that there exists a unique strong so-

lution to this SDE. We explicitly allow for the possibility

that the volatility depends on the news process, as well as

the current cumulative noise trader holdings. 

This setup nests a number of existing settings in the lit-

erature. For example, Back and Baruch (2004) consider the

case in which S ∈ {0, 1} has a binomial distribution, there

are no publicly observable signals, and V t = f (t, νt , S) = S.

In the special case of Caldentey and Stacchetti (2010) in

which time is continuous and there is no ongoing flow

of private information, S ∼ N (0 , �0 ) and V t = f (t, νt , S) =
S. 32 In contrast to these earlier models, in which the in-

sider is endowed with private information about the as-

set value, our focus is on allowing her to acquire informa-

tion at a time of her choosing. Banerjee and Breon-Drish

(2019) also allow for dynamic information acquisition (and

entry) and consider a special case in which S ∈ { l, h }, ν
follows a geometric Brownian motion with zero drift, and

 t = f (t, νt , S) = νξ , where ξ is a constant that depends
S 

30 See, for instance, Theorem 5.2.9 in Karatzas and Shreve (1998) , who 

present Lipschitz and growth conditions on the coefficients that are suffi- 

cient to deliver this result in a Markovian setting. 
31 A simple set of sufficient conditions is: for each s ∈ S, f t + f ν · μ + 

1 
2 

tr( f νν��′ ) = 0 and E [ 
∫ ∞ 

0 f ′ ν��′ f νdu ] < ∞ , which guarantee that V is 

a (square integrable) martingale. Also, because all market participants are 

risk-neutral, it is without loss of generality, economically, that V t is a mar- 

tingale, that V t represents the conditional expected value of the asset in- 

stead of the value itself, and that we treat V T as the terminal value. 
32 Note that because the strategic trader receives only a lump of pri- 

vate information, our model is not subject to the Caldentey and Stacchetti 

(2010) critique that the continuous-time equilibrium is not the limit of 

corresponding discrete time equilibria. However, all of the results below 

easily extend to time-varying signal S t when acquiring information en- 

tails paying c either to perfectly observe S t at time τ , or to observe it 

from from time τ forward. In fact, we show below that our nonexistence 

results extend to an analogous discrete-time model if the time between 

trading rounds is sufficiently small. 

 

 

 

 

 

on the realization of S . Importantly, however, they assume

that the entry decision can be detected by the market

maker. 

Following the literature, we consider Markovian equi-

libria in which the asset price is a function of the ex-

ogenous public signal νt , as well as an arbitrary (but fi-

nite) number � of endogenous state variables p t that fol-

low a Markovian diffusion and keep track of the market

maker’s beliefs about S . We consider pricing rules of the

form P t = g(t, νt , p t ) where g is continuously differentiable

in t and twice continuously differentiable in ( ν , p ) and is

increasing in both p and ν . 33 There are � > 0 endogenous

state variables p t with dynamics 

dp = α(t, p, ν) dt + �(t, p, ν) dW + 1 dY, (B.4)

where α is an � -dimensional function, � is an � × m ma-

trix function, and 1 is an � × 1 vector of ones such that

there exists a unique strong solution to this SDE when

dY = dX + dZ and the trading strategy X t takes an admis-

sible form. We normalize p 0 − = 0 . Without loss of general-

ity and to simplify later notation, we also normalize the

coefficients on dY to be identically equal to one. Impor-

tantly, this does not imply that we restrict the price im-

pact of a one unit trade to one dollar. Because the func-

tion g ( · ) maps the state variables to the price, the over-

all dependence of the price on order flow is captured by

dP = · · · + g p · 1 dY . Hence Kyle’s lambda is g p · 1 . We em-

phasize that the function g and the coefficients α and �

are equilibrium objects that, given an equilibrium trading

strategy, are pinned down by the rationality of the pricing

rule. 

We also require a condition on the set of trading strate-

gies to rule out doubling-type strategies (see, e.g., Back,

1992 ). A trading strategy is admissible if is a semimartin-

gale adapted to the strategic trader’s filtration and, for all

pricing rules satisfying the conditions specified above, we

have 

E 

[ ∫ ∞ 

0 

(
e −ru (V u − P u − ) 

)2 
d [ Z, Z ] u 

] 
< ∞ (B.5)

E 

[ ∫ ∞ 

0 

(
e −ru X u −

)2 
d [ V, V ] u 

] 
< ∞ (B.6)

where [ · ] denotes the quadratic (co)variation. 

We now formalize our assumption on the HJB equation.

Assumption 1 . Suppose that in any conjectured equilibrium,

for each s ∈ support( S ), there exists a function J s ( t, ν , p )

that is continuously differentiable in t , twice continuously

differentiable in ( ν , p ), and satisfies the HJB equation 

34 

0 = sup 

θ

⎧ ⎨ ⎩ 

−rJ s + J s t + J s ν · μ + J s p · ( α + 1 θ ) 

+ 

1 
2 

tr 
(
J s νν��′ )+ 

1 
2 

tr 
(
J s pp (��′ + 1 σ 2 

z 1 

′ ) 
)

+ tr 
(
J νp ��′ )+ θ ( V t − P t − ) 

⎫ ⎬ ⎭ 

, 

(B.7)
33 The monotonicity condition is a normalization that ensures that in- 

creases in p and ν represent “good news.”
34 When applied to a vector or matrix, ′ , denotes the transpose. 
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and when the order flow is generated by the conjectured 

equilibrium strategy, the integrability conditions 

E 

[ ∫ ∞ 

0 

e −2 rs J ′ p (s −)��′ J p (s −) ds 

] 
< ∞ (B.8) 

E 

[ ∫ ∞ 

0 

e −2 rs J ′ ν (s −)��′ J ν (s −) ds 

] 
< ∞ , (B.9) 

and the transversality condition 

lim 

t→∞ 

E 

[
e −rt J(t, νt , p t ) 

]
= 0 (B.10) 

hold. 

If the HJB characterizes the value function, the transver- 

sality condition implicitly provides information on what 

kinds of trading strategies are consistent with equilibrium, 

as it says that an optimal strategy exhausts all profitable 

trading opportunities if the trading game were to continue 

indefinitely (i.e., if T tended to infinity). The integrability 

conditions are essentially technical. Also, Assumption 1 ap- 

plies to the equilibria in existing models in the litera- 

ture (e.g., Back and Baruch, 2004 , the continuous-time case 

of Caldentey and Stacchetti, 2010 , and the fixed-horizon, 

continuous-time model of Kyle, 1985 with the appropriate 

modification). 

We now establish that in any such equilibrium, if it 

were to exist, an informed trader’s optimal trading strategy 

is absolutely continuous i.e., d X t = θ ( ·) d t, where θ ( · ) de- 

notes the trading rate, and her value function is character- 

ized by the HJB equation. Importantly, we also show that 

such an equilibrium must feature trade timing indifference. 

The result below applies to both pure strategy equilibria 

in which information is immediately acquired and mixed 

strategy equilibria. 

Proposition 5 . Suppose Assumption 1 holds. If there exists an 

overall equilibrium, then any optimal trading strategy for an 

informed trader is absolutely continuous and the value func- 

tion for an informed trader is the solution to the HJB equation 

in Assumption 1 , subject to the integrability and transversality 

conditions. Moreover, such an equilibrium must feature trade 

timing indifference. 

The optimality of the smooth trading strategy extends 

the arguments in Kyle (1985) and Back (1992) to our 

setting. Intuitively, if an informed trader does not trade 

smoothly she reveals her information too quickly. More- 

over, the proof in the appendix establishes that the J s are 

all solutions of the HJB Eq. (B.7) . Because this equation is 

linear in θ , and θ is unconstrained, it follows that the sum 

of the coefficients on θ must be identically zero and there- 

fore the sum of the remaining terms must also equal zero, 

i.e., ⎧ ⎨ ⎩ 

−rJ s + J s t + J s ν · μ + J s p · α
+ 

1 
2 

tr 
(
J s νν��′ )+ 

1 
2 

tr 
(
J s pp (��′ + 1 σ 2 

z 1 

′ ) 
)

+ tr 
(
J νp ��′ )

⎫ ⎬ ⎭ 

= 0 . (B.11) 

But the above is simply the expected differential of the 

value function of an informed investor under the assump- 

tion that her trading rate at t is zero i.e., θ s 
t = 0 . This es- 

tablishes trade timing indifference. 
B.1. Proof of Proposition 5 

We make use of the following, equivalent, expressions 

for the trader’s terminal wealth, the second of which fol- 

lows from the integration by parts formula for semimartin- 

gales 

W T = (V T − P T ) X T + 

∫ T 

0 

X s − dP s (B.12) 

= 

∫ ∞ 

0 

X s − dV s + 

∫ T 

0 

V s − dX s + [ X, V ] T −
∫ T 

0 

P s −dX s − [ X, P ] T 

(B.13) 

= 

∫ T 

0 

(V s − − P s − ) dX s + 

∫ T 

0 

d[ X, V − P ] s + 

∫ T 

0 

X s − dV s (B.14)

where, for any s , [ · ] s denotes the quadratic (co)variation 

over the interval [0, s ]. Hence, under any information set 

that does not include T , we have from the independence 

of T 

E [ W t |·] = E 

[ ∫ ∞ 

0 

e −rs (V s − − P s − ) dX s + 

∫ ∞ 

0 

e −rs d[ X, V − P ] s 

+ 

∫ ∞ 

0 

e −rs X s − dV s 

∣∣∣·] (B.15) 

The proof now proceeds in a way similar to that of 

Lemma 2 in Back (1992) and follows it closely. We show 

that the solution to the HJB equation provides an upper 

bound on the expected profit from any admissible trading 

strategy and that any absolutely continuous trading strat- 

egy that induces the value function to satisfy the transver- 

sality and integrability conditions achieves equality in up- 

per the bound. For the rest of this proof, we suppress all 

arguments of the function J , other than time, where no 

confusion will result. 

Without loss of generality, suppose the trader becomes 

informed at t = 0 . The case in which she becomes in- 

formed at any other date is analogous. Consider an ar- 

bitrary semimartingale strategy X s . The generalized Ito’s 

formula ( Protter, 2003 , Chapter 2, Theorem 33) for semi- 

martingales implies that under the smoothness assump- 

tions on J (suppressing the ν and p arguments for brevity) 

and recalling that jumps, if any, come from the p process 

e −rt J(t) − J(0 

−) = 

∫ t 

0 

e −rs (−rJ(s −) + J s (s −)) ds 

+ 

∫ t 

0 

e −rs J ν (s −) · dν + 

∫ t 

0 

e −rs J p (s −) · dp 

+ 

1 

2 

∫ t 

0 

e −rs tr (J νν (s −) d[ νc , νc ]) 

+ 

1 

2 

∫ t 

0 

e −rs tr (J pp (s −) d[ p c , p c ]) 

+ 

∫ t 

0 

e −rs tr (J νp (s −) d[ p c , νc ]) 

+ 

∑ 

0 ≤s ≤t 

e −rs 
(
J(s ) − J(s −) − J p (s −) · �p s 

)
, 

(B.16) 

where the c superscript denotes the continuous, local mar- 

tingale portion of a given process. 
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The quadratic variations of the continuous portions can

be written 

[ νc , νc ] t = 

∫ t 

0 

��′ ds (B.17)

[ p c , p c ] t = 

∫ t 

0 

d[�W, �W ] s ds + 2 

∫ t 

0 

d[�W, 1 Y c ] s ds 

+ 

∫ t 

0 

d[ 1 Y c , 1 Y c ] s ds (B.18)

= 

∫ t 

0 

��′ ds + 2 

∫ t 

0 

�d[ W, X 

c ] s 1 

′ ds 

+ 

∫ t 

0 

1 d[ Y c , Y c ] s 1 

′ ds 

[ p, ν] 
c 
t = 

∫ t 

0 

d [�W, �W ] s d s + 

∫ t 

0 

d [ 1 Y c , �W ] s d s 

= 

∫ t 

0 

��′ ds + 

∫ t 

0 

1 d[ X 

c , W ] s �
′ (B.19)

We have [ Y c , Y c ] t = [ X c , X c ] t + 2[ X c , Z] t + 

∫ t 
0 σ

2 
Z 

ds. There-

fore, the quadratic variations become 

[ νc , νc ] t = 

∫ t 

0 

��′ ds (B.20)

[ p c , p c ] t = 

∫ t 

0 

��′ ds + 2 

∫ t 

0 

�d[ W, X 

c ] s 1 

′ ds 

+ 

∫ t 

0 

1 d[ X 

c , X 

c ] s 1 

′ ds 

+ 2 

∫ t 

0 

1 d [ X 

c , Z] s 1 

′ d s + 

∫ t 

0 

1 σ 2 
Z 1 

′ ds (B.21)

[ p c , νc ] t = 

∫ t 

0 

��′ ds + 

∫ t 

0 

1 d[ X 

c , W ] s �
′ ds. (B.22)

Returning to the expression for J(t) − J(0) above and

also using the fact that �p s = 1 �X gives 

e −rt J(t) − J(0 

−) = 

∫ t 

0 

e −rs (−rJ (s −) + J s (s −) + J ν (s −) · μ

+ J p (s −) · α + 

1 

2 

tr (J νν��′ ) 

+ tr (J νp ��′ ) + 

1 

2 

tr (J pp (��′ + 1 σ 2 
Z 1 

′ ))) ds 

+ 

∫ t 

0 

e −rs J p (s −) · 1 dX + 

∫ t 

0 

e −rs 
p J(s −)(�d W + 1 d Z ) 

+ 

∫ t 

0 

e −rs J ν (s −)�dW 

+ 

1 

2 

∫ t 

0 

e −rs tr (J pp (s −)(1 d [ X 

c X 

c ] 1 

′ 

+2�d [ W, X 

c ] 1 

′ + 2 1 d [ X 

c , Z] 1 

′ )) 

+ 

∫ t 

0 

e −rs tr (J νp (s −) 1 d [ X 

c , W ]�′ ) 

+ 

∑ 

0 ≤s ≤t 

e −rs (J(s ) − J(s −) − J p (s −) · 1 �X s ) . (B.23)
The HJB equation implies 

J p · 1 + V t − P t = 0 (B.24)

−rJ + J t + J ν · μ + J p · α + 

1 

2 

tr 
(
J νν��′ )+ 

1 

2 

tr 
(
J νν��′ )

+ tr 
(
J νp ��′ )+ 

1 

2 

tr 
(
J pp 

(
��′ + 1 σ 2 

Z 1 

′ )) = 0 (B.25)

Substituting first Eq. (B.25) into the previous expression

gives 

e −rt J(t) − J(0 

−) 

= 

∫ t 

0 

e −rs J p (s −) · 1 dX 

+ 

∫ t 

0 

e −rs J p (s −) ( �dW + 1 dZ ) 

+ 

∫ t 

0 

e −rs J ν (s −)�dW 

+ 

1 

2 

∫ t 

0 

e −rs tr (J pp (s −)(1 d[ X 

c X 

c ] 1 

′ 

+ 2�d[ W, X 

c ] 1 

′ + 2 1 d[ X 

c , Z] 1 

′ )) 

+ 

∫ t 

0 

e −rs tr (J νp (s −) 1 d[ X 

c , W ]�′ ) 

+ 

∑ 

0 ≤s ≤t 

e −rs 
(
J(s ) − J(s −) − J p (s −) · 1 �X s 

)
. (B.26)

Now substituting Eq. (B.24) yields 

e −rt J ( t ) − J 
(
0 

−)
= −

∫ t 

0 

e −rs ( V s − P s − ) ( dX + dZ ) 

+ 

∫ t 

0 

e −rs J p 
(
s −
)
�dW + 

∫ t 

0 

e −rs J ν
(
s −
)
�dW 

+ 

1 

2 

∫ t 

0 

e −rs tr (J pp (s −)(1 d[ X 

c X 

c ] 1 

′ 

+2�d[ W, X 

c ] 1 

′ + 2 1 d [ X 

c , Z ] 1 

′ )) 

+ 

∫ t 

0 

e −rs rmtr 
(
J νp 

(
s −
)
1 d [ X 

c , W ] �′ )
+ 

∑ 

0 ≤s ≤t 

e −rs 
(
J ( s ) − J 

(
s −
)

− ( P s − − V s ) �X s 

)
. (B.27)

Rearranging results in ∫ t 

0 

e −rs (V s − P s − ) dX − J(0 

−) 

= − e −rt J(t) −
∫ t 

0 

e −rs (V s − P s − ) dZ + 

∫ t 

0 

e −rs J p (s −)�dW 

+ 

∫ t 

0 

e −rs J ν (s −)�dW 

+ 

1 

2 

∫ t 

0 

e −rs tr (J pp (s −)(1 d[ X 

c X 

c ] 1 

′ 

+ 2�d[ W, X 

c ] 1 

′ + 2 1 d[ X 

c , Z] 1 

′ )) 

+ 

∫ t 

0 

e −rs tr (J νp (s −) 1 d[ X 

c , W ]�′ ) 

+ 

∑ 

0 ≤s ≤t 

e −rs 
(
J(s ) − J(s −) − (P s − − V s )�X s 

)
(B.28)
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Use the cyclic property of the trace and the fact that the 

trace of a scalar is the scalar itself allows us to simplify the 

terms involving traces to matrix multiplication ∫ t 

0 

e −rs (V s − P s − ) dX − J(0 

−) 

= −e −rt J(t) −
∫ t 

0 

e −rs (V s − P s − ) dZ + 

∫ t 

0 

e −rs J p (s −)�dW 

+ 

∫ t 

0 

J ν (s −)�dW 

+ 

∫ t 

0 

e −rs 1 

2 

d[ X 

c , 1 X 

c ] J pp (s −) 1 

+ d[ X 

c , �W ] J pp (s −) 1 + d[ X 

c , 1 Z] J pp (s −) 1 )) 

+ 

∫ t 

0 

e −rs d[ X 

c , �W ] J νp (s −) 1 

+ 

∑ 

0 ≤s ≤t 

e −rs 
(
J(s ) − J(s −) − (P s − − V s )�X s 

)
(B.29) 

Now, add 

∫ 
[0 ,t) e 

−rs d[ X, V − P ] s + 

∫ 
[0 ,t] e 

−rs X s − dV s to both 

sides ∫ t 

0 

e −rs (V s − P s − ) dX + 

∫ t 

0 

e −rs d[ X, V − P ] s 

+ 

∫ 
[0 ,t] 

e −rs X s − dV s − J(0) 

= −e −rt J(t) −
∫ t 

0 

e −rs (V s − P s − ) dZ + 

∫ t 

0 

e −rs J p (s −)�dW 

+ 

∫ t 

0 

e −rs J ν (s −)�dW 

+ 

∫ t 

0 

e −rs ( 
1 

2 

d[ X 

c , 1 X 

c ] J pp (s −) 1 + d[ X 

c , �W ] J pp (s −) 1 

+ d[ X 

c , 1 Z] J pp (s −) 1 ) 

+ 

∫ t 

0 

e −rs d[ X 

c , �W ] J νp (s −) 1 

+ 

∑ 

0 ≤s ≤t 

e −rs 
(
J(s ) − J(s −) − (P s − − V s )�X s 

)
+ 

∫ t 

0 

e −rs d[ X, V − P ] t + 

∫ t 

0 

e −rs X s − dV s (B.30) 

The continuous, local martingale portion of V t − P t (as 

differentials) is 

( f ν − g ν ) · �dW − g p · (�dW + 1 dY c ) . (B.31) 

Hence, 

[ X 

c , (V − P ) c ] t = 

∫ 
d[ X, ( f ν − g ν ) · �W − g p · �W ] c 

−
∫ 

d[ X, g p · 1 X ] c −
∫ 

d[ X, g p · 1 Z] c 

(B.32) 

From Eq. (B.24) we have 

f ν − g ν = −J ′ pν1 = −J νp 1 (B.33) 

g p = J pp 1 > 0 , (B.34) 

where the inequality follows from the assumption that g is 

increasing in the endogenous state variables. 
Plugging into the expression for the quadratic variation 

yields 

[ X 

c , (V − P ) c ] t = 

∫ 
d[ X, −1 

′ J pν�W − 1 

′ J pp �W ] c 

−
∫ 

d[ X, 1 

′ J pp 1 X ] c −
∫ 

d[ X, 1 

′ J pp 1 Z] c 

= 

∫ 
−d[ X, W ] c �′ J νp 1 −

∫ 
d[ X, W ] c �′ J pp 1 

−
∫ 

d[ X, X ] c 1 

′ J pp 1 −
∫ 

d[ X, Z] c 1 

′ J pp 1 

(B.35) 

Plugging Eq. (B.35) back into Eq. (B.30) and again using 

�p s = 1 �X gives ∫ t 

0 

e −rs ( V s − P s − ) dX + 

∫ t 

0 

e −rs d [ X, V − P ] s 

+ 

∫ t 

0 

e −rs X s − dV s − J ( 0 ) 

= −e −rt J ( t ) −
∫ t 

0 

e −rs ( V s − P s − ) dZ + 

∫ t 

0 

e −rs J p 
(
s −
)
�dW 

+ 

∫ t 

0 

e −rs J ν
(
s −
)
�dW 

+ 

∫ t 

0 

e −rs X s − dV s − 1 

2 

∫ t 

0 

e −rs d [ X 

c , X 

c ] 1 

′ J pp 1 

+ 

∑ 

0 ≤s ≤t 

e −rs 
(
J ( s ) − J 

(
s −
)

− ( P s − V s ) �X s 

)
(B.36) 

Now, using Eq. (B.24) in the jump term and rearranging 

to group the stochastic integrals ∫ t 

0 

e −rs (V s − P s − ) dX + 

∫ t 

0 

e −rs [ X, V − P ] s 

+ 

∫ t 

0 

e −rs X s − dV s − J(0 

−) 

= −e −rt J(t) − 1 

2 

∫ t 

0 

e −rs d[ X 

c , X 

c ] 1 

′ J pp 1 

+ 

∑ 

0 ≤s ≤t 

e −rs 
(
J(s ) − J(s −) − J p · 1 �X s 

)
−
∫ t 

0 

e −rs (V s − P s − ) dZ + 

∫ t 

0 

e −rs J p (s −)�dW 

+ 

∫ t 

0 

e −rs J ν (s −)�dW + 

∫ t 

0 

e −rs X s − dV s (B.37) 

Let x (t) = − ∫ t 0 e 
−rs (V s − P s − ) dZ + 

∫ t 
0 e 

−rs J p (s −)�dW +∫ t 
0 e 

−rs J ν (s −)�dW + 

∫ 
[0 ,t] e 

−rs X s − dV s denote the stochastic 

integrals. By assumption, V s is a martingale. Owing to 

the the admissibility condition on trading strategies and 

integrability conditions on J, x ( t ) is a square integrable 

martingale. Hence, we can collect the stochastic integrals 

in the previous expression into a single martingale term, 

x ( t ), defined implicitly by the expression ∫ t 

0 

e −rs (V s − P s − ) dX s + 

∫ 
[0 ,t] 

e −rs d[ X, V − P ] s 

+ 

∫ t 

0 

e −rs X s − dV s − J(0 

−) 

= −e −rt J(t) − 1 

2 

∫ t 

e −rs d[ X 

c , X 

c ] 1 

′ J pp · 1 
0 
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trader follows a pure acquisition strategy. 

35 At least two different distributions are often referred to as the geo- 

metric distribution. The one we use here is supported on the nonnegative 

integers n ∈ { 0 , 1 , 2 , . . . } and has probability mass function f n = ρn (1 − ρ) 

and cumulative distribution function F n = 1 − ρn +1 . 
+ 

∑ 

0 ≤s ≤t 

e −rs 
(
J(s ) − J(s −) − J p · 1 �X s 

)
+ x (t) . (B.38)

Taking limits, we now have 

E 

[∫ ∞ 

0 

e −rs (V s − P s − ) dX s + 

∫ 
[0 , ∞ ) 

e −rs d[ X, V − P ] s 

+ 

∫ 
[0 , ∞ ) 

e −rs X s − dV s − J(0 

−) 

]
= E 

[
lim 

t→∞ 

∫ t 

0 

e −rs (V s − P s − ) dX s + 

∫ t 

0 

e −rs d[ X, V − P ] s 

+ 

∫ 
[0 ,t] 

e −rs X s − dV s − J(0 

−) 

]
= E 

[ 
lim 

t→∞ 

−e −rt J(t) − 1 
2 

∫ t 
0 e 

−rs d[ X 

c , X 

c ] 1 

′ J pp 1 

+ 

∑ 

0 ≤s ≤t 

e −rs 
(
J(s ) − J(s −) − J p · 1 �X s 

)
+ x (t) 

] 

= lim 

t→∞ 

E 

[
− 1 

2 

∫ t 
0 e 

−rs d[ X 

c , X 

c ] 1 

′ J pp · 1 

+ 

∑ 

0 ≤s ≤t 

e −rs 
(
J(s ) − J(s −) − J p · 1 �X s 

)] 

≤ 0 , (B.39)

where the third line uses Eq. (B.38) , the fourth line uses (i)

the transversality condition on J and J ≥ 0, (ii) the fact that

x ( t ) is a square integrable martingale and (iii) the mono-

tone convergence theorem, and the next-to-last line uses

the transversality condition and the fact that x ( t ) is a mar-

tingale. The final line uses the fact that J pp · 1 = g p > 0 by

assumption on the pricing rule and that [ X 

c , X 

c ] is a pos-

itive measure. The inequality holds with equality if and

only if the trading strategy is absolutely continuous, in

which case [ X 

c , X 

c ] ≡ 0, �X ≡ 0, and J(s ) − J(s −) ≡ 0 . 

This analysis establishes that the expected profit for

any trading strategy is no greater than J(0 −) . Further-

more, any absolutely continuous strategy that induces the

value function to satisfy the integrability and transversal-

ity conditions provides expected profit equal to J(0 −) and

and is therefore an optimal strategy. Any strategy that is

not absolutely continuous and does not lead to a value

function satisfying the transversality condition is strictly

suboptimal. �

Appendix C. Proofs of results from Section 4.2 

C.1. Nonexistence in discrete time 

Caldentey and Stacchetti (2010) offer a special case in

which there is a lump of initial private information and

no ongoing flow of private information. Time is discrete,

and trade takes place at dates t n = n � for n ≥ 0 and

� > 0. The risky asset pays off V ∼ N (0 , �0 ) immediately

after trading round T , where T is random. Specifically, sup-

pose T = η�, where η is geometrically distributed with
failure probability ρ = e −r�. 35 The risk-neutral strategic

trader observes V . Let x n denote her trade at date t n . There

are noise traders who submit independent and identically

distributed trades z t ∼ N (0 , �z ) with �z = σ 2 
z �. Let y n =

x n + z n denote the time n order flow. Competitive risk-

neutral market makers set the price p n in each trading

round equal to the conditional expected value. Following

Caldentey and Stacchetti (2010) , we focus on linear, Marko-

vian equilibria in which the time t n price depends only on

p n −1 and y n . Let V̄ n and �n denote the market maker’s

conditional expectation and variance, immediately before

the time t n trading round. So, V̄ n = p n −1 . Finally, set p −1 =
E [ V ] = 0 . 

Caldentey and Stacchetti (2010) show that if the trader

is informed of the asset payoff there exists an equilibrium

in which the asset price and trading strategy are given by 

p n ( ̄V n , y n ) = V̄ n + λn y n (C.1)

x n (V, V̄ n ) = βn (V − V̄ n ) , (C.2)

the trader’s expected profit is 

�n (p n −1 , V ) = αn (V − p n −1 ) 
2 + γn , (C.3)

and the coefficients are characterized by the difference

equations described in the proof of the following result.

The ex-ante expected profit from acquiring information

immediately before the t = 0 trading round is 

�̄0 ≡ E [�0 (p −1 , V )] − c = α0 E [(V − p −1 ) 
2 ] + γ0 − c 

(C.4)

= α0 �0 + γ0 − c. 

We compare this with the expected profit if the trader

deviates by remaining uninformed for the n = 0 trading

round, not trading, and then acquiring immediately before

round n = 1 . Supposing that she does so, trades x = 0 units

at time zero, and then follows the prescribed equilibrium

trading strategy in the following rounds, the expected de-

viation profit is 

�̄d0 = E [ x (V − p 0 ( ̄V 0 , x + z 0 ))] 

+ E 

[ 

∞ ∑ 

n =1 

ρn (V − p n ) x n − ρc 

] 

(C.5)

= ρ
(
α1 (�0 + λ2 

0 �z ) + γ1 − c 
)
. (C.6)

The following result establishes that such a deviation is

profitable when the time between trading dates � is suffi-

ciently small. 

Proposition 6 . For all � > 0 sufficiently small, 

�̄d0 − �̄0 

�
= 

− 1 
2 

(β�
0 ) 

3 �2 
0 

σ 2 
z �

+ (1 − e −r�) c 

�
> 0 , (C.7)

and therefore there does not exist an equilibrium in which the
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C.2. Proof of Proposition 6 

Caldentey and Stacchetti (2010) show that there exists 

an equilibrium in which the asset price and trading strat- 

egy are given by 

p n ( ̄V n , y n ) = V̄ n + λn y n (C.8) 

x n (V, V̄ n ) = βn (V − V̄ n ) , (C.9) 

the trader’s expected profit is 

J n (p n −1 , V ) = αn (V − p n −1 ) 
2 + γn , (C.10) 

and the constants are characterized by the difference equa- 

tions 

�n +1 = 

�n �z 

β2 
n �n + �z 

(C.11) 

βn +1 �n +1 = ρβn �n 

(
�2 

z 

�2 
z − β4 

n �
2 
n 

)
(C.12) 

λn = 

βn �n 

β2 
n �n + �z 

(C.13) 

αn = 

1 − λn βn 

2 λn 
(C.14) 

ργn +1 = γn − 1 − 2 λn βn 

2 λn (1 − λn βn ) 
λ2 

n �z (C.15) 

γ0 = 

∞ ∑ 

k =0 

ρk 

(
1 − 2 λk βk 

2 λk (1 − λk βk ) 

)
λ2 

k �z (C.16) 

The ex ante expected profit from acquiring information im- 

mediately before the t = 0 trading round is 

J̄ 0 ≡ E [ J 0 (p −1 , V )] − c = α0 E [(V − p −1 ) 
2 ] + γ0 − c (C.17) 

= α0 �0 + γ0 − c. 

We compare this with the expected profit if the trader 

deviates by remaining uninformed for the n = 0 trading 

round and then acquiring immediately before round n = 1 . 

Supposing that she does so, trades x units at time zero, and 

then follows the prescribed equilibrium trading strategy in 

the following rounds, the expected profit is 

E [ x (V − p 0 ( ̄V 0 , x + z 0 ))] + E 

[ 

∞ ∑ 

n =1 

ρn (V − p n ) x n − ρc 

] 

= E [ x (V − λ0 (x + z 0 ))] + ρE 

[ 

∞ ∑ 

n =1 

ρn (V − p n ) x n − c 

] 

= E [ x (V − λ0 (x + z 0 ))] + ρE [ J 1 (p 0 , V ) − c] 

= E [ x (V − λ0 (x + z 0 ))] + ρE [ α1 (V − p 0 ) 
2 + γ1 − c] 

= E [ x (V − λ0 (x + z 0 ))] + ρE [ α1 (V − λ0 (x + z 0 )) 
2 

+ γ1 − c] 

= −x 2 λ0 + ρ
(
α1 (�0 + λ2 

0 �z + λ2 
0 x 

2 ) + γ1 − c 
)
, (C.18) 
Take x = 0 . This yields ex ante deviation profits 

J̄ d0 = ρ
(
α1 (�0 + λ2 

0 �z ) + γ1 − c 
)
. (C.19) 

This deviation is profitable if and only if 

J̄ d0 − J̄ 0 > 0 

⇐⇒ ρ
(
α1 (�0 + λ2 

0 �z ) + γ1 − c 
)

− (α0 �0 + γ0 − c) > 0

⇐⇒ (ρα1 − α0 )�0 + ργ1 − γ0 

+ ρα1 λ
2 
0 �z + (1 − ρ) c > 0 . (C.20) 

We have 

ρα1 − α0 = ρ
1 − λ1 β1 

2 λ1 

− 1 − λ0 β0 

2 λ0 

= ρ
1 − β2 

1 �1 

β2 
1 
�1 +�z 

2 

β1 �1 

β2 
1 
�1 +�z 

−
1 − β2 

0 �0 

β2 
0 
�0 +�z 

2 

β0 �0 

β2 
0 
�0 +�z 

= 

ρ

2 

�z 

β1 �1 

− 1 

2 

�z 

β0 �0 

= 

1 

2 

�z 
1 

β0 �0 

(
ρβ0 �0 

β1 �1 

− 1 

)
= 

1 

2 

�z 
1 

β0 �0 

(
�2 

z − β4 
0 �

2 
0 

�2 
z 

− 1 

)
= −1 

2 

β3 
0 �0 

�z 
, (C.21) 

where the first equality substitutes from the difference 

equation for αn , the second equality substitutes from the 

equation for λn , the third and fourth simplify and col- 

lect terms, the fifth equality uses the difference equation 

for βn +1 �n +1 , and the final equality simplifies and collects 

terms. 

Similarly, 

ργ1 − γ0 = − 1 − 2 λ0 β0 

2 λ0 (1 − λ0 β0 ) 
λ2 

0 �z 

= −1 

2 

1 − 2 λ0 β0 

1 − λ0 β0 

λ0 �z 

= −1 

2 

1 − 2 

β2 
0 �0 

β2 
0 
�0 +�z 

1 − β2 
0 
�0 

β2 
0 
�0 +�z 

λ0 �z 

= −1 

2 

�z − β2 
0 �0 

�z 
λ0 �z 

= −1 

2 

(�z − β2 
0 �0 ) λ0 , (C.22) 

where the first equality uses the difference equation for 

γ n , the second equality cancels a λ0 , the third equality 

substitutes for λ0 , and the last two equalities simplify. 

Furthermore, recalling from the calculations for ρα1 −
α0 that ρα1 = 

ρ
2 

�z 
β1 �1 

, we have 

ρα1 λ
2 
0 �z = 

ρ

2 

�z 

β1 �1 

λ2 
0 �z 

= 

1 

2 

�2 
z 

β0 �0 

(
�2 

z 

�2 
z −β4 

0 
�2 

0 

)λ2 
0 

= 

1 

2 

1 

β0 �0 

(�2 
z − β4 

0 �
2 
0 ) λ

2 
0 
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= 

1 

2 

1 

β0 �0 

(�2 
z − β4 

0 �
2 
0 ) 

β0 �0 

β2 
0 
�0 + �z 

λ0 

= 

1 

2 

(�2 
z − β4 

0 �
2 
0 ) 

1 

β2 
0 
�0 + �z 

λ0 , (C.23)

where the second equality substitutes from the difference

equation for βn �n , the third equality simplifies, the fourth

equality substitutes for λ0 , and the final equality simplifies.

Combining the most recent two displayed expressions,

we have 

ργ1 − γ0 + ρα1 λ
2 
0 �z = 

1 

2 

(�2 
z − β4 

0 �
2 
0 ) 

1 

β2 
0 
�0 + �z 

λ0 

− 1 

2 

(�z − β2 
0 �0 ) λ0 

= 

1 

2 

λ0 
1 

β2 
0 
�0 + �z 

(�2 
z − β4 

0 �
2 
0 

− (�z − β2 
0 �0 )(β

2 
0 �0 + �z )) 

= 

1 

2 

λ0 
1 

β2 
0 
�0 + �z 

(�2 
z − β4 

0 �
2 
0 

− β2 
0 �z �0 − �2 

z + β4 
0 �

2 
0 

+ β2 
0 �z �0 ) 

= 0 . (C.24)

It follows that 

J̄ d0 − J̄ 0 = (ρα1 − α0 )�0 + ργ1 − γ0 

+ ρα1 λ
2 
0 �z + (1 − ρ) c 

= −1 

2 

β3 
0 �

2 
0 

�z 
+ (1 − ρ) c. (C.25)

We study the behavior of the above expression as

� → 0. 

Lemma 3 . There exists a strictly increasing function ψ such

that 

β0 = 

√ 

�Z 

�0 

ψ(�0 ) . (C.26)

Furthermore, ψ(0) = 0 , and we have 

ψ(�0 ) ≤ [1 − ρ] 1 / 4 
√ 

�0 . (C.27)

Proof . This proof leans heavily on the appendix of

Caldentey and Stacchetti (2010) but specialized to the case

with no flow of private information. As such, we point out

only the essential differences in the analysis. 

Define 

A n = �n (C.28)

and 

B n = 

βn �n √ 

�z 

(C.29)

Then the difference equations for �n and βn �n imply

that (A n +1 , B n +1 ) = F (A n , B n ) , where 

F A (A n , B n ) = 

A 

2 
n 

A n + B 

2 
(C.30)
n 
and 

F B (A n , B n ) = ρ

[
A 

2 
n B n 

A 

2 
n − B 

4 
n 

]
. (C.31)

Note that these are similar to those in Caldentey and Stac-

chetti (2010) , with the exception that there is no +1 term

in F A owing to the absence of a flow of private information.

Further, define 

G 1 (A ) = 0 (C.32)

G 2 (A ) = 

√ 

A [1 − ρ] 1 / 4 (C.33)

G 3 (A ) = 

√ 

A , (C.34)

where the function G 1 is defined so that F A (A, G 1 (A )) = A

and G 2 ( A ) is such that F B (A, G 2 (A )) = G 2 (A ) . Caldentey and

Stacchetti (2010) has a typo, which states F B (A, G 2 (A )) = B.

However, this cannot hold in general because B is on only

one side of the equation.) Finally, G 3 ( A ) is defined so that

a point ( A, B ) is feasible (i.e., leads to a strictly positive

value of �n +1 βn +1 in its difference equation) if and only

if B < G 3 ( A ). 

These curves divide R 

2 + into three mutually exclu-

sive regions, the union of which comprises all of R 

2 + .
First, define the infeasible region R 5 = { (A, B ) : A ≥ 0 , B ≥
G 3 (A ) } . Second, define region R 1 = { (A, B ) : A ≥ 0 , G 2 (A ) <

B < G 3 (A ) } . In this region, F ( A, B ) is always to the left

and higher than ( A, B ) and the given expression for F

implies that starting the iteration (A n +1 , B n +1 ) = F (A n , B n )

in R 1 will eventually lead the sequence to enter the in-

feasible region R 5 . Finally, define R 2 = { (A, B ) : A ≥ 0 , 0 =
G 1 (A ) < B ≤ G 2 (A ) } . Note that any sequence ( A n , B n ) al-

ways remains feasible, as shown by Caldentey and Stac-

chetti (2010) . Hence, any candidate ( A 0 , B 0 ) must lie in R 2 .

To put the above more clearly in the setting of Fig. 1 in

Caldentey and Stacchetti (2010) , note that in our case, the

function G 1 ( A ) is shifted identically downward to zero. This

completely eliminates the regions R 3 and R 4 in their plot.

Furthermore, the stationary point ( ̂  A , ˆ B ) in our case is de-

fined by the point at which G 1 ( A ) and G 2 ( A ) intersect. This

point is precisely (0,0). That is, with no flow of informa-

tion to the insider, in the stationary limit the trader per-

fectly reveals her information and the market maker faces

no residual uncertainty. 

To complete the proof, we need to find a curve C ⊂
R 2 such that (0 , 0) ∈ C and F (C) ⊂ C. Note further that

because for sequences in R 2 , we have (A n +1 , B n +1 ) =
(F A (A n , B n ) , F B (A n , B n )) < (A n , B n ) we know that such a

curve must be strictly increasing. Furthermore, because F

is continuous we know that such a curve exists. This curve

can be defined by an increasing function 0 ≤ ψ( A ) ≤ G 2 ( A )

with ψ(0) = 0 so that C = { (A, B ) : A ≥ 0 , B = ψ(A ) } . 
Clearly if we take B 0 = ψ(A 0 ) then the associated se-

quence always lies in C and we have ( A n , B n ) ↓ 0, the sta-

tionary point. Hence, returning to the definitions of A 0 and

B 0 , this implies that we need to set 

β0 �0 √ 

�Z 

= ψ(�0 ) (C.35)

⇒ β0 = 	(�0 ) ≡
√ 

�Z 

�
ψ(�0 ) . 
0 
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The claimed inequality holds because it was shown above 

that 0 ≤ ψ( A ) ≤ G 2 ( A ). �

We will now proceed with analyzing the behavior of 

the deviation profit in Eq. (C.25) as � shrinks. To make 

clear the dependence of the various coefficients on �, we 

write, e.g., β�
0 

as applicable in the following. Recall that 

for a positive function of � > 0, h �, we define h � ~ O ( �p ) 

for p > 0 as � → 0 if and only if 

lim sup 

�→ 0 

h 

�

�p 
< ∞ . (C.36) 

The following result establishes a property of the limit- 

ing behavior of β�
0 as � → 0. 

Lemma 4 . We have 

β�
0 ∼ O (�3 / 4 ) , as � → 0 . (C.37) 

Proof . From Lemma 3 we know 

0 < β�
0 = 

√ 

�Z 

�0 

ψ(�0 ) 

= 

σz 

√ 

�

�0 

ψ(�0 ) 

≤ σz 

√ 

�

�0 

[1 − ρ] 1 / 4 
√ 

�0 

= 

σz √ 

�0 

√ 

�[1 − e −r�] 1 / 4 . (C.38) 

We have [1 − e −r�] 1 / 4 ∼ O (�1 / 4 ) from which it follows 

that 

0 ≤ lim sup 

�→ 0 

β�
0 

�3 / 4 
≤ σz √ 

�0 

lim sup 

�→ 0 

√ 

�[1 − e −r�] 1 / 4 

�3 / 4 
< ∞ , 

(C.39) 

which establishes the result. �

Given these results, we now show that the main result: 

for all � > 0 sufficiently small we have 

J̄ d0 − J̄ 0 
�

= 

− 1 
2 

(β�
0 ) 

3 �2 
0 

σ 2 
z �

+ (1 − e −r�) c 

�
> 0 . (C.40) 

Proof . From Lemma 4 , we know β�
0 ∼ O (�3 / 4 ) . It follows 

that (β�
0 

) 3 ∼ O (�9 / 4 ) . Hence 

lim inf 
�→ 0 

(
−1 

2 

(β�
0 ) 

3 �2 
0 

σ 2 
z �

2 

)
= −1 

2 

�2 
0 

σ 2 
z 

lim sup 

�→ 0 

(β�
0 ) 

3 

�2 

= −1 

2 

�2 
0 

σ 2 
z 

lim sup 

�→ 0 

(β�
0 ) 

3 

�9 / 4 
�1 / 4 

= 0 . (C.41) 

Similarly because 1 −e −r�

� → rc, we have 

lim inf 
�→ 0 

(1 − e −r�) c 

�
= rc. (C.42) 

Combining the above two results yields 

liminf 
�→ 0 

J d0 − J 0 
�

= rc > 0 , (C.43) 
which establishes the result. �
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