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The article develops a dynamic model that nests the rational expectations (RE) and
differences of opinion (DO) approaches to study how investors use prices to update their
valuations. When investors condition on prices (RE), investor disagreement is related
positively to expected returns, return volatility, and market beta, but negatively to return
autocorrelation. When investors do not use prices (DO), these relations are reversed. Tests
of these predictions on the cross-section of stocks using analyst forecast dispersion and
volume as proxies for disagreement provide empirical evidence that is consistent with
investors using prices on average. (JEL G12, G14)

How do investors use the information in an asset’s price to update their beliefs
about its payoff? While there are many different models of how investors
might use prices, empirically determining what they actually do has proved
to be a challenge. The standard theoretical approach in the literature is to as-
sume rational expectations (RE), where investors agree on the interpretation
of signals and thus condition on prices efficiently to infer the private infor-
mation of others. Alternate approaches, however, suggest reasons for why in-
vestors may not condition on prices. For instance, in a differences of opinion
(DO) model, investors “agree to disagree” about the distribution of payoffs
and signals and, therefore, may not use prices to update their beliefs.1 Ad-
ditionally, investors may not condition on prices correctly if they exhibit be-
havioral biases or simply do not know how to invert prices into payoff-relevant
information.2
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1 In most DO models, the beliefs of other investors are assumed to be common knowledge, so there is no need to
condition on prices. In some recent models, this common knowledge assumption is relaxed, and investors may
condition on prices to update their higher-order beliefs (e.g., Banerjee, Kaniel, and Kremer 2009).

2 The learning literature (see Blume, Bray, and Easley 1982 for an early survey) has found that convergence
to rational expectations through learning requires investors to have an extensive structural knowledge of the

c⃝ The Author 2011. Published by Oxford University Press on behalf of The Society for Financial Studies.
All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
doi:10.1093/rfs/hhr050 Advance Access publication July 28, 2011

 by guest on August 13, 2011
rfs.oxfordjournals.org

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


The Review of Financial Studies / v 24 n 9 2011

While these approaches differ sharply in their assumptions about how in-
vestors learn from prices, they are extremely difficult to distinguish empiri-
cally. The underlying assumptions about beliefs, information, and learning are
not observable and cannot be directly tested. More importantly, the predic-
tions of these models on observable characteristics, such as return and volume
patterns, are often similar despite the differences in their assumptions. For in-
stance, the static Hellwig (1980) RE model and the Lintner (1969) counter-
part (in which investors condition only on private information), are impossible
to distinguish empirically, since one can make these models observationally
equivalent by setting investors’ risk aversions and signal precisions appropri-
ately. Even dynamic RE and DO models often deliver similar predictions (e.g.,
both types of models can generate persistence in trading volume and serial
correlation in returns).3
The article shows that dynamic RE and DO models can be distinguished

empirically by comparing how return-volume characteristics change with in-
vestor disagreement in equilibrium. When investors condition on prices as in
the RE case, assets with higher investor disagreement have higher expected
returns, higher volatility, higher market betas, and higher covariance between
volume and absolute returns, but lower return autocorrelation. When investors
do not condition on prices, as in the DO case, higher disagreement assets have
lower expected returns, lower volatility, lower betas, and lower covariance
between volume and absolute returns, but higher return autocorrelation. In
either case, assets with higher disagreement have higher expected volume.
Since the model nests both the RE and DO cases and its predictions

depend only on the signs, and not levels, of observable correlations, the em-
pirical tests that distinguish the two cases are easy to detect and potentially
robust to misspecification. These predictions are tested on the cross-section
of stock returns and volume using proxies for disagreement based on ana-
lyst forecast dispersion and trading volume. The empirical evidence from both
portfolio sorts and Fama–MacBeth regressions is broadly consistent with in-
vestors conditioning on prices, although there is substantial variation across
stocks in the degree to which they do so. Moreover, firms in which investors
appear to condition on prices more are larger and have higher average returns,
higher market betas, higher return volatility, higher trading volume, higher
market-to-book ratios, higher analyst coverage, and higher volatility in
earnings.
The article develops an overlapping generations (OLG) model that general-

izes the models in Hellwig (1980) and Admati (1985) and is closely related

economy and of other investors’ beliefs. This level of sophistication may not be a realistic assumption. The
behavioral finance literature suggests a number of cognitive biases, including overconfidence about private in-
formation and underreaction to public information, which may lead investors to not condition on prices.

3 Noisy RE models like those of Wang (1994) and He and Wang (1995) and DO models like those of Scheinkman
and Xiong (2003) and Banerjee and Kremer (2010) can generate these and other, richer patterns in return and
volume dynamics.

3026

 by guest on August 13, 2011
rfs.oxfordjournals.org

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


Learning from Prices and the Dispersion in Beliefs

to the models of Spiegel (1998) and Watanabe (2008). The OLG assumption
allows me to introduce dynamics while maintaining tractability. A dynamic
model implies that an investor’s demand for a risky asset depends not only
on her beliefs about the fundamentals (i.e., future dividends), but also on her
beliefs about future prices. Investors receive private information about next pe-
riod’s dividends and have heterogeneous beliefs about the informativeness of
other investors’ signals. This determines the extent to which they condition on
prices. At one extreme, investors believe that others’ signals contain no infor-
mation at all and so rely only on their own private information when updating
their beliefs; this corresponds to the DO case. At the other extreme, investors
realize that others’ signals are just as informative as their own and condition
on the price efficiently, as in an RE equilibrium. The market-clearing condi-
tion determines equilibrium prices, and aggregate supply shocks prevent these
prices from being fully revealing.
An asset’s return and volume characteristics are driven by the investors’

disagreement about its payoffs and their perceived risk from holding the as-
set. The dispersion in beliefs, or disagreement, is measured as the variance
in the investors’ equilibrium expectations about the asset’s payoffs. The per-
ceived risk depends on the investors’ posterior variance in payoffs. The ex-
pected return and market beta of the asset are increasing in the perceived risk.
Since payoffs depend on future dividends and future prices, the perceived risk
is higher when prices are more sensitive to dividend and supply shocks, and
hence more volatile. This also implies that higher perceived risk is associ-
ated with lower return autocorrelation and higher correlation between abso-
lute returns and volume. Finally, expected volume increases with the level of
disagreement.
The empirical predictions used to distinguish RE from DO follow from the

difference in the relation between perceived risk and dispersion. In the DO
case, perceived risk is negatively related to disagreement. Intuitively, when
investors agree to disagree and have heterogeneous beliefs, being more cer-
tain about an asset’s payoffs leads to more disagreement. On the other hand,
when investors disagree in the RE case, they realize that others have payoff-
relevant information that they do not have. This leads investors to condition on
prices more aggressively, which makes aggregate demand, and hence prices,
more sensitive to dividend and supply shocks. Since payoffs depend not only
on future dividends, but also on future prices, higher price sensitivity to fun-
damental shocks implies higher perceived risk from holding the asset. This
implies that disagreement and perceived risk are positively related in the RE
model.
The rest of the article is organized as follows. The next section presents

a brief overview of the related literature. Section 2 presents the theoretical
results of the article, Section 3 presents the empirical analysis, and Section 4
concludes. Unless noted otherwise, proofs are in Appendix A.
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1. Related Literature

The current article is most closely related to Lang, Litzenberger, and Madrigal
(1992). The authors develop empirical predictions about the relation between
volume, price changes, and changes in average forecasts around earnings an-
nouncements to distinguish between competitive (Walrasian) and rational ex-
pectations equilibria, with and without aggregate noise. As in the current article,
the empirical evidence is consistent with the noisy rational expectations equi-
librium. However, since the tests are based on static models and rely on the
difference in levels of regression coefficients, they are difficult to detect and
more sensitive to misspecification. In contrast, the predictions in the current
article are based on a dynamic model and rely on the signs of the relations
between disagreement and a number of return-volume characteristics. These
differences in sign are easier to detect, and arguably more robust to the under-
lying specifications of the model.
The current article contributes to the theoretical and empirical literature on

the relation between analyst forecast dispersion and return-volume character-
istics. The related papers can be summarized as follows:

1. Relation between Expected Returns and Dispersion.
Negative Relation. Diether, Malloy, and Scherbina (2002) and
Goetzmann and Massa (2005) document a negative relation between
belief dispersion and returns, which they motivate with the optimistic
pricing model in Miller (1977). Park (2005) extends the Harrison and
Kreps (1978) model to argue that speculative pricing leads to the neg-
ative return-disagreement relation. The negative relation in these DO
models relies crucially on the presence of short sales constraints, which
prevents full revelation of information and leads to overpricing. Johnson
(2004) argues that the negative relation can be explained using an option
pricing result, namely that, for a levered firm, expected returns should
decrease with firm-level risk, which is potentially related to dispersion
in forecasts. Ang and Ciccone (2001) claim that forecast dispersion is
a proxy for firm transparency, and opaque firms, which have high fore-
cast dispersion, usually have lower returns. Zhang (2006) claims that
the negative relation is due to behavioral biases and that dispersion in
forecasts proxy for information uncertainty.

Positive Relation. Qu, Starks, and Yan (2004) also argue that dispersion
in analyst forecasts proxies for information uncertainty, but derive a
positive relation between disagreement and returns.

Positive and Negative Relation.Anderson, Ghysels, and Juergens (2005)
develop a general equilibrium model in which dispersion in beliefs is
a risk factor. They find evidence of a negative relation between ex-
pected returns and short-term dispersion, but a positive relation between
returns and long-term dispersion.
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2. Positive Relation between Trading Volume and Dispersion. Ajinkya,
Atiase, and Gift (1991) document that forecast dispersion is positively
related to trading volume.

3. Positive Relation between Volatility and Dispersion. Ajinkya and Gift
(1985) document a positive relation between volatility and disagree-
ment, and Shalen (1993) develops a two-period rational expectations
model in which dispersion is positively related to the volatility in prices
and the correlation between volume and absolute price changes.

4. Positive Relation between Return Autocorrelation and Dispersion.
Verardo (2009) finds a positive relation between forecast dispersion
and autocorrelation in returns and argues that this is consistent with
the overreaction and self-attribution model of Daniel, Hirshleifer, and
Subrahmanyam (1998); the underreaction to public news model of
Hong, Kubik, and Solomon (2000); and the parameter uncertainty model
of Lewellen and Shanken (2002).

The negative return-disagreement relation in the DO case and the positive
return-disagreement relation in the RE case arise naturally in a standard setup
even without short sales constraints or behavioral biases. More generally, the
degree to which investors condition on prices also affects how disagreement is
related to other return-volume characteristics.
This article is more generally related to the literature on rational expecta-

tions and differences of opinion. In the RE literature, the current model is
most closely related to the long-lived investor model of Wang (1994), and
the overlapping generations models of Spiegel (1998), Biais, Bossaerts, and
Spatt (2010), and Watanabe (2008), although the focus of these papers is dif-
ferent. Wang (1994) studies the relation between returns, volume, and ex-ante
information asymmetry (signal noise). Spiegel (1998) studies the role of ra-
tional expectations equilibria in generating excess volatility in returns. Biais,
Bossaerts, and Spatt (2010) develop a general equilibrium model and then em-
pirically show that a price-contingent portfolio outperforms a passive indexing
portfolio. Watanabe (2008) studies how correlations across asset returns are
determined in a noisy rational expectations model, and looks at the trading
behavior of hierarchically informed investors.
Models in which investors exhibit DO have been useful in explaining many

empirical features of price and volume dynamics. These include models of
speculation, bubbles, and crashes (e.g., Harrison and Kreps 1978; Hong and
Stein 2003; Scheinkman and Xiong 2003; Cao and Ou-Yang 2009), volume
and volume-return characteristics (e.g., Harris and Raviv 1993; Kandel and
Pearson 1995), positive autocorrelation in volume (e.g., Harris and Raviv 1993;
Banerjee and Kremer 2010) and positive autocorrelation in returns (e.g.,
Banerjee, Kaniel, and Kremer 2009). A class of dynamic DO models
(e.g., Detemple and Murthy 1994; Zapatero 1998; Basak 2000; Buraschi and
Jiltsov 2006) in which pricing can be done using a stochastic discount factor
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have also been successful in matching moments of the return-volume distribu-
tion. This article adds to this literature by providing a dynamic DO model in
which disagreement arises endogenously as a result of asymmetric informa-
tion and formally deriving implications on the relation between dispersion and
return-volume characteristics. Moreover, while the DO model in this article
has a natural RE counterpart that facilitates comparison, many of the models
in the existing literature do not.

2. Theoretical Analysis

2.1 Model setup and equilibrium
2.1.1 Payoffs and preferences. There are N risky assets and one risk-free
asset in the economy. The risky assets pay dividends Dt+1 in period t + 1,
given by the following process:

Dt+1 = (I − Λ)D + ΛDt + δt+1, where δt+1 ∼ N (0, Vd). (1)

The N × N matrix Vd is the covariance matrix of the dividend shocks, and
is assumed to be positive-definite. The diagonal matrix Λ captures the serial
correlation in dividends, and is assumed to be non-negative and with all its
elements less than 1. The risk-free asset pays an exogenously fixed rate r f >
0.4 Let the equilibrium prices of the risky assets be denoted by the vector Pt+1
and the dollar return on the risky assets be denoted by Rt+1, where

Rt+1 = Pt+1 + Dt+1 − (1+ r f )Pt . (2)

At each date t , there is a continuum of investors indexed by i . Investor i in gen-
eration t is born with wealth wi,t , and has exponential utility over her wealth
wi,t+1 in the next period. For notational simplicity, set the coefficient of risk
aversion to one. Denote investor i’s information set at date t by Fi,t and her
equilibrium portfolio allocation in risky assets by xi,t . Then, agent i solves the
following optimization problem at date t :

xi,t = argmax
x

E[− exp{wi,t+1}|Fi,t ], where wi,t+1 = wi,t (1+r f ) + x Rt+1,
(3)

and this implies that her optimal demand xi,t is given by

xi,t = var[Rt+1|Fi,t ]−1E[Rt+1|Fi,t ]. (4)

4 The risk-free rate must be strictly greater than zero, since the risky assets pay an infinite stream of dividends with
positive means. However, as is standard in these models, the risk-free rate is exogenously set since the analysis
is concerned with the study of the return and volume characteristics of the risky assets (e.g., Wang 1994; He and
Wang 1995; Spiegel 1998).
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2.1.2 Information and beliefs. In period t , investor i receives a private sig-
nal Yi,t about next period’s dividend shock of the form

Yi,t = δt+1 + si,t , where si,t ∼ N (0, Vs). (5)

Investors have heterogeneous priors over these signals—in particular, in-
vestor i’s beliefs about the signal of investor j is given by

Yi, j, t = ρδt+1 +
√

(1− ρ2)φi, t+1 + s j, t ,

where s j, t ∼ N (0, Vs),φi, t+1 ∼ N (0, Vd), ρ ∈ [0, 1] (6)

and φi,t+1 is independent of δt+1. The shock φi,t+1 is assumed to have vari-
ance Vd so that investor i’s beliefs about the aggregate private information∫
j Yi, j,t d j has variance Vd irrespective of the level of ρ. The beliefs are as-
sumed to be symmetric for tractability and to eliminate other, potentially
confounding effects that make the intuition for the model less transparent.5
This information structure allows us to parsimoniously model the extent to

which investors believe that the signals of other investors are informative us-
ing a single parameter ρ. Moreover, the parameter ρ summarizes the degree
to which investors condition on prices—when ρ is higher, each investor thinks
the others’ signals are more informative, and therefore puts more weight on
prices when updating her beliefs. As a result, this specification not only nests
the rational expectations (i.e., ρ = 1) and differences of opinion (i.e., ρ = 0)
benchmarks, but also allows us to model investors who know how informative
their own signals are, but misestimate the informativeness of others’ signals
(where ρ ∈ (0, 1)). Hence, the model nests a particular specification of “rela-
tive overconfidence”—each investor believes her private signal, though noisy,
is more informative than the signals of others. This inefficient use of condi-
tioning information need not be irrational, since investors may not condition
correctly on prices if they do not know how to invert prices correctly or if they
have heterogeneous priors. The specific reason for why investors do not condi-
tion on prices correctly does not change the predictions of the model, and the
specification of beliefs above lets us consider a wide range of investor behavior
in a tractable manner.

2.1.3 Aggregate supply and market clearing. The aggregate supply Zt+1
of the risky assets at date t + 1 is assumed to be stochastic and of the form

Zt+1 = Z + zt+1, where zt+1 ∼ N (0, Vz), (7)

5 The predictions of the model should be qualitatively unaffected if investors have signals of different quality
or have different risk aversion. In the DO case (ρ = 0), investors will not condition on the price, and the
risk premium will be determined by a risk-tolerance-weighted average of the investors’ conditional variances
in payoffs. In the RE case (ρ = 1), one would have to assume a setting either with symmetric beliefs or with
hierarchical beliefs to maintain tractability and avoid the infinite regress problem. Again, the risk premiumwould
be determined by a weighted average of investors’ conditional variances. Disagreement could be analogously
defined as in the symmetric case, although the difference in the quality of information might lead to another
source of disagreement.
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and the market clearing condition sets the aggregate demand equal to the ag-
gregate supply, i.e.,

∫

i
xi,t di = Zt . (8)

The role of the supply shocks is to prevent prices from being fully reveal-
ing in the RE model, and can be replaced by other sources of noise (e.g., en-
dowment shocks, alternative investment opportunities) without qualitatively
changing the theoretical results. The assumption that the supply shocks are
i.i.d. over time is important, as it ensures that prices are not mechanically
predictable over time. In particular, this implies that, in the DO equilibrium
(i.e., ρ = 0), investors have no reason to condition on prices. In contrast, if
the aggregate supply was assumed to be predictable (e.g., if it followed an
auto-regressive process), then investors would condition on prices even when
ρ = 0 in order to update their beliefs about future supply shocks and payoffs.
This would confound the predictions that distinguish the RE and DO equilib-
ria, since investors would condition on prices in both cases. From an empiri-
cal perspective, while we may expect to find persistence in supply shocks at
short horizons (e.g., over days or weeks), the independence assumption is not
likely to be restrictive over the monthly horizon at which the predictions are
tested.

2.1.4 Factor structure. While deriving analytical solutions under arbitrary
correlation structures is intractable, one can derive the theoretical predictions
of the model under the assumption of a factor structure. In particular, follow-
ing Watanabe (2008) and Van Nieuwerburgh and Veldkamp (2009), assume
that the covariance matrices Vd , Vs , and Vz have the following spectral decom-
position:

Vd = ΓWdΓ
′, Vs = ΓWsΓ

′, and Vz = ΓWzΓ
′, (9)

for diagonal matrices Wd , Ws , and Wz , and a common orthogonal matrix of
eigenvectors Γ . This implies that the covariance matrices Vd , Vs , and Vz com-
mute, and allows one to consider a large range of correlation structures among
the shocks dt+1, st+1, and zt+1. Moreover, as discussed in Section 2.4, numeri-
cal results suggest that the predictions of the model hold even under more gen-
eral correlation structures. Denote the single asset parameter by the lowercase
letter of its matrix counterpart; thus, asset n has dividend shock variance vd,n ,
supply shock variance vz,n , and signal noise vs,n .
The analysis focuses on the stationary, linear equilibria of this model. Sup-

pose investor i conjectures a linear equilibrium of the form

Pt = ADt + BȲi,t + Czt + K , where Ȳi,t =
∫

j
Yi, j,t d j. (10)
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Note that, if investor i exhibits RE (ρ = 1), she realizes that Ȳi,t = δt+1,
but if she exhibits DO (ρ = 0), she believes that Ȳi,t and δt+1 are independent.
The market clearing condition allows us to characterize the equilibrium of this
model as follows.

Lemma 1. Suppose prices are of the form (10), and that shocks (i.e., dt+1,
st+1, and zt+1) share a factor structure given by (9). Then, the market clearing
condition (8) implies that the price coefficients in a stationary linear equilib-
rium of the model are given by

A = ((1+ r f )I − Λ)−1Λ, B = 1
1+r f (A + I )Vδ

(
V−1
s + ρV−1

p

)
,

C = 1
1+r f

(
ρ(A + I )VδV−1

p B−1C − VR
)

,

K = 1
rf [(A + I )(I − Λ)D − VRZ ], (11)

where F = B−1C solves the following matrix equation:

F = − Vs(A + I )′
[
I + 1

(1+r f )2
(
V−1
s + ρV−1

p
)

×
(
Vd + FVzF ′)V ′

δ(V
−1
s + ρV−1

p )′
]
, (12)

and where Vp = ((1−ρ2)Vd + FVzF ′), Vδ = (V−1
d +V−1

s +ρ2V−1
p )−1, and

VR = (A + I )Vδ(A + I )′ + BVd B ′ + CVzC ′. (13)

Existence and equilibrium selection. The above equilibrium is characterized
by the solution F to a sixth-order polynomial matrix equation (12). Since the
equilibrium cannot be solved in closed form, characterizing the conditions for
existence is difficult. However, numerical solutions suggest that stationary lin-
ear equilibria exist for reasonable parameter values. Figure 1 shows the param-
eter ranges over which equilibria exist for a single asset in the DO equilibrium
(ρ = 0) and the RE equilibrium (ρ = 1), respectively. Increasing the risk-free
rate r , decreasing autocorrelation Λ, decreasing prior variance Vd , decreas-
ing supply noise Vz , and decreasing signal noise Vs all increase the likelihood
that an equilibrium exists. The implied condition for existence imposes a re-
striction on how large the total risk from the supply shock noise Vz and the
prior variance Vd can be. Specifically, a large Vz or Vd increases the current
risk premium VR , which in turn increases the risk premium in the previous
period—rolling back, the risk premium explodes when either source of risk is
too large, and this leads to the non-existence of stationary equilibria. Moreover,
for a given set of parameters, when investors condition on prices, the total risk
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Figure 1
Existence of stationary equilibria
This figure plots parameter ranges for which stationary equilibria exist in the DO (ρ = 0) and RE (ρ = 1)
equilibria. The shaded region represents the region in which an equilibrium exists. Parameter values are as in
the plots. In each panel, the first row shows the effect of increasing signal noise Vs , the second row shows the
effect of increasing autocorrelation in dividends Λ, and the third row shows the effect of increasing the risk-free
rate rf .
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they face decreases, and so the parameter space over which RE equilibria exist
is slightly larger.
Since the model has an infinite horizon and overlapping generations, there

are potentially multiple equilibria, each corresponding to a different root of
F . Given the factor structure specified in (9), the matrix F has a spectral de-
composition given by F = ΓWFΓ ′. Numerically solving the system suggests
there are two real roots for each element ofWF . This is similar to the models in
Spiegel (1998) and Watanabe (2008), who also show there are 2N equilibria in
an economy with N assets. These equilibria can be generally grouped into low-
volatility and high-volatility equilibria based on whether one considers the less
negative root or the more negative root (for each element) of WF , respectively.
The choice of which type of equilibrium to study is somewhat arbitrary, as

both types have desirable theoretical and empirical properties.6 On the one
hand, Liang (2008) argues that the high-volatility equilibrium (with the more
negative roots) are more stable to perturbations in the beliefs of investors, in
the sense that they can be shown to be the stationary limit of non-stationary
equilibria of the model. Also, Spiegel (1998) and Watanabe (2008) demon-
strate that the equilibria with the more negative roots can generate empirically
relevant features of asset returns like excess volatility and correlation.
On the other hand, the low-volatility equilibria also have a number of appeal-

ing properties. First, as shown in Appendix B, the low-volatility equilibrium
corresponds to the limit of the unique equilibrium of the finite horizon version
of the model. Second, as Figure 2 suggests, the low-volatility equilibrium is
characterized by intuitive comparative statics properties. For instance, in the
low-volatility equilibrium, increasing the prior variance or the variance of sup-
ply shocks makes the equilibrium prices less informative, while the reverse is
true in the high-volatility equilibrium. Finally, and most importantly, the em-
pirical characteristics of the returns and volume in the sample appear more
consistent with the low-volatility equilibrium. Given the nature of aggregate
supply shocks in the model, the high-volatility equilibrium generates almost
perfectly negative auto-correlation in returns and extremely high positive cor-
relation between absolute returns and volume, neither of which is consistent
with the empirical evidence.
The theoretical and empirical analysis that follows focuses on the low-

volatility equilibrium. However, as discussed in Section 2.5, numerical
simulations suggest that the relation between investor disagreement and return-
volume characteristics can still be useful in determining whether investors
condition on prices in the high-volatility equilibria.

2.2 Returns, volume, and investor disagreement
If the signal noise Vs were empirically observable, one could distinguish the
RE and DO models based on the comparative statics of return and volume

6 I thank the editor for highlighting this point.
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Figure 2
Comparative statics for low-volatility and high-volatility RE equilibria
The figure plots the variance in price signal Vp as a function of signal noise Vs , supply shock noise Vz , and
prior variance in dividends Vd for the low- and high-volatility equilibria when ρ = 1. The risk-free rate r f is set
to 0.05, and autocorrelation in dividends Λ is set to 0.25. The first row shows the results for the low-volatility
(less negative root) equilibrium, and the second row shows the results for the high-volatility (more negative root)
equilibrium.

characteristics with respect to Vs . However, since it depends on the quality
of investors’ private information, Vs is usually not empirically observable.
Therefore, one must derive empirical predictions based on the relation between
return-volume characteristics and investor disagreement, which one could po-
tentially proxy for empirically.
In equilibrium, investor disagreement Vµ is the cross-sectional variance in

investors’ posterior expectations about next period’s dividends, and is given by

Vµ ≡ var
[
E[Dt+1|Fi,t ]−

∫

i
E[Dt+1|Fi,t ]di

]
= VδV−1

s V ′
δ . (14)

Note that Vµ is the level of disagreement determined endogenously in
equilibrium—it depends on the precision of the investors’ private information,
their prior beliefs, and the degree to which they condition on prices.
In equilibrium, the traded volume is the cross-sectional average, across in-

vestors, of the absolute change in their positions over time:

Vt+1 ≡
∫

i
|xi,t+1 − xi,t |di =

∫

i
|zt+1 − zt − F−1(si,t+1 − si,t )|di. (15)

Dollar returns and rates of return. Since prices and dividends are normally
distributed, I follow the literature in considering dollar (or price) returns in the

3036

 by guest on August 13, 2011
rfs.oxfordjournals.org

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


Learning from Prices and the Dispersion in Beliefs

theoretical analysis, which are defined as

Rt+1 ≡ Pt+1 + Dt+1 − (1+ r f )Pt . (16)

This ensures that returns are also normally distributed, and allows me to de-
rive analytical expressions for the distribution of returns in closed form. How-
ever, the empirical analysis of the model’s predictions uses rates of return that
are defined as

rt+1 ≡ Pt+1 + Dt+1
Pt

− 1. (17)

The rates of return are given by ratios of normally distributed random vari-
ables, which implies that analytically proving results about their distributional
properties is not tractable. As discussed in Section 2.4, numerical simulations
suggest that the theoretical predictions derived about dollar returns also hold
when using rates of return.
Lemma 2 characterizes the return-volume moments used in the empirical

predictions.

Lemma 2. Suppose volume is of the form (15) and returns are of the form
(16). Then, the moments for the return-volume distribution are given by

1. E[Rt+1] = VRZ
2. var[Rt+1] = BVd B ′+((A+ I )−(1+r f )B)Vd((A+ I )−(1+r f )B)′+

(1+ (1+ r f )2)CVzC ′

3. cov[Rt+2, Rt+1] = ((A + I ) − (1+ r f )B)Vd B ′ − (1+ r f )CVzC ′

4. E[Vt+1] =
√
4
π diag(Vz + F−1Vs(F−1)′)

5. cov[Vt+1, |Rt+1|] = Ψ ((2+r f )diag(CVz))=Ψ ((2+r f )diag(−CVz))
where Ψ is a function, symmetric around zero, defined in Appendix A.

There are a few immediate implications for the return-volume characteris-
tics. For instance, volume is independent of dividend shocks and the autocor-
relation in volume is constant since investors are symmetrically informed and
the information is short-lived. By allowing for persistent information or a hi-
erarchical information structure, one can generate correlation between volume
and dividend shocks, and non-trivial autocorrelation patterns in volume (e.g.,
Wang 1994), but this makes the model less tractable and the intuition behind
the results less clear.
The expected returns are proportional to the perceived risk per unit of the

asset, which is given by the posterior variance in returns VR . Return volatility
is positively related to the posterior variance in returns, and return autocorrela-
tion is negatively related to it.7 Intuitively, prices are more sensitive to supply
shocks when risk is high, and this makes prices more volatile and more strongly

7 This is especially apparent as we take the limit of the above expressions when r f → 0.
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mean-reverting. There are two sources of volume: supply shocks and informed
trade. Informed trade increases in the posterior dispersion in beliefs (Vµ) but
decreases in the perceived risk (VR). As a result, volume increases in disagree-
ment and decreases in the posterior variance in returns. Finally, note that the
only common components between returns and volume are supply shocks—
this is because dividend shocks do not affect the volume, and investor disagree-
ment does not affect prices (while the average beliefs do). Hence, the higher
the perceived risk VR , the higher the sensitivity of prices to supply shocks, and
the higher the covariance between absolute returns and volume.
While the distribution of the rates of return in (17) are not easy to character-

ize analytically, one can show that they satisfy a conditional CAPM relation,
as described in Lemma 3.

Lemma 3. Suppose the rates of return are of the form (17). Then, expected
rates of return satisfy a conditional CAPM relation with respect to the infor-
mation set of the average investor, i.e.,

Ēt [r j,t+1 − r f ] = β j,t Ēt [rM,t+1 − r f ], (18)

where r j,t+1 is the rate of return on asset j , rM,t+1 is the rate of return on
the market portfolio, and β j,t is the market beta of asset j . Moreover, β j,t
is increasing in its perceived risk when the price of the market portfolio is
positive.

This conditional CAPM characterization is analogous to the ones in Biais,
Bossaerts, and Spatt (2010) and Van Nieuwerburgh and Veldkamp (2009), and
holds under the average beliefs across investors. One can interpret this charac-
terization as being the conditional CAPM relation in a representative investor
economy in which the representative investor’s beliefs coincide with the av-
erage beliefs in the original economy.8 In the empirical section, the analysis
follows Lewellen and Nagel (2006) and uses short-horizon, rolling window
estimates of market beta to proxy for the conditional beta β j,t .

2.3 Model predictions
The main predictions of the model that can be used to distinguish the RE and
DO cases are summarized in Proposition 1.

Proposition 1. Suppose volume is given by (15) and returns are given by
(16). Consider two assets that differ only in the level of their signal noise (vs,n).

1. If investors exhibit differences of opinion (i.e., ρ = 0), the asset with
higher investor disagreement will have lower expected returns, lower
return volatility, higher serial covariance in returns, and lower covari-
ance between absolute returns and volume.

8 The representative investor’s beliefs need not coincide with any individual investor’s beliefs in the original
economy. For a more detailed analysis of this issue, see Biais, Bossaerts, and Spatt (2010).
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2. If investors exhibit rational expectations (i.e., ρ = 1), the asset with
higher investor disagreement will have higher expected returns, higher
return volatility, lower serial covariance in returns, and higher covari-
ance between absolute returns and volume.

In both cases, the asset with higher investor disagreement will have higher
expected volume.

These results are driven by how disagreement and risk change with changes
in ρ and signal noise Vs . To begin with, note that, for any given level of ρ, the
equilibrium disagreement across investors first increases and then decreases in
signal noise. When signals are very noisy, investors do not put too much weight
on their private signals and hence do not disagree much. When signals are very
precise, investors put a lot of weight on their signals but there is little disper-
sion in these signals. For intermediate levels of signal precision, investors put
enough weight on their signals and there is enough dispersion to generate dis-
agreement in equilibrium. Figure 3 shows an instance of this for the case of a
single asset.
While the relation between disagreement and signal noise is the same for

different levels of ρ, the relation between perceived risk and signal noise is
different. To see why, first note that perceived risk can be decomposed into
two components,

VR = var[Rt+1|Fi,t ] = var[(A + I )Dt+1|Fi,t ]︸ ︷︷ ︸
Dividend Risk

+ var[BȲi,t+1 + Czt+1|Fi,t ]︸ ︷︷ ︸
Price Risk

.

(19)

The first component, called dividend risk, increases in the signal noise Vs
and decreases in ρ. As in a static model, this risk is the posterior variance
of the predictable component of payoffs. When the information is better (i.e.,
Vs is lower), or when investors are using the information in prices more effi-
ciently (i.e., ρ is higher), the predictable dividend risk is lower. Moreover, note
that, since this is the only source of risk in a static model, static DO and RE
models cannot be distinguished along this dimension.
The second component of perceived risk is price risk. This corresponds to

the variance of the unpredictable component of returns. Since investors at time
t have no information about the mean signal or the supply shock at time t +
1, the conditional variance of these terms is the same as the unconditional
variance, and so can be expressed as

var
[
BȲi,t+1 + Czt+1|Fi,t

]
= B(ρ2Vd + Vp)B ′,where B ∝ Vδ(V−1

s +ρV−1
p ).

(20)

When investors do not condition on prices much (i.e., ρ = 0), price risk is
given by BVpB ′, which decreases and then increases in signal noise. This is
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Figure 3
The relation between perceived risk and investor disagreement
The figure plots perceived risk VR and equilibrium disagreement Vµ as a function of the signal noise ratio (i.e.,
Vs/(Vs + Vd )) and ρ for a model calibrated to match the rates of return on the market portfolio.

because an increase in signal noise has two competing effects. First, an increase
in noise Vs leads to a decrease in the price sensitivity B to the aggregate signal,
since for ρ = 0, B is linear in VδV−1

s . This is intuitive since investors trade less
aggressively on their private information when signal noise is higher. Second,
an increase in Vs also leads to an increase in Vp since investors have less infor-
mative signals about future fundamentals. Moreover, the first effect dominates
when signal noise is low but the second effect dominates when signal noise is
high.9 As a result, when investors do not condition much on prices, price risk
first decreases and then increases in signal noise.

9 The derivative of price risk is given by 2BVp ∂B
∂Vs + B2 ∂Vp

∂Vs . In the low-volatility equilibrium,
∂Vp
∂Vs is relatively

small for low Vs and so the derivative is dominated by the first term for low Vs and the second term for high Vs .
As we shall see in Section 2.5 , the opposite is true in the high-volatility equilibriumwhen ∂Vp

∂Vs is relatively large.
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When investors condition on prices (ρ is larger), price risk increases and
then decreases with signal noise. While conditioning on prices reduces the
variance of the predictable component of perceived risk, it also increases the
sensitivity of prices to dividend and supply shocks. All else equal, a higher
weight on the price signal when updating (i.e., higher VδV−1

p ) implies a higher
price sensitivity B to the aggregate signal. For a given ρ, the weight that in-
vestors put on prices increases and then decreases in signal noise. When signal
noise is low, the price is very informative and acts as a substitute to the private
signal. As a result, the weight investors put on prices in updating their beliefs
increases in signal noise. However, when signal noise is high, prices do not
contain much information either, and so the weight on prices decreases with
signal noise. This implies that, when investors condition on prices a lot, price
risk first increases and then decreases with signal noise. Figure 3 shows an in-
stance of the effect of ρ on the perceived risk VR . When ρ is small, VR is a
U-shaped function of Vs, while when ρ is large, VR is a hump-shaped function
of Vs .
The intuition for the change in the relation between disagreement and per-

ceived risk as ρ changes is as follows. When ρ is low, investors agree to
disagree more, and disagreement is largest when investors are most certain
about total payoffs. As a result, perceived risk and disagreement are negatively
related. As ρ increases, investors condition more on prices to infer the infor-
mation of others. In this case, when disagreement is high, each investor condi-
tions more heavily on prices since these contain information she does not have.
However, since everyone conditions on prices more heavily, this makes prices
more sensitive to dividend and supply shocks. This increases the volatility in
prices which, in turn, increases the total perceived risk. As a result, perceived
risk and disagreement are positively related.
Given the results in Lemma 2 and Proposition 1, we also have the following

corollary:

Corollary 1. Suppose volume is given by (15) and returns are given by (16).
If expected volume and return volatility are negatively related, then investors
exhibit differences of opinion (i.e., ρ = 0).

This follows from the observation that expected volume increases in dis-
agreement for either equilibrium, but return volatility decreases in disagree-
ment only in the DO equilibrium. Note that the converse is not true. If investors
exhibit differences of opinion, volume and return volatility need not be nega-
tively correlated. This is because both volume and volatility increase in sup-
ply shock variance, which induces a positive correlation between the two. All
else equal, Corollary 1 suggests that investors in assets with negative volume-
volatility correlation are more likely to exhibit DO.
Finally, given the relation between Vµ and VR and the result in Lemma 3,

we have the following result:
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Corollary 2. Suppose rates of return are given by (17) and the market port-
folio has a positive price, and consider two assets that differ only in the level of
their signal noise (vs,n). If investors exhibit differences of opinion (i.e., ρ = 0),
the asset with higher investor disagreement will have lower market beta. If in-
vestors exhibit rational expectations (i.e., ρ = 1), the asset with higher investor
disagreement will have higher market beta.

Since the market beta of an asset is increasing in its perceived risk, the above
result follows from the relation between perceived risk and disagreement in the
RE and DO cases. Unlike the case of dollar returns, it is difficult to analytically
derive predictions about the rates of return in the model. However, as discussed
in Section 2.4, numerical simulations suggest that the predictions in Proposi-
tion 1 also hold when using rates of return.

2.4 Robustness and discussion of theoretical results
In this section, I use numerical simulations to study how robust the model’s
predictions are to some of the specific assumptions made for tractability in the
theoretical analysis. The parameters used for these simulations are presented
in Table 1 and are reasonable in the sense that they picked to match the sample
moments of monthly returns for the three Fama–French factors on average.

2.4.1 Continuity in the parameter ρ. While the empirical predictions strictly
rely on the extreme cases of DO (ρ = 0) and RE (ρ = 1), the model’s pre-
dictions are “smooth” in ρ. Figures 3 and 4 provide numerical evidence of

Table 1
Parameter values for numerical simulations
Moment MKT SMB HML

Mean (Data) 0.008838 0.0046737 0.0079522
Mean (Model) 0.008838 0.004674 0.007952
Variance (Data) 0.0019707 0.001046 0.0009499
Variance (Model) 0.001971 0.001046 0.000950

Parameters MTRF SMB HML

Vd 0.393974 1.364135 0.341628
Vz 0.128104 0.018961 0.058051
Λ 0.128552 0.010997 0.031661
D 0.224241 0.294439 0.264939
Z 0.175857 0.018800 0.337853

The table reports the parameter values used in the numerical simulations in Figures 3 through 5, which are picked
to match the monthly returns on the Fama–French three factors over the period January 1983 to December 2008.
In particular, when ρ = 0.5 and Vs

Vs+Vd = 1 for the chosen parameter values, the model generates rates of
returns whose moments match the returns of three Fama–French factors generated by adding the risk-free rate
to each factor’s excess return. It is useful to convert excess returns to returns in this way to calibrate the model.
The correlation in the three factors is accounted for by fitting the parameters to match an orthogonal rotation of
these factors, and then the simulated returns are rotated back. The (monthly) risk-free rate for the sample and
the model is 0.00404.
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this for a single-asset model calibrated to match the moments of the market
portfolio return. As can be seen from Figure 3, when investors believe that
others’ signals are not very informative (ρ is small), the correlation between
risk and disagreement is negative, as in the DO model. From Figure 4, we see
that, for low ρ, disagreement is negatively related to expected returns, variance
in returns, and covariance between absolute returns and volume, and positively
related to the autocorrelation in returns. In this case, while investors do con-
dition on prices, the weight they put on prices is not very large. The resulting
increase in the price volatility is not large enough to offset the decrease in
perceived risk about dividends. However, when investor beliefs about the in-
formativeness of others’ signals is higher (i.e., ρ is large), then the weight on
prices is higher, and this increases the price volatility effect. As a result, for
large ρ, the correlation between risk and disagreement is positive, as in the RE
model. Figure 4 shows that the predictions about the return-volume character-
istics for large ρ are similar to those for the RE case. Finally, the continuity
of the model’s predictions in ρ appear to hold generally under a wide range of
parameter specifications, including those that match the return characteristics
for the size and market-to-book Fama–French factors.

2.4.2 Rates of return. As mentioned earlier, since prices and dividends are
normally distributed, rates of return are given by ratios of normally distributed
random variables. As a result, it is not analytically tractable to prove results
about the distributional properties of rates of return and how they change with
disagreement. However, one can show numerically that the empirical predic-
tions of the model are robust to using rates of return instead of dollar returns.
Figure 5 plots moments of simulated rates of return as functions of signal noise
(i.e., Vs) and the degree to which investors condition on price (i.e., ρ). As can
be seen, expected return, variance in returns, and correlation between abso-
lute returns and volume are U-shaped functions of signal noise when investors
exhibit DO (i.e., ρ = 0), but hump-shaped functions of signal noise when in-
vestors exhibit RE (i.e., ρ = 1). Similarly, autocorrelation in returns is hump-
shaped when ρ is zero, but U-shaped when ρ is one. Finally, as equilibrium
disagreement does not depend on whether dollar returns or rates of returns are
used, it is a hump-shaped function of signal noise for both DO and RE. These
numerical simulations suggest that the predictions of the model from the last
subsection should hold even if rates of return are used instead of dollar returns.

2.4.3 Factor structure of shocks. Numerically solving the model suggests
that these predictions are robust to relaxing the assumptions about the fac-
tor structure in (9) assumed about the shocks in the model (i.e., dt+1, st+1,
and zt+1). Figure 6 plots the coefficients from regressing the difference in ex-
pected returns on the difference in levels of disagreement for each model. The
negative relation between perceived risk and disagreement in the DO model
and the positive relation in the RE model persists even when dividend shocks,
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Figure 4
Model implied return-volume characteristics using dollar returns
The figure plots model implied disagreement and return-volume characteristics (i.e., average returns, variance in
returns, return autocovariance, and covariance between absolute returns and volume) as a function of the signal
noise ratio (i.e., Vs/(Vs + Vd )) and ρ for a model calibrated to match the rates of return on the market portfolio.

supply shocks, and shocks to private signals exhibit a correlation structure that
is more general than those permitted by (9). Hence, while analytical proofs for
these relations are difficult to obtain, the model’s predictions appear robust to
allowing for correlation across assets.

2.4.4 Normal-exponential model with OLG. The assumptions of overlap-
ping generations and normal payoffs–exponential preferences are made for
tractability. The normal-exponential framework lets me consider a tractable
model in which investors can condition on prices, and the OLG assumption al-
lows me to introduce dynamics without making the model overly complicated.
For instance, while the finite horizon model in Appendix B also generates the
same empirical predictions, the recursive nature of the price coefficients makes
it difficult to prove the comparative statics results analytically. Similarly, in
fully dynamic models (e.g., Wang 1994; He and Wang 1995), the effects of

3044

 by guest on August 13, 2011
rfs.oxfordjournals.org

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


Learning from Prices and the Dispersion in Beliefs

Figure 5
Model implied return-volume characteristics using rates of return
The figure plots average rates of return, variance in returns, return autocorrelation, and covariance between
absolute returns and volume as a function of the signal noise ratio (i.e., Vs/(Vs+Vd )) and ρ for models calibrated
to match the rates of return on the Fama–French factors (i.e., MKT, SMB, and HML).

conditioning on prices are confounded by other model features like hedging
demands and asymmetric updating due to hierarchical beliefs. Moreover, the
empirical predictions used to test the model do not rely on the “fit” of the
model, but on comparative statics results derived above, which are potentially
robust to the specific functional form assumptions.

2.4.5 Asymmetric information/beliefs. An alternative approach to nesting
the RE and DO models would be in an economy in which some investors con-
dition on prices efficiently while others do not condition on prices at all. In such
a specification, the fraction of RE investors would be the parameter analogous
to ρ. While this alternative model produces qualitatively similar predictions to
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Figure 6
Model predictions with general correlation structures
The figure plots the regression coefficients of the difference in expected returns on the difference in disagreement
in the 2-risky asset DO (ρ = 0) and RE (ρ = 1) equilibria as a function of the correlation in dividend shocks
(ρd ), supply shocks (ρz ), and private signals (ρs ). When not plotted, these correlations are set to 0. Other model
parameters are as follows: D = (1, 1)′, Z = (1, 1)′, Λ1 = Λ2 = 0, vd,n = 0.1, vz,n = 0.01, and the ratio of the
vs,n ’s of one asset to the other varies from 0.1 to 10.

those of the current model, the lack of symmetry in investors’ beliefs makes
the analysis less tractable.
The underlying features of the model that drive the empirical predictions are

(i) the non-monotonic relation between signal noise and dispersion in beliefs;
and (ii) the trade-off between lower dividend risk and higher future price
volatility when investors condition on prices to update their beliefs. Models
with alternative specifications for preferences of information structures (e.g.,
investors with hierarchical information, models with naı̈ve investors who do
not condition on prices, and sophisticated investors who do) that also
generate these effects will have similar empirical predictions. However, the
predictions of the current model, in which disagreement arises endogenously as
a result of heterogeneous information, may be different than those of a model
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in which the disagreement is modeled essentially as an exogenous process
(e.g., Detemple and Murthy 1994; Zapatero 1998; Basak 2000; Buraschi and
Jiltsov 2006). Moreover, while this alternate class of models offers many the-
oretical and empirical advantages, it is not easily nested in a model in which
investors condition on prices to update their beliefs.10

2.5 High-volatility equilibria
As discussed in Section 2.1, since the model has an infinite horizon and over-
lapping generations, it admits multiple equilibria. Recall that the high-volatility
equilibrium is characterized by the more negative root F of Equation (12) and
corresponds to more noisy prices (i.e., higher Vp). As in Spiegel (1998), Liang
(2008), and Watanabe (2008), these equilibria correspond to self-fulfilling be-
liefs in which investors perceive prices to be noisy and hence perceive risk
to be high. Investors demand larger compensation for holding the risky asset,
which implies that prices are more sensitive to supply shocks and, therefore,
more noisy.
While the empirical predictions of the model described in Section 2.3 are

derived in the low-volatility equilibria, numerical simulations suggest that the
relation between disagreement and return-volume characteristics can also
be useful in the high-volatility equilibrium to determine whether investors con-
dition on prices. For instance, Figure 7 plots the high-volatility equilibrium of
a single-asset model for which the parameters are chosen to match the mean
and variance of the market return. The numerical analysis suggests that the
empirical predictions are reversed for the high-volatility equilibrium. In par-
ticular, when investors do not condition on prices (i.e., ρ = 0), disagreement
is positively related to expected returns, variance in returns, and the covariance
between absolute returns and volume, but negatively related to autocorrelation
in returns. When investors do condition on prices (i.e., ρ = 1), these relations
have the opposite signs.
As in the low-volatility equilibrium, Lemma 2 holds in the high-volatility

equilibrium and the empirical predictions are driven by the relation between
disagreement and risk. Specifically, the above predictions follow from the pos-
itive relation between disagreement and perceived risk in the high-volatility
DO equilibrium and the negative relation between disagreement between risk
in the high-volatility RE equilibrium. These results, in turn, follow from how
disagreement and risk change with changes in signal noise Vs . In both the
high-volatility DO and RE equilibria, disagreement first increases and then
decreases with signal noise. As in the low-volatility equilibria, there is low
disagreement when signals are very noisy (investors put little weight on their
signals) or very precise (there is little dispersion in the signals).

10 Theoretically, pricing in these heterogeneous belief models can be represented with a stochastic discount factor.
This makes pricing of general classes of securities feasible. Empirically, these models have been useful in fitting
return and volume characteristics of aggregate data.
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Figure 7
Model predictions in high-volatility equilibrium
The figure plots average rates of return, variance in returns, return autocovariance, and covariance between
absolute returns and volume as a function of the signal noise ratio (i.e., Vs/(Vs + Vd )) and ρ in the high-
volatility equilibrium. The model’s parameters are selected to match the mean and variance of the market return.
In particular, the parameters are set to rf = 0.004, Vd = 0.000548, Vz = 381.03, Λ = 0.0001, D = 355.68, and
Z = 5.5. The mean and variance in market returns in the data are 0.00883 and 0.00197, respectively. The mean
and variance in returns from the model are 0.00873 and 0.00264, respectively.

However, perceived risk behaves differently as a function of signal noise in
the high-volatility DO and RE equilibria. As in Equation (19), perceived risk
can be decomposed into two components: dividend risk, which is the posterior
variance of the predictable component of payoffs, and price risk, which is the
variance of the unpredictable component. Moreover, as in the low-volatility
equilibria, dividend risk in both the RE and DO high-volatility equilibria are
decreasing in signal noise, since noisier private signals lead to more uncertainty
about next period’s dividends.
In contrast to the low-volatility equilibrium, price risk first increases

and then decreases with signal noise in a high-volatility DO equilibrium.
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An increase in signal noise leads to more uncertainty about future fundamen-
tals (which increases price risk), but leads investors to trade less aggressively
(which makes prices less sensitive to fundamentals and hence decreases price
risk). However, in a high-volatility equilibrium, since investors perceive risk to
be high, they do not trade very aggressively even when private signals are very
precise.11 This implies that, when signals are precise, the first effect dominates
the second, and price risk increases with signal noise. On the other hand, when
signal noise is high, uncertainty about future fundamentals is already high,
and so the second effect dominates—price risk decreases with signal noise. As
a result, price risk first increases and then decreases with signal noise in the
high-volatility DO equilibrium.
In the high-volatility RE equilibrium, price risk first decreases and then in-

creases in signal noise. When private signals are very precise, an increase in
signal noise leads investors to condition more on prices. However, in a high-
volatility equilibrium, since investors perceive prices to be noisy and risk to be
high, they do not condition very heavily on prices or trade very aggressively.
As a result, the decrease in uncertainty due to conditioning on prices offsets
the increased sensitivity of prices to fundamental shocks (as a result of more
aggressive trading), and price risk decreases in signal noise when private sig-
nals are precise. When signal noise is high, prices are also uninformative and
investors do not condition on them very heavily; hence, price risk increases
with signal noise. This implies that price risk decreases and then increases
with signal noise in the high-volatility RE equilibrium.
The predictions in Section 2.3 and the empirical analysis that follows fo-

cus on the low-volatility equilibrium. As mentioned in Section 2.1, this is
partly because the empirical distribution of returns and volume in the sam-
ple appear more consistent with the low-volatility equilibrium. The numerical
analysis in this section suggests that similar empirical analysis may also be
useful in determining how investors condition on prices during periods of
high volatility and uncertainty (e.g., during crises and periods of contagion).
However, a complete theoretical and empirical analysis of the high-volatility
equilibria is beyond the scope of this article and is left for future work.

3. Empirical Analysis

In order to test the predictions of the model, one needs to empirically proxy
for disagreement. The dispersion in analyst forecasts is both intuitively ap-
pealing and popular in the literature as a proxy for investor disagreement (e.g.,
Diether, Malloy, and Scherbina 2002). However, some caveats must be kept
in mind when using this variable. First, since analyst forecast dispersion is in

11 Recall that the derivative of price risk is given by 2BVp ∂B
∂Vs + B2 ∂Vp

∂Vs , and B ∈ [0, 1]. In the high-volatility

equilibrium, ∂Vp
∂Vs is relatively large for low Vs and so the derivative of price risk is dominated by the second

term for low Vs (when B is large) and the first term for high Vs (when B is small).
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terms of dollars per share, one must control for a measure of size per share
to avoid a mechanical relation between size and dispersion (firms that have
higher earnings per share have higher dispersion). While the literature sug-
gests a number of variables that can be used to scale analyst dispersion (e.g.,
absolute lagged earnings, lagged price, absolute mean earnings forecast), these
variables potentially have a strong effect on the measure of dispersion and often
lead to opposite implications for the joint distribution of returns, volume, and
dispersion.12 To avoid favoring one model over the other, I use the unadjusted
analyst forecast dispersion (denoted by AFD), dispersion scaled by absolute
median forecast (denoted by AFD/ME), and dispersion scaled by lagged price
(denoted by AFD/P) as proxies for disagreement.
In addition to being a proxy for disagreement, analyst forecast dispersion

may also reflect uncertainty about earnings (e.g., Barron, Kim, Lim, and
Stevens 1998; Doukas, Kim, and Pantzalis 2006). Moreover, there is evidence
of biases in analyst forecasts, including overoptimism (e.g., Hong and Stein
2003), underreaction to public information and overconfidence in private in-
formation (e.g., Abarbanell and Bernard 1992), and herding and anti-herding
of forecasts (e.g., Hong, Kubik, and Solomon 2000; Bernhardt, Campello, and
Kutsoati 2006). This potentially raises concerns about the use of analyst fore-
cast dispersion as a proxy for investor disagreement. To alleviate some of these
concerns, I also use trading volume (as measured by average turnover) as an-
other proxy for disagreement. While analyst forecast dispersion and trading
volume are both noisy proxies for investor disagreement, they do not suffer
from the same criticisms. Hence, the evidence based on all the proxies, espe-
cially if consistent across all of them, is arguably more convincing than relying
on each proxy individually.
Finally, even though the model’s predictions are based on monotonic rela-

tions between disagreement and return-volume characteristics, these relations
are extremely nonlinear. To ensure that the empirical analysis is robust to mis-
specification, both portfolio sorts and Fama–MacBeth regressions are used to
study how return-volume characteristics change with disagreement. The empir-
ical evidence is consistent across the two approaches and so is more convincing
taken together.

3.1 Data selection and summary statistics
Daily return and volume data from CRSP are used to compute monthly esti-
mates of return and volume characteristics for firms. As in the previous litera-
ture, log turnover is used as a measure of volume and realized variance is used
as a measure for return volatility. Dimson (1979) betas are calculated using

12 For instance, Diether, Malloy, and Scherbina (2002) use absolute mean earnings estimate and find a negative
relation between expected returns and disagreement. In contrast, Qu, Starks, and Yan (2004) use lagged price
and find a positive relation.
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daily returns to compute monthly estimates of market beta for each stock.13
The disagreement proxies are based on the dispersion in analyst forecasts of
annual earnings per share from IBES.14 Firm-specific data used to compute
book value of assets and the debt to equity ratio are from Compustat. In order
to have enough firms in each cross-section, and to make the results more com-
parable with the existing literature, the sample covers January 1983 to Septem-
ber 2007. Observations in which the share price is lower than $5 or the number
of analysts is lower than 2 are excluded. Observations in which the scaling
variable is zero are also dropped.
Table 2 reports the summary statistics. There are 297 months of data, and

the average number of firms per cross-section is over 2,000. There is a selec-
tion bias in the sample, as it is restricted to the IBES firms with at least two
analysts following them. This subset of firms is large and has average monthly
returns of about 1.7 percent. All the measures of belief dispersion appear to
be left skewed, which indicates that the empirical results are not dominated by
the high-disagreement firms. Finally, Table 2 also provides the pairwise corre-
lations between the disagreement proxies and market value of equity (Size) and
market-to-book ratio. With the exception of AFD and AFD/P, the dispersion
proxies are not strongly correlated with each other. None of the proxies are
strongly correlated with size, but VOL is positively correlated with the market-
to-book ratio.

3.2 Return-volume characteristics across dispersion measures
Proposition 1 and Corollary 2 predict that, when investors exhibit rational
expectations, higher disagreement is associated with higher expected returns,
higher volatility, higher market beta, lower autocorrelation in returns, and
higher correlation between absolute returns and volume. When investors do
not condition on prices, and exhibit differences of opinion, the reverse is true.
These predictions are tested using two approaches: portfolio sorts and Fama–
MacBeth regressions.

3.2.1 Portfolio sorts. Each month, firms are sorted into quintiles based on
proxies of belief dispersion and average return-volume characteristics are cal-
culated for each quintile. Table 3 reports the time-series averages of the return-
volume characteristics for each quintile to see how they change on average

13 As in Lewellen and Nagel (2006), the beta coefficient on lags 2–4 are constrained to be the same in order to
reduce the number of estimated parameters. Hence, the beta estimate at time t on stock i is βi,t = bi,0 + bi,1 +
bi,2, where

ri,t − r f,t = bi, j,0rM,t + bi, j,1rM,t−1 + bi, j,2[(rM,t−2 + rM,t−3 + rM,t−4)/3]+ εi,t .

14 The summary file for the data unadjusted for stock splits, now available through WRDS, is used to avoid the
rounding error documented by Diether, Malloy, and Scherbina (2002) and others. The use of annual earnings
forecasts is to maximize the sample size.
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Table 2
Summary statistics

Mean Median 5% 95% Std. Dev. N obs

Avg. Returns 0.017 0.015 −0.188 0.229 0.135 712137
Realized Variance 0.020 0.010 0.002 0.072 0.046 712137
Log Turnover (VOL) 1.494 1.381 0.459 2.872 0.739 712137
C(Abs Ret, Vol) 0.292 0.305 −0.135 0.666 0.241 712133
Autocorr in Returns −0.002 −0.002 −0.360 0.359 0.215 711265
Market Beta 1.094 1.011 −1.747 4.324 2.111 712137
AFD 0.653 0.040 0 0.409 32.768 712137
AFD/ME 0.114 0.036 0 0.340 0.741 648375
AFD/P 0.060 0.002 0 0.027 3.922 712136
Size 2958 498 51 10438 13137 712136
Market / Book 2.006 1.391 0.889 5.117 2.360 706744
Debt / Equity 1.664 0.234 0 2.609 42.582 662252
Earnings / Share (EPS) 1.257 0.824 −1.328 3.336 314.833 709901
Coverage 8.630 5.917 2 24.189 7.288 712137
Std. Dev. EPS 1.428 0.149 0 1.246 87.684 693169

AFD AFD/ME AFD/P VOL

AFD/ME 0.014
AFD/P 0.915 0.012
VOL −0.006 0.012 −0.006
Size 0.001 −0.019 −0.003 0.019
Market / Book 0.005 −0.012 0.004 0.229

The table shows the summary statistics of the variables. The return and volume statistics are based on monthly
aggregates of daily returns and volumes. The table reports summary statistics for average returns, realized vari-
ance in returns, average log turnover (VOL), analyst forecast dispersion (AFD), analyst forecast dispersion scaled
by median estimate (AFD/ME), analyst forecast dispersion scaled by lagged price (AFD/P), market value of eq-
uity in millions (Size), debt-to-equity ratio, market-to-book ratio, earnings per share (EPS), analyst coverage, and
standard deviation in EPS (calculated using the last 8 quarters). The data are from January 1983 to September
2007.

across quintiles. In Table 4, the same analysis is repeated but with return-
volume characteristics that are adjusted for size and market-to-book ratios.15
Specifically, stocks are sorted into 5 × 5 portfolios based on size and market-
to-book each month and average return-volume characteristics are calculated
for each of these 25 portfolios. For each stock-month observation, the return-
volume characteristic is adjusted by subtracting the relevant portfolio average
for that month. Then, stocks are sorted into quintiles based on proxies of be-
lief dispersion and the time-series average characteristics for each quintile are
reported in Table 4.
Across both Tables 3 and 4, the evidence is more consistent with investors

exhibiting RE than with investors exhibiting DO. Moreover, while the esti-
mates across the two tables are similar in sign and magnitude, they appear
to be more statistically significant for the size and M/B adjusted specifica-
tion in Table 4. Across all four proxies, return volatility (as measured by real-
ized variance), market beta, and the correlation between absolute returns and
volume increase with disagreement, and the difference between the lowest
and highest quintiles is statistically significant. The difference in return

15 I thank the referee for suggesting this exercise.
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Table 3
Return and volume characteristics by disagreement quintiles
Avg. Returns Q1 (low) Q2 Q3 Q4 Q5 (high) Q5-Q1 t-stat

AFD 0.0234 0.0177 0.0155 0.0139 0.0114 −0.0120 −2.62
AFD/ME 0.0188 0.0149 0.0154 0.0151 0.0148 −0.0040 −0.93
AFD/P 0.0202 0.0151 0.0154 0.0145 0.0175 −0.0028 −0.59
VOL 0.0087 0.0123 0.0155 0.0190 0.0272 0.0185 3.38

Real. Variance Q1 (low) Q2 Q3 Q4 Q5 (high) Q5-Q1 t-stat

AFD 0.0189 0.0171 0.0172 0.0179 0.0217 0.0027 2.35
AFD/ME 0.0140 0.0128 0.0152 0.0177 0.0222 0.0083 9.07
AFD/P 0.0159 0.0152 0.0167 0.0188 0.0263 0.0104 8.50
VOL 0.0112 0.0120 0.0145 0.0200 0.0353 0.0241 14.35

Market Beta Q1 (low) Q2 Q3 Q4 Q5 (high) Q5-Q1 t-stat

AFD 1.0493 1.0398 1.0758 1.0905 1.1946 0.1454 10.99
AFD/ME 0.9882 1.0057 1.0595 1.1069 1.1443 0.1561 12.26
AFD/P 1.0280 1.0305 1.0727 1.1054 1.2149 0.1869 13.47
VOL 0.7972 0.9849 1.0939 1.2180 1.3573 0.5601 30.97

Auto Corr in Rets Q1 (low) Q2 Q3 Q4 Q5 (high) Q5-Q1 t-stat

AFD −0.0022 −0.0019 −0.0018 −0.0011 −0.0001 0.0021 0.84
AFD/ME −0.0015 −0.0008 −0.0017 −0.0005 −0.0017 −0.0003 −0.10
AFD/P −0.0025 −0.0008 −0.0021 −0.0008 −0.0006 0.0019 0.74
VOL 0.0009 0.0008 −0.0016 −0.0022 −0.0047 −0.0056 −2.10
Corr AbsRet & Vol Q1 (low) Q2 Q3 Q4 Q5 (high) Q5-Q1 t-stat

AFD 0.2833 0.2819 0.2794 0.2857 0.3063 0.0230 7.12
AFD/ME 0.2732 0.2719 0.2824 0.2912 0.3000 0.0268 7.80
AFD/P 0.2906 0.2790 0.2780 0.2850 0.3037 0.0131 3.78
VOL 0.2192 0.2388 0.2741 0.3180 0.3862 0.1669 43.64

The table reports the time-series average of return-volume characteristics of portfolios formed by sorting stocks
into quintiles based on disagreement proxies every month. The differences between the averages for the highest
and lowest quintiles (and the t-stat) are also reported. The proxies for disagreement are analyst forecast disper-
sion (AFD), forecast dispersion scaled by absolute median estimate (AFD/ME), forecast dispersion scaled by
lagged price (AFD/P), and average volume (VOL).

autocorrelation across high- and low-disagreement firms is only statistically
significant for the VOL proxy, and in this case, return autocorrelation decreases
with disagreement.
However, the evidence on the relation between average returns and disagree-

ment is more mixed. Average returns decrease with disagreement for AFD but
increase with disagreement for VOL (the relation is not statistically significant
for the other two proxies). This mixed evidence with respect to average returns
is all the more interesting given the unambiguously positive relation between
market beta and disagreement.
To better understand this apparent discrepancy in the relation between aver-

age returns and disagreement across the proxies, Table 5 presents results from
double sorts on disagreement and size, and disagreement and market-to-book,
respectively. For each disagreement proxy, I calculate the average return for
size/market-to-book and disagreement quintiles for each month, and then re-
port the time-series difference between high- and low-disagreement quintiles
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Table 4
Adjusted return and volume characteristics by disagreement quintiles
Avg. Returns Q1 (low) Q2 Q3 Q4 Q5 (high) Q5-Q1 t-stat

AFD 0.00159 −0.00018 −0.00006 −0.00024 −0.00178 −0.00337 −3.35
AFD/ME 0.00085 −0.00047 0.00002 0.00062 0.00088 0.00003 0.03
AFD/P 0.00037 −0.00168 −0.00031 −0.00026 0.00190 0.00153 1.34
VOL −0.00527 −0.00177 0.00041 0.00156 0.00507 0.01033 4.97

Real. Variance Q1 (low) Q2 Q3 Q4 Q5 (high) Q5-Q1 t-stat

AFD −0.00234 −0.00158 −0.00061 0.00058 0.00403 0.00638 22.75
AFD/ME −0.00432 −0.00376 −0.00213 −0.00021 0.00328 0.00760 26.75
AFD/P −0.00322 −0.00256 −0.00102 0.00064 0.00615 0.00937 30.07
VOL −0.00654 −0.00496 −0.00283 0.00085 0.01349 0.02003 26.99

Market Beta Q1 (low) Q2 Q3 Q4 Q5 (high) Q5-Q1 t-stat

AFD −0.05974 −0.05449 −0.00917 0.00969 0.11324 0.17299 16.37
AFD/ME −0.10360 −0.07909 −0.02851 0.02392 0.06750 0.17110 16.03
AFD/P −0.07543 −0.06708 −0.01570 0.02349 0.13473 0.21016 19.45
VOL −0.25393 −0.08622 0.00689 0.11070 0.22234 0.47627 34.22

Auto Corr in Rets Q1 (low) Q2 Q3 Q4 Q5 (high) Q5-Q1 t-stat

AFD −0.00046 −0.00024 −0.00049 −0.00005 0.00089 0.00135 1.44
AFD/ME −0.00008 0.00049 −0.00024 0.00064 −0.00051 −0.00043 −0.44
AFD/P −0.00057 0.00072 −0.00083 0.00017 0.00051 0.00108 1.21
VOL 0.00211 0.00179 −0.00002 −0.00087 −0.00301 −0.00512 −4.37
Corr AbsRet & Vol Q1 (low) Q2 Q3 Q4 Q5 (high) Q5-Q1 t-stat

AFD −0.01148 −0.00949 −0.00680 0.00292 0.02562 0.03710 36.07
AFD/ME −0.01992 −0.01883 −0.00548 0.00785 0.02269 0.04261 37.41
AFD/P −0.01201 −0.01329 −0.00755 0.00497 0.02788 0.03989 39.59
VOL −0.05175 −0.04337 −0.01384 0.02534 0.08361 0.13536 74.13

The table reports the time-series average of adjusted return-volume characteristics of portfolios formed by sort-
ing stocks into quintiles based on disagreement proxies every month. The differences between the averages for
the highest and lowest quintiles (and the t-stat) are also reported. The proxies for disagreement are analyst fore-
cast dispersion (AFD), forecast dispersion scaled by absolute median estimate (AFD/ME), forecast dispersion
scaled by lagged price (AFD/P), and average volume (VOL). Each month, stocks are first sorted into 5× 5 port-
folios based on market-to-book and size, and the equal-weighted average characteristics for each portfolio are
calculated. These average characteristics are subtracted from the return-volume characteristics of each stock to
yield the adjusted return-volume characteristics that are reported in the table.

for each size/market-to-book quintile. This provides a summary of how the
relations between disagreement and average returns change as we move from
small firms to big firms and from value firms to growth firms.
The relation between disagreement and average returns is consistent with the

evidence in Tables 3 and 4 when looking across size portfolios. Average returns
are positively (and statistically significantly) related to disagreement as mea-
sured by VOL, but negatively related to AFD, AFD/ME, and AFD/P. However,
when sorting on market-to-book, average returns appear to be positively related
to disagreement in the highest M/B quintile (except for AFD, which is not sta-
tistically significant), but not significantly related to disagreement in the lowest
M/B quintile. In other words, higher disagreement is associated with higher re-
turns for growth stocks but there is no statistically significant relation between
disagreement and returns for value stocks. Since VOL is positively correlated
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Table 5
Difference in average returns between high- and low-disagreement stocks across size and M/B quintiles
Size Quintiles Q1 (small) Q2 Q3 Q4 Q5 (big)

AFD −0.00834 −0.01222 −0.01441 −0.01337 −0.01
t-stat −1.65 −2.30 −2.90 −10.84 −2.44
AFD/ME −0.00345 −0.0088 −0.00637 −0.00545 −0.00291
t-stat −0.73 −1.83 −1.37 −5.66 −0.72
AFD/P −0.00062 −0.00852 −0.01144 −0.00954 −0.00668
t-stat −0.12 −1.60 −2.24 −7.13 −1.51
VOL 0.05438 0.0237 0.01202 0.00691 0.00596
t-stat 8.83 3.85 2.15 4.25 1.19

M/B Quintiles Q1 (value) Q2 Q3 Q4 Q5 (growth)

AFD −0.0055 −0.00519 −0.00168 −0.00363 −0.00214
t-stat −1.20 −1.32 −0.38 −0.69 −0.32
AFD/ME −0.00365 −0.00358 0.00305 0.00687 0.01247
t-stat −0.84 −0.91 0.70 1.37 2.02
AFD/P −0.00279 0.00101 0.00919 0.01274 0.01653
t-stat −0.62 0.24 1.95 2.32 2.40
VOL −0.00477 −0.00243 0.00211 0.0125 0.03097
t-stat −0.86 −0.48 0.39 2.21 4.92

The table reports the difference in the time-series average return between high- and low-disagreement port-
folios across size and market-to-book quintiles. The returns are formed by sorting stocks into quintiles based
on disagreement and size/market-to-book ratios and calculating the average return every month. The proxies
for disagreement are analyst forecast dispersion (AFD), forecast dispersion scaled by absolute median estimate
(AFD/ME), forecast dispersion scaled by lagged price (AFD/P), and average volume (VOL).

with market-to-book (see Table 2) while the analyst forecast dispersion prox-
ies are not, this helps explain the apparently conflicting evidence about the
return-disagreement relation from Table 3. Moreover, it suggests that investors
in value firms may condition on prices differently compared to those in growth
firms.

3.2.2 Fama–MacBeth regressions. The above analysis is complemented
with Fama–MacBeth regressions, which serve as a robustness check to the
analysis using portfolio sorts. Each month, the following cross-sectional re-
gression is run for each return-volume characteristic as the dependent variable
and for each disagreement proxy:

Dep Vari,t = a0 + a1 disagreei,t + a2 sizei,t
+ a3 market/booki,t + a4 ann monthi,t + εi,t . (21)

The control variables are (log) market size, the market to book ratio, and an
indicator variable for whether the current month is a month in which earnings
are announced.16
The results in Table 6 are generally consistent with the evidence in Tables 3

and 4. The disagreement coefficients for realized variance, market beta, and

16 I thank the referee for suggesting a control for the announcement month.
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Table 6
Fama–MacBeth regressions of return-volume characteristics on disagreement

AFD Adj. R2 disp t-stat size t-stat M/B t-stat ann t-stat

Avg. Returns 0.034 −0.001 −1.20 −0.004 −6.03 0.007 12.49 0.002 1.31
Real. Variance 0.117 0.000 1.74 −0.004 −21.39 0.003 14.46 0.004 7.50
Market Beta 0.007 0.032 1.66 −0.006 −1.45 0.031 5.92 0.007 0.30
Corr AbsRet & Vol 0.036 0.000 0.40 −0.003 −5.86 0.008 12.49 0.042 11.06
Auto Corr in Rets 0.009 0.001 0.66 0.000 −0.05 −0.001 −2.19 −0.005 −2.12

AFD/ME Adj. R2 disp t-stat size t-stat M/B t-stat ann t-stat

Avg. Returns 0.007 0.032 1.66 −0.006 −1.45 0.031 5.92 0.002 1.40
Real. Variance 0.126 0.003 12.76 −0.003 −21.50 0.002 13.81 0.004 7.13
Market Beta 0.007 0.051 3.93 0.002 0.46 0.029 5.34 −0.017 −0.82
Corr AbsRet & Vol 0.024 0.017 13.01 0.011 12.85 0.016 16.89 0.042 10.92
Auto Corr in Rets 0.009 −0.001 −0.74 0.000 −0.02 −0.001 −1.97 −0.006 −2.36

AFD/P Adj. R2 disp t-stat size t-stat M/B t-stat ann t-stat

Avg. Returns 0.035 0.001 0.24 −0.004 −6.03 0.007 12.51 0.002 1.35
Real. Variance 0.118 0.010 2.79 −0.004 −21.22 0.003 14.45 0.004 7.50
Market Beta 0.007 0.571 1.85 −0.005 −1.31 0.031 5.90 0.006 0.28
Corr AbsRet & Vol 0.022 0.063 2.74 0.010 11.58 0.014 16.43 0.042 11.04
Auto Corr in Rets 0.009 0.011 0.47 0.000 −0.05 −0.001 −2.19 −0.005 −2.14

VOL Adj. R2 disp t-stat size t-stat M/B t-stat ann t-stat

Avg. Returns 0.059 0.006 2.97 −0.003 −5.71 0.007 13.20 0.002 1.21
Real. Variance 0.233 0.014 12.20 −0.005 −19.97 0.001 11.55 0.003 6.74
Market Beta 0.023 0.300 18.68 −0.013 −3.42 0.003 0.79 −0.015 −0.66
Corr AbsRet & Vol 0.082 0.091 48.37 0.007 8.90 0.006 10.42 0.035 9.58
Auto Corr in Rets 0.010 −0.004 −3.61 0.000 0.04 −0.001 −1.63 −0.005 −2.05

The table shows the coefficients from Fama–MacBeth regressions of return and volume characteristics on the
four disagreement proxies and three control variables. The proxies for disagreement are analyst forecast disper-
sion (AFD), forecast dispersion scaled by absolute median estimate (AFD/ME), forecast dispersion scaled by
lagged price (AFD/P), and average volume (VOL). The three control variables are log size, market-to-book ratio,
and an indicator variable for whether the current month is the month in which earnings are announced (ann).
Adjusted R2’s and Newey–West standard errors with three lags are reported.

correlation between absolute returns and volume are positive for all disagree-
ment proxies, and often statistically significant. As in the case with portfolio
sorts, the coefficient on return autocorrelation is negative and statistically sig-
nificant for the VOL proxy, but not statistically significant otherwise. Finally,
average returns are positively (and statistically significantly) related to the VOL
proxy, but not significantly related to the other proxies.
The coefficient on the size control variable suggests that small firms have

higher average returns and higher volatility in returns. The coefficient on the
market-to-book ratio implies that growth firms have higher, more volatile re-
turns, higher market betas, higher correlation between absolute returns and vol-
ume, and more negative serial correlation in returns. Finally, in months when
earnings are announced, stocks exhibit higher volatility, lower serial correla-
tion in returns, and higher correlation between absolute returns and volume,
on average. While the coefficients on the control variables are generally sta-
tistically significant, the coefficients on the disagreement proxies suggest that
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the results in Tables 3 and 4 are robust to changes in specification and the
introduction of control variables.

3.3 The degree of conditioning on prices
The empirical evidence from the cross-sectional analysis is generally more
consistent with the RE equilibrium than the DO equilibrium. However, these
results are not useful in distinguishing firms in which investors condition on
prices efficiently from firms in which investors rely on prices less. Moreover,
the results depend on the proxy for belief dispersion and different proxies may
lead to conflicting evidence (as in the case for average returns).
Corollary 1 suggests a way to empirically characterize the degree to which

investors condition on prices, without relying on a proxy for disagreement. In
particular, recall that firms with a negative correlation between volume and
volatility are more likely to have investors with differences of opinion. All else
equal, firms with a high positive correlation between volume and volatility
are more likely to have investors who condition on prices and exhibit rational
expectations. As a result, by sorting firms into deciles based on the correlation
between volume and volatility, and comparing the firms at the two extremes,
I characterize the difference in firms that are more likely to have investors
that exhibit DO versus those that exhibit RE. Table 7 shows that stocks in
which investors condition on prices less (i.e., the decile of stocks with the
lowest correlation between volume and volatility) have lower average returns,
lower volatility in returns, and lower turnover. They are also smaller in size and
have lower market-to-book ratios, higher leverage, lower analyst coverage, and
lower standard deviation in earnings.
The differences in these firm characteristics between the extreme decile are

generally statistically significant, and often economically important. For in-
stance, the difference in average returns between the two extreme deciles is
1.47% per month, and the difference in market-to-book ratio and debt-to-equity
ratio are 0.5 and −0.9, respectively. The evidence on the market-to-book ratio
appears consistent with the pattern in the relation between average returns and
disagreement uncovered in Table 5. Investors in value stocks appear to condi-
tion on prices less and exhibit DO. The analyst coverage for the lowest decile
firms is nearly two analysts lower than those in the highest decile. Somewhat
surprisingly, there does not seem to be a significant difference in disagreement
(as measured by analyst forecast dispersion) across the groups, although this
is not inconsistent with the model.
Since the model makes no predictions about the levels of return-volume

characteristics in the RE and DO cases, the empirical results in Table 7 are
outside the model and intended to be descriptive. However, the results are of-
ten consistent with the intuition from the model. For instance, when investors
condition on prices more (ρ is higher), prices are more sensitive to shocks in
fundamentals and aggregate supply. This leads to higher perceived risk, which
in turn leads to higher returns, market betas, and higher volatility in returns.

3057

 by guest on August 13, 2011
rfs.oxfordjournals.org

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


The Review of Financial Studies / v 24 n 9 2011

Table 7
Characteristics of firms sorted on the degree to which investors condition on prices
Decile Corr(V,T) Avg. Ret R Var. Mkt Beta Log Turn. AC in Rets Corr(AR,T)

1 −0.140 0.0012 0.0114 0.909 1.149 0.0003 −0.133
2 0.028 0.0056 0.0122 0.974 1.229 −0.0003 0.037
3 0.124 0.0100 0.0133 1.031 1.300 −0.0002 0.131
4 0.201 0.0128 0.0147 1.068 1.367 −0.0008 0.205
5 0.269 0.0173 0.0160 1.101 1.425 −0.0022 0.271
6 0.333 0.0209 0.0177 1.124 1.479 −0.0026 0.332
7 0.397 0.0255 0.0200 1.145 1.536 −0.0024 0.393
8 0.464 0.0282 0.0229 1.179 1.593 −0.0014 0.459
9 0.541 0.0280 0.0262 1.184 1.642 −0.0027 0.533
10 0.661 0.0159 0.0316 1.187 1.647 −0.0014 0.645

RE–DO 0.0147 0.0201 0.278 0.498 −0.0016 0.778
t-stat 3.28 15.1 17.78 16.77 −0.59 248.35

Decile Size M/B D/E EPS AFD Coverage Stdev. EPS

1 1638.65 1.62 2.02 2.22 0.97 7.68 1.15
2 2149.36 1.7 1.56 1.54 0.45 8.34 0.94
3 2499.52 1.78 1.66 1.26 0.51 8.7 0.96
4 2641.38 1.85 1.68 1.38 0.81 8.98 1.07
5 2775.39 1.91 1.67 2.44 0.55 9.16 1.23
6 2984.95 1.97 1.52 1.63 0.67 9.25 2.25
7 3145.67 2.03 1.43 1.84 0.69 9.43 1.49
8 3233.54 2.09 1.33 0.4 0.65 9.47 1.25
9 3304.14 2.12 1.18 2.01 0.75 9.61 1.49
10 3464.17 2.12 1.12 0.64 1.09 9.72 1.91

RE–DO 1825.52 0.5 −0.9 −1.58 0.12 2.04 0.77
t-stat 11.87 14.81 −3.53 −0.67 0.48 16.1 2.28

The table reports the time-series average of characteristics of portfolios formed by sorting stocks every month
into deciles based on the degree to which investors condition on prices. Stocks are sorted every month based on
the correlation between realized variance and turnover (i.e., Corr(V,T)). Negative/low-correlation firms are more
likely to have investors who do not condition on prices (DO), while high-correlation firms are more likely to have
investors who do condition on prices (RE). The characteristics reported are average return, realized variance, log
turnover, autocorrelation in returns, correlation between absolute returns and turnover (i.e., Corr(AR,T)), market
value of equity (Size), market-to-book ratio (M/B), debt-to-equity ratio (D/E), earnings per share (EPS), analyst
forecast dispersion (AFD), analyst coverage, and standard deviation in EPS (calculated using the last 8 quarters).
The difference in the extreme deciles and associated t-statistic is also reported.

One might also expect market-to-book ratios, which are another measure of
how sensitive prices are to fundamental shocks, to be higher in this case.
Finally, it is more likely that sophisticated investors (e.g., institutional
investors), who condition on prices, trade in large stocks with higher turnover
and higher analyst coverage.

3.4 Discussion
Perhaps not surprisingly, the empirical evidence suggests that, on average, in-
vestors condition on prices. The true behavior of investors is likely to be nei-
ther as efficient as in an RE equilibrium nor as inefficient as in a pure DO
equilibrium, but somewhere in between. Moreover, there is significant vari-
ation across firms and over time in how investors use prices to update their
beliefs. As a consequence, results in the existing literature must be interpreted
carefully.
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The analysis also suggests that, when testing models, it is useful to derive
and test multiple predictions of each model. As previously mentioned, much
of the existing literature focuses on the relation between expected returns and
investor disagreement. By deriving and testing predictions on additional return-
volume characteristics, one is able to better distinguish among possible alterna-
tives. For instance, the empirical evidence from the relation between
disagreement and average returns or return autocorrelation does not individ-
ually provide conclusive evidence for either the RE and DO cases. However,
the evidence across all the return-volume characteristics and all the disagree-
ment proxies, when taken together, provides stronger evidence for the RE case.
Finally, the predictions of the model provide a new empirical characteri-

zation of firms in which investors exhibit RE or DO. In particular, one can
proxy for the degree to which investors condition on prices using correlations
between observable characteristics. These proxies could be used to revisit some
of the existing empirical literature on rational expectations, differences of opin-
ion, behavioral biases, and investor sophistication, and complement other, less
direct proxies such as firm size or institutional ownership. For instance, by fo-
cusing on firms in which investors condition on prices less, one should expect
to find greater effects of behavioral biases, especially if other firm characteris-
tics (e.g., high return volatility) make limits to arbitrage more binding.

4. Conclusion

The article develops a dynamic, heterogeneous beliefs framework that nests
the classic RE and DO approaches to study how investors use the information
in prices to update their beliefs. When investors condition only on their private
information, disagreement is negatively related to expected returns, volatility,
and covariance between volume and absolute returns, but positively related
to return autocorrelation. However, when investors condition on prices effi-
ciently, these predictions are reversed. These predictions are tested using the
cross-section of stocks and disagreement proxies based on analyst forecast dis-
persion and volume. The empirical evidence is more consistent with investors
exhibiting rational expectations, although there is substantial variation in the
extent to which investors condition on prices.
The model also provides a novel measure of investor sophistication based

on the degree to which investors condition on prices without having to rely
on proxies of belief dispersion. Under the model’s assumptions, a negative
correlation between trading volume and return volatility implies that investors
exhibit differences of opinion. Sorting stocks based on this correlation and
comparing the extreme deciles, I find that sophisticated investors who condi-
tion on prices (exhibit RE) are more likely to trade in stocks that are larger in
size and have higher average returns, market betas, volatility, trading volume,
market-to-book ratios, analyst coverage, and volatility in earnings.
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While useful in generating sharp empirical predictions and clarifying intu-
ition, the model is stylized. It would be interesting to consider a broader class
of models, with more general information structures, and see if empirical pre-
dictions on observables can be derived to distinguish them. Another interesting
line of research would be to endogenize the degree to which investors condi-
tion on prices in a setting with uncertainty to examine how investors learn to
use prices to update their beliefs.

Appendix A—Proofs

Proof of Lemma 1. Under the assumption that the shocks admit a factor
structure given by (9), we know that the covariance matrices Vd , Vs , and Vz
can be represented as

Vd = ΓWdΓ
′, Vs = ΓWsΓ

′, and Vz = ΓWzΓ
′. (A1)

Conjecture that the price coefficients B and C also have the same factor struc-
ture, i.e., they can be represented as

B = ΓWBΓ ′ and C = ΓWCΓ ′. (A2)

Denote investor i’s beliefs about next period’s dividend shocks by

µi,t = E[δt+1|Fi,t ], and Vδ = var[δt+1|Fi,t ]. (A3)

These beliefs depend on the conjectures that investors have about the informa-
tiveness of others’ signals. In particular, since investor i’s beliefs about investor
j’s signals are given by (6), and their conjecture about prices is given by (10),
Bayesian updating leads to beliefs about δ̃t+1 given by

Vδ ≡ var[δt+1|Fi,t ] = (V−1
d + V−1

s + ρ2V−1
p )−1 (A4)

µi,t ≡ E[δt+1|Fi,t ] = Vδ[V−1
s Yi,t + ρV−1

p B−1(Pt − K − ADt )], (A5)

where F = B−1C and let Vp ≡ ((1 − ρ2)Vd + FVzF ′). Since the investors
have symmetric information sets, the posterior variance about dividends is the
same for all investors. This implies that beliefs about returns are given by

E[Rt+1|Fi,t ] = (A + I )((I − Λ)D + ΛDt + µi,t ) + K − (1+ r f )Pt (A6)

var[Rt+1|Fi,t ] = (A + I )Vδ(A + I )′ + BVd B ′ + CVzC ′ ≡ VR . (A7)

Substituting these beliefs in the market clearing condition implies that

(1+ r f )Pt = (A + I )((I − Λ)D + ΛDt + µ̄t ) + K − VR(Z + zt ),

where µ̄t =
∫

i
µi,t di.
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The expressions for A, B, and K follow from matching terms. Specifically,

A(1+ r f ) = (A + I )Λ (A8)

B(1+ r f ) = (A + I )Vδ(V−1
s + ρV−1

p ) (A9)

C(1+ r f ) = ρ(A + I )VδV−1
p B−1C − VR (A10)

K (1+ r f ) = (A + I )(I − Λ)D + K − VRZ (A11)

VR = (A + I )Vδ(A + I )′ + BVd B ′ + CVzC ′. (A12)

To characterize the equation for F , note that VR = (A+ I )Vδ(A+ I )′+B(Vd+
FVzF ′)B ′, which implies

F=−Vs(A+I )′
[
I + 1

(1+ r f )2
(V−1

s + ρV−1
p )(Vd + FVzF ′)V ′

δ(V
−1
s +ρV−1

p )′
]
.

Moreover, given the above characterization of the price coefficients, the con-
jecture about the spectral decomposition of B andC is correct, and the matrices
VR , Vδ , and Vp also share the same common matrix of eigenvectors, Γ . !
Proof of Lemma 2. The expressions follow from using the properties of half-
normal distributions. Specifically, if y1 and y2 are normally distributed with
variance σ 21 and σ 22 and covariance σ1,2, then

E[|yi |] =
√
2
π

σ 2yi , var[|yi |] = π − 2
π

σ 2yi ,

cov(|y1|, |y2|) =Ψ (σ1,2) = 2σ1σ2
π − 2

×
(
(1− ρ)3/2 − 1+ ρ2

√
1− ρ2 + |ρ| arctan

(
|ρ|/

√
1− ρ2

))
,

where ρ = σ1,2√
σ 21 σ 22

is the correlation between y1 and y2. !

Proof of Lemma 3. Denote the payoff matrix by Ft+1 = Pt+1 + Dt+1, and
let Ēt denote the average belief across all investors at date t . Then, the market
payoff is given by

Fm,t+1 = F ′
t+1Zt =

N∑

k=1
Fk,t+1Zk,t , (A13)

and the rate of return on asset j is given by r j,t+1 = Fj,t+1
Pj,t − 1. Rearrange the

price of asset j as
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Pj,t (1+ r f ) = Ēt [Fj,t+1]−
N∑

k=1
covt (Fj,t+1, Fk,t+1)Zk,t

= Ēt [Fj,t+1]− covt (Fj,t+1, Fm,t+1), (A14)

which implies that

Ēt [r j,t+1 − r f ] = Ēt
[
Fj,t+1
Pj,t − (1+ r f )

]

= 1
Pj,t covt

(
Fj,t+1, Fm,t+1

)
= Pm,tcovt (r j,t+1, rm,t+1).

For the market portfolio, this implies that Ēt [rm,t+1− r f ] = Pm,tvart (rm,t+1).
This implies a conditional CAPM relation, i.e.,

Ēt [r j,t+1 − r f ] = β j,t Ēt [rm,t+1 − r f ], where β j,t = covt (r j,t+1, rm,t+1)
vart (rm,t+1)

.

(A15)

Finally, note that when Pm,t > 0, β j,t = is increasing in covt (Fj,t+1,
Fm,t+1), which is an increasing function of the j th row of VR , a measure of
asset j’s perceived risk. !
Proof of Proposition 1. From the proof of Lemma 1, we know that, given
the factor structure in (9), the price coefficients B and C and the covariance
matrices VR , Vδ , and Vp share the same common matrix of eigenvectors Γ .
Similarly, Vµ also shares the same factor structure. For a covariance matrix
VX , denote the spectral decomposition by VX = ΓWXΓ ′, where WX is a
diagonal matrix. Denote the element of VX and WX corresponding to asset n
by vX,n and wX,n , respectively, and denote the (i, j)th element of Γ by gi, j .
Using this notation, we have

vx,n =
N∑

i=1
g2n,iwx,i . (A16)

This implies that, in order to show that vx,n and vy,n are positively (nega-
tively) related, it is enough to show that wx,n and wy,n are positively (neg-
atively, respectively) related. Finally, denote asset-specific price coefficients
by the lowercase letters (i.e., a, b, and c) f = c/b, α = 1 + a and R f =
1+ r f .
To establish the results in the proposition, we consider the effect of ws,n on

the following expressions that drive disagreement and return-volumemoments:

• Disagreement is proportional to w2δ,n/ws,n .

• Expected returns are proportional to wR,n .

3062

 by guest on August 13, 2011
rfs.oxfordjournals.org

D
ow

nloaded from
 

http://rfs.oxfordjournals.org/


Learning from Prices and the Dispersion in Beliefs

• Return variance and autocovariance: var[Rt+1] ∝ wR,n + κ , and cov[Rt+1,
Rt+2] ∝ − κ

R f
, where κ = R2f wR,n − (R2f − 1)α2wδ,n − α2wd,n .

• Expected volume: E[Vt+1] are increasing in wz,n + ws,n/ f 2.

• Covariance between volume and abs. returns: cov[Vt+1, |Rt+1|] is increas-
ing in −cwz,n .

DO case (ρ = 0)
1. In the DO case, disagreement is proportional towµ,n= 1

ws,n

(
wd,nws,n

wd,n+ws,n

)2
,

which implies ∂wµ,n
∂ws,n

= w2d,n(wd,n−ws,n)

(ws,n+wd,n)2
Hence, disagreement first

increases and then decreases in signal noise.
2. Posterior variance in returns is given by

wR,n = R2f
2wz,n

− R f
wz,n

(
R2f
4 − wz,nξn

)1/2
,

where ξn = α2wd,nws,n
wd,n+ws,n

(
1+ w2d,n

ws,n(wd,n+ws,n)R2f

)
.

This implies that ∂wR,n
∂ws,n

∝ ∂ξn
∂ws,n

= α2w2d,n
R2f (ws,n+wd,n)3

(
(ws,n + wd,n)R2f

−2wd,n
)
. Hence, expected returns decrease and then increase in sig-

nal noise. Moreover, the trough coincides with the hump in wµ,n when
r f → 0.

3. Return volatility and autocorrelation are driven by κ = R2f wR,n −
(R2f − 1)α2wδ,n − α2wd,n . This implies that

∂κ
∂ws,n

= α2w2d,n
(wd,n+ws,n)3

(
R f (R2f ws,n + wd,n(R2f −2))√

R2f −4wz,nξ
−(R2f − 1)(wd,n + ws,n)

)

,

which is negative when ws,n = 0, and positive when ws,n → ∞, and
switches sign once. Hence, volatility in returns decreases and then in-
creases in ws,n , but serial covariance in returns increases and then de-
creases.

4. Expected volume is driven by κ2 = wz,n + ws,n
f 2 ⇒ ∂κ2

∂ws,n
= 1

f 2(
1− 2ws,n

f
∂ f

∂ws,n

)
, which implies that volume increases and then de-

creases with ws,n .
5. Covariance between absolute returns and volume is driven by −cwz,n ,
which implies that this decreases and then increases with ws,n .
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RE case (ρ = 1)
In the RE case, we know that wR,n = −α fwδ,n/ws,n , where f solves the
following expression:

f + ws,nα + αwd,n(wd,n + wp,n)(ws,n + wp,n)2

R2f wp,n(wd,nws,n+wd,nwp,n+wp,nws,n)
= 0. (A17)

Since we pick the less negative root of (A17), we know that, at ws,n = 0, we
have

f =
−R2f +

√
R4f −4α2wd,nwz,n

2αwz,n
, ∂ f

∂ws,n
= − R2f

αwd,nwz,n
− αR2f√

R4f −4α2wd,nwz,n
< 0.

Moreover, when ws,n → ∞, we can use implicit differentiation on (A17) to
show that ∂ f

∂ws,n
→ 0. Finally, note that 1

wp,n

∂wp,n
∂ws,n

= 2
f

∂ f
∂ws,n

> 0.

1. Disagreement is given by

wµ,n = w2δ,n
ws,n

⇒ ∂wµ,n
∂ws,n

= wδ,n
ws,n

(
2 ∂wδ,n

∂ws,n
− wδ,n

ws,n

)
,where

∂wδ,n
∂ws,n

=
(

wδ,n
ws,n

)2 (
1+ w2s,n

w2p,n

∂wp,n
∂ws,n

)
.

When ws,n = 0, we have wδ,n
ws,n

= 1 and ∂wδ,n
∂ws,n

= 1, and this implies
∂wµ,n
∂ws,n

> 0. When ws,n → ∞, we know that wδ,n
ws,n

→ 0, and so beyond
some ws,n ,

2 ∂wδ,n
∂ws,n

− wδ,n
ws,n

<
wδ,n
ws,n

(
2wδ,n

ws,n

(
1+ 1

α2wp,n

∂wp,n
∂ws,n

)
− 1

)
< 0,

which implies that ∂wµ,n
∂ws,n

< 0. Also, when the derivative is zero, we
know that

2 ∂wδ,n
∂ws,n

− wδ,n
ws,n

= wδ,n
ws,n

(
2wδ,n

ws,n

(
1+ w2s,n

w2p,n

∂wp,n
∂ws,n

)
− 1

)
= 0.

Note that this expression is greater than zero when ws,n is slightly
smaller, and less than zero when ws,n is slightly bigger. Hence, dis-
agreement increases and then decreases with ws,n .

2. Posterior variance in returns is given by

wR,n = −α fwδ,n/ws,n ⇒ ∂wR,n
∂ws,n

= α
(
− ∂ f

∂ws,n
wδ,n
ws,n

− f
ws,n

(
wδ,n
ws,n

− ∂wδ,n
∂ws,n

))
.

This implies that, when ws,n = 0, ∂wR,n
∂ws,n

> 0. The limit result in (i)
implies that, beyond some ws,n ,

∂wR,n
∂ws,n

< 0. Hence, expected returns
increase and then decrease in ws,n .
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3. Return volatility and autocorrelation are driven by κ = R2f wR,n −
(R2f − 1)α2wδ,n − α2wd,n . This implies

∂κ
∂ws,n

= R2f α
(
− ∂ f

∂ws,n
wδ,n
ws,n

− f
ws,n

(
wδ,n
ws,n

− ∂wδ,n
∂ws,n

))
− α2(R2f − 1) ∂wδ,n

∂ws,n
.

When ws,n = 0, ∂κ
∂ws,n

= −R2f α
∂ f

∂ws,n
− α2(R2f − 1), which implies

∂κ
∂ws,n

> 0. When ws,n → ∞, using the results above, ∂κ
∂ws,n

< 0.
Hence, return volatility increases and then decreases in ws,n , while se-
rial covariance in returns decreases and then increases in ws,n .

4. Expected volume and variance in volume increase and then decrease
with ws,n as in the DO model.

5. Covariance between absolute returns and volume is driven by

−c = −b f ⇒ − ∂c
∂ws,n

= −
(
b ∂ f

∂ws,n
− f α

wd,n R f
∂wδ,n
∂ws,n

)
.

When ws,n → ∞, − ∂c
∂ws,n

→−
(
− f α

wd,n R f
∂wδ,n
∂ws,n

)
<0.

When ws,n = 0, − ∂c
∂ws,n

= − 1
R f

(
∂ f

∂ws,n
− f α

wd,n

)

− 1
R f

(

− αR2f√
R4f −4α2wd,nwz,n

−
(2−α)rf +α

√
R4f −4α2wd,nwz,n

2αwd,nwz,n

)

,

which is greater than 0 when α is small enough. Hence, the covariance
between absolute returns and volume increases and then decreases in
ws,n .

Thus, when disagreement increases due to a change in signal noise, expected
returns, volatility, and covariance between absolute returns and volume de-
crease for the DO case but increase for the RE case. On the other hand, auto-
correlation increases for the DO case but decreases for the RE case. Volume
and expected volume increase in disagreement for both models. One can show
analytically in the DO case, and numerically in the RE case, that as r f → 0
and λ → 0, the peaks and troughs in the return-volume moments (as a function
of signal noise) line up with the peak in disagreement. !

Appendix B—Finite Horizon Equilibria

In the finite horizon model, the price coefficients are time dependent. The pos-
terior variance of returns at time t is given by

VR,T−1 = var[DT |Fi,T−1] = VT−1

VR,t = (At+1 + I )Vδ,t (At+1 + I )′ + Bt+1Vd B ′
t+1

+Ct+1VzC ′
t+1,where t < T − 1.
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The posterior variance in beliefs is given by Vδ,t = (V−1
d + V−1

s +ρ2V−1
p,t )

−1,
where Vp,t = (1 − ρ2)Vd + FtVz F ′

t and Ft = B−1
t Ct . The time T − 1 price

coefficients are the same as the static model coefficients, and so are unique.
For earlier periods, the Bt and Ct coefficients are recursively defined, and are
also uniquely determined. In particular, Ft satisfies

(At+1 + I )(V−1
d + V−1

s + ρ2V−1
p,t )

−1
(
V−1
s Ft + (At+1 + I )′

)

+ Bt+1(Vd + FtVz F ′
t )B

′
t+1 = 0,

which is a cubic equation in Ft . This equation has two imaginary roots and one
real root, and so the equilibrium is uniquely determined.
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