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A B S T R A C T

We study debt and equity valuation when investors have private information and may exhibit differences of
opinion. Our model generates several predictions that are consistent with empirical evidence but difficult to
reconcile with traditional models. Belief dispersion relates to expected equity and debt returns in opposite
directions. Similarly, expected debt (equity) returns typically increase (decrease) with default risk, though
these relationships reverse for firms close to bankruptcy. Firms’ capital structures affect their valuations even
without classical capital structure frictions (e.g., tax shields, distress costs) – when liquidity is higher in the
equity than in the debt market, leverage can raise firm value.
1. Introduction

The impact of heterogeneous investor beliefs on asset prices is a
foundational question in financial economics, yet the empirical evi-
dence on this relation is strikingly different across stock and bond
markets. In the cross-section, belief dispersion appears to be negatively
related to stock returns (e.g., Diether et al., 2002), but positively related
to bond returns (e.g., Güntay and Hackbarth, 2010). Reconciling this
evidence simultaneously poses a puzzle for traditional approaches to
understanding dispersed beliefs across investors, including noisy ratio-
nal expectations (RE) and difference of opinions (DO) models. This is
because such models have largely restricted attention to settings in
which security payoffs are linear in underlying fundamentals, and so
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1 We distinguish between ‘‘belief dispersion’’ and ‘‘disagreement’’. Belief dispersion refers to the differences in investors’ beliefs about firm value, regardless of

their source. Specifically, it encompasses differences in beliefs driven both by investor private information that is not fully revealed by prices, and by investors
‘‘agreeing to disagree’’ about the information content of one another’s signals and thus ignoring the information in prices. Disagreement refers only to the latter
source of differences in investor beliefs.

ignore the distinct non-linearity in debt and equity payoffs.
To understand how investor information, disagreement, and liq-

uidity/noise trading affect returns on debt and equity in a unified
framework, we consider a setting where investors who have dispersed
information about a firm’s cash flows trade these securities with liq-
uidity, or noise, traders (e.g., as in the noisy RE model of Hellwig,
1980). Our model captures two key features. First, the payoffs to
debt and equity depend non-linearly on the firm’s underlying cash
flows. Second, belief dispersion can arise through a combination of
asymmetric information and noise trading (as in noisy RE models) and
investor disagreement (as in DO models).1
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In equilibrium, belief dispersion depends on two primary factors:
oise-trading volatility and investor disagreement. We show that higher
oise-trading volatility reduces the informativeness of prices, which

raises belief dispersion and leads to lower equity returns and higher
debt returns. Our model can thus jointly reconcile the empirical evi-
ence on the relation between belief dispersion and debt and equity

returns. However, while investor disagreement also raises belief dis-
persion, we show that it has the opposite effects on expected returns.
Thus, the impact of belief dispersion on expected returns may differ
in settings where it is driven by disagreement as opposed to noise in
prices. This highlights the need for empirical research to separately
consider the underlying drivers of heterogeneous investor beliefs.

The model further generates several predictions on how a firm’s
capital structure relates to its equity and debt valuations in the presence
of asymmetric information. For instance, we show that distress risk
raises the expected return on investment-grade debt, but lowers the
expected return on equity for such firms. However, this relationship
reverses for firms close to bankruptcy, and thus the overall relation
between distress risk and equity returns is hump-shaped. Because firm-
specific private information and liquidity trade drive these results, they
may help explain empirical evidence that links distress risk to expected
equity returns even after controlling for systematic risk exposures,
which is difficult to reconcile in standard asset-pricing models.2

Our model also offers novel predictions about how the relation
etween default risk and expected returns varies across firms. We find
hat this relation weakens, and can even reverse, when disagreement
mong investors is sufficiently high or when liquidity trading is low.
oreover, considering the prices of equity and debt jointly, we show

that a firm’s capital structure affects its valuation even in the absence
of traditional frictions such as tax shields of debt or distress costs.
Specifically, the optimal choice of leverage depends on the relative
amount of liquidity trading in each security. When liquidity trading is
higher in equity, the total value of a levered firm exceeds that of an
unlevered firm.

Overview of Model and Mechanism. In our model, privately-
informed, risk-averse investors trade the debt and equity of a levered
irm alongside liquidity traders.3 We allow, but do not require, in-

vestors to agree to disagree about the quality of others’ information
and, consequently, dismiss the information in prices. Our model nests
two natural benchmarks as special cases: investors may either exhibit
rational expectations (RE) and correctly interpret the information in
prices, or exhibit pure differences of opinion (DO) and completely
ignore price information. A key challenge in characterizing the equi-
librium is that the payoffs to levered equity and debt are option-like,
and depend non-linearly on the firm’s underlying cash flows, and so
standard approaches (e.g., Hellwig, 1980) cannot be employed. Instead,

e apply recent work on non-linear equilibria by Breon-Drish (2015),
and the multi-asset model of Chabakauri et al. (2022), to characterize
n equilibrium in which security prices depend non-linearly on beliefs
bout fundamentals and liquidity trading.

2 See e.g. Campbell et al. (2008) for evidence on distress risk and expected
equity returns after controlling for standard risk factor exposures, and Huang
nd Huang (2012) and Bai et al. (2020) for evidence on distress risk and

expected bond returns. Garlappi et al. (2008) finds a hump-shaped relationship
between default risk and expected equity returns that continues to hold after
djusting for standard risk characteristics.

3 In our benchmark analysis, we consider a single-firm model in which the
ource of systematic risk is the aggregate supply of each security that investors
ave to hold. In Section 7, we show that our analysis extends naturally to a

setting with multiple firms and a systematic risk factor. Our results on ‘‘excess’’
expected returns should be interpreted as predictions about ‘‘alphas’’ from the
perspective of an outside econometrician who is controlling for variation in
systematic risk exposures of the securities. However, these alphas do not reflect

mispricing from the perspective of investors in the model.

2 
The option-like nature of the equity and debt payoffs affects how the
rices of these securities aggregate investor information and respond to

liquidity shocks. To gain intuition, we start with a benchmark setting
where liquidity-trader demands in the equity and debt markets are
identical. In this case, debt and equity prices each convey the same
information signal to investors. We find that equity and debt valuations
depend crucially on how investors update from this price signal. Specif-
ically, relative to a benchmark economy without private information
or liquidity trade, the expected excess return on equity is negative
and the expected excess return on debt is positive unless investors
are sufficiently dismissive of price information and liquidity-trading
volatility is sufficiently low.

These results are driven by how the security prices respond to
investors’ private information and liquidity-trader demand in equi-
librium. We show that security prices can be expressed as expected
security payoffs under a risk-neutral distribution, where the risk-neutral
expectation of cash flows is increasing in investors’ aggregate cash flow
expectations and liquidity-trader demand.

This enables us to provide a simple characterization of expected
returns. Since equity payoffs are convex in cash flows, the equity
price is a convex function of the risk-neutral cash flow expectation
— analogously, the debt price is concave. Building on the intuition
from Jensen’s inequality, this implies that the expected returns on
the securities depend on the difference between the volatility of the
risk-neutral cash flow expectation and that of the (physical) cash flow
expectation of a typical investor. The convexity in equity payoffs and
prices implies that expected excess returns on equity are positive when
the risk-neutral expectation is less volatile. The concavity for debt
implies that the expected excess returns are positive when the reverse
is true.

The relative volatility of the risk-neutral cash flow expectation
versus the cash flow expectation of a typical investor depends on asym-
metric information, noise-trading volatility, and their interaction with
disagreement. On the one hand, because the risk-neutral expectation
eflects aggregate investor beliefs, it tends to be less volatile than the
eliefs of an individual investor. On the other hand, because the risk-
eutral expectation is also driven by noise-trader demand, it tends to

be more volatile when noise-trading volatility is higher.
We show that the relative impact of these forces depends crucially

on disagreement, and specifically how much weight investors give
the information in prices when forming their beliefs. When investors
interpret the price as being informative (e.g., when they exhibit RE),
they put relatively more weight on the common (price) signal. This
amplifies the impact of noise-trading volatility and makes the risk-
neutral expectation more volatile, which leads to lower equity returns
and higher debt returns. In contrast, when investors disagree about
the informativeness of others’ signals, they dismiss the information
in prices, which makes individual expectations more volatile. As a
result, when noise-trading volatility is sufficiently low, the first channel
dominates, which leads to higher equity returns and lower debt returns.

Implications. The above economic mechanisms have several
mpirically-relevant implications. First, as discussed above, our model
ointly explains why belief dispersion can be negatively related to eq-
ity returns but positively related to debt returns. Moreover, our analy-
is highlights the importance of identifying the source of belief disper-

sion — asymmetric information and noise trading or disagreement —
hen studying this relation.

Second, for firms far from default, we find that higher leverage
s associated with higher expected excess debt returns relative to an

economy without private information or noise trade. Thus, these factors
amplify the impact that distress risk has on expected debt returns.
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Similarly, expected excess equity returns are negatively related to
everage when default probabilities are low (consistent with Campbell

et al., 2008), but increase with leverage for highly distressed firms.4
Third, the above intuition implies that these relations weaken, and

can even reverse, when investors are highly dismissive of the infor-
mation in prices and the volatility of liquidity trading is sufficiently
low. As such, our model provides novel predictions on how the relation
between expected returns and distress risk varies across firms. Specifi-
cally, the expected return on debt is positively related to the interaction
between distress risk and liquidity-trading volatility, but negatively
related to the interaction between distress risk and disagreement; the
predictions for the expected return on equity are reversed.

We then generalize our benchmark model to consider a setting
in which liquidity trading in debt and equity markets can differ. In-
vestors update their beliefs about cash flows from both the debt and
equity prices, which generates a spillover across markets: liquidity-
rader demand in the equity market increases debt prices and vice
ersa. Our analysis implies that the correlation between equity and
ebt prices increases with leverage when the likelihood of default is
ufficiently low, consistent with the empirical evidence in Pasquariello
nd Sandulescu (2024).

In our baseline analysis, because liquidity traders’ demands in both
markets are identical, their impact on the combined valuation of debt
and equity cancel out exactly. As a result, the total value of the levered
firm is equal to the value of the unlevered firm i.e., Modigliani and
Miller’s irrelevance result obtains. However, when liquidity trading
differs across the two markets, this is no longer true. Instead, we find
that, when the volatility of liquidity trading in equity is higher than
that in debt, equity valuations are more significantly inflated than debt
valuations are deflated, so that leverage increases the firm’s overall
value. Moreover, the total market value of the firm is hump-shaped
in leverage, which suggests that an interior level of leverage is optimal
for the firm, even in the absence of traditional frictions associated with
debt financing (e.g., tax shields, distress costs).

Finally, we consider a multi-firm generalization in which there are
n arbitrary number of firms, each with a potentially different leverage
olicy, and whose cash flows are exposed to a systematic risk factor
nd are subject to firm-specific shocks. We show that the insights
f our baseline model apply directly: when investors are informed

about the firm-specific component of cash flows and liquidity trading
is idiosyncratic across firms, our predictions about expected returns
from the baseline model become predictions about expected returns in
excess of those in a frictionless economy without private information or
liquidity trading (i.e., in which returns are driven only by exposure to
the systematic risk factor). This analysis establishes that our key mech-
anisms survive in a multi-firm setting even after properly controlling
for systematic risk, and consequently firm-specific private information
and liquidity trade continue to influence expected returns.

The rest of the paper is as follows. The next section discusses the
related literature and our incremental contribution. Section 3 presents
he model, and Section 4 characterizes the equilibrium in the baseline
ase. Section 5 characterizes how the expected returns on debt and
quity depend on the features of the model. Section 6 presents the

characterization of the equilibrium when the liquidity-trader demands
n the two markets are not identical. Section 7 generalizes the baseline
odel to a setting with multiple firms and an explicit systematic risk

factor. Section 8 presents the empirical implications of the model and
iscusses existing empirical research that relates to our results. Finally,
ection 9 concludes. Unless noted otherwise, proofs are in Appendix A.

4 Note the relationship between default risk and expected debt returns is
consistent with Huang and Huang (2012). The overall hump shape between de-
fault risk and expected equity returns is consistent with the results in Garlappi
t al. (2008), Garlappi and Yan (2011).
3 
2. Related literature

One contribution of our analysis is to study trade in equity and debt
in a setting that allows for both heterogeneity in investor information
nd differences of opinion. That is, in addition to jointly considering

both equity and debt issued by the same firm (as in Chabakauri et al.,
2022), our model differs from the standard noisy rational expectations
framework by allowing investors to ‘‘agree to disagree’’. We show that
this leads to novel predictions on how non-linearity in payoffs affects
expected returns.

Chabakauri et al. (2022) offers the closest model to ours, analyzing
private information in a general multi-asset noisy rational expectations
framework with CARA investors. When applying their model to study
debt and equity prices, their focus is on showing that the informative-
ness of these prices does not depend on the firm’s capital structure (a
result that also holds in our model). We complement their work by
allowing investors to potentially disregard the information in prices,
by analyzing expected debt and equity returns, and by considering
a setting with multiple firms and systematic risk factors. Moreover,
we derive readily-interpretable closed-form solutions for demands and
prices in the two securities by focusing on the case in which firm cash
flows are normally distributed.

Our analysis is related to noisy rational expectations models of debt
and equity markets in which non-linearity in security prices plays a key
ole. To study the credit-spread puzzle, Albagli et al. (2021) consider

a setting in which risk-neutral, informed investors have position limits
and trade in a bond with binary payoffs, and find that the bond price
overweights risk. Similarly, Albagli et al. (2024) argue that in general
ettings, noisy aggregation of information leads to prices that place
xcess weight on tail risks. Davis (2017) extends their analysis to

consider the firm’s issuance decision over time and across markets, in a
setting where investors choose how much information to acquire about
fundamentals. Back and Crotty (2015) consider the pricing of debt and
equity in a continuous-time Kyle model in which a strategic, informed
investor can trade in both debt and equity markets, and market making
is integrated. They show that the stock-bond correlation depends on
the cross-market lambda, and is positive (negative) when the strategic
trader is informed about the mean (risk) of firm’s assets.

In a single-period Kyle model of debt and equity with segmen-
tation in market making, Pasquariello and Sandulescu (2024) study
how changes in leverage affect the sensitivity of debt and equity to
firm value, and consequently, affect the intensity of informed specu-
lation in each security. This gives rise to variation in liquidity across
debt and equity, and non-monotonicity in the co-movement of their
prices. Chaigneau (2024) considers capital structure when investors
ave information on both upside and downside risks. Finally, Frenkel

(2023) considers a Glosten–Milgrom model of debt trading to charac-
erize how negative news for firms that are close to default can trig-

ger more information acquisition, and subsequently, lead to liquidity
dry-ups.

We view our analysis as complementary to this earlier work. While
hese papers largely consider settings in which the price is determined
y risk-neutral investors/market makers, investors in our model are
isk-averse. Moreover, while these models focus on rational expecta-
ions equilibria, our model allows investors to ‘‘agree to disagree’’ about
he informativeness of others’ signals, and consequently dismiss the
nformation in prices. We show that this has important implications for
ow non-linearity in payoffs affects expected returns.5

5 Models in which investors ‘‘agree to disagree’’ about others’ information
include Miller (1977), Morris (1994), Kandel and Pearson (1995), Scheinkman
nd Xiong (2003), and Banerjee (2011). Our analysis also has implications for

settings where investors dismiss the information in prices due to other reasons,
including ‘‘cursedness’’ (e.g., Eyster et al., 2018), costly price information
e.g., Mondria et al., 2022) and ‘‘wishful thinking’’ (e.g., Banerjee et al.,

2024a).
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3. Model setup

We consider a model of trade among informed investors in the
spirit of Hellwig (1980), with two modifications: we allow the firm to
e levered and for investors to potentially ignore the information in
rice. We begin with a single-firm model, where our results are most
ransparent, but illustrate how they extend to a large economy with
any firms in Section 7.
Payoffs. Investors trade in the risky debt and equity of a firm

alongside a risk-free security. The gross return on the risk-free security
is normalized to 1. The firm’s total cash flows per share (i.e., the sum of
ts cash flows per share/unit that accrue to equity and debt holders) are
 ≡ 𝑚+𝜃, where 𝑚 is a constant and 𝜃 ∼ 𝑁

(

0, 𝜎2𝜃
)

. The assumption that
 is normally distributed keeps the traders’ updating problem simple
and transparent, but can be relaxed using the approach of Breon-Drish
(2015) and Chabakauri et al. (2022).

The firm has debt with a face value of 𝐾 per unit, i.e., equity
ayoffs per share are 𝑉𝐸 = max ( −𝐾 , 0) and debt payoffs per unit
re 𝑉𝐷 = min ( , 𝐾), so that  = 𝑉𝐸 + 𝑉𝐷. We assume that there
re liquidity traders who submit identical demand 𝑧 ∼ 𝑁

(

0, 𝜎2𝑧
)

shares/units in both the equity and debt markets. The per capita supply
of the firm’s securities is 𝜅 ≥ 0 (i.e., there are 𝜅 units of debt and
𝜅 shares outstanding per capita). Note that setting per capita supply
equal in the debt and equity securities ensures that changes in the firm’s
capital structure do not mechanically change the total cash flow paid
out to investors. That is, the aggregate cash flow of the two securities
𝜅 𝑉𝐷 + 𝜅 𝑉𝐸 always sums to 𝜅 ×  .

The assumption that the liquidity-trader demands in the debt and
quity markets are perfectly correlated is made for expositional clarity

in our initial analysis. In Section 6, we explore a setting where liq-
idity trading in the two markets follows a general bivariate normal

distribution, which allows for imperfect correlation and/or different
variances across the markets. Note that setting 𝐾 ≥ 0 ensures that
firms’ equity holders always earn non-negative payoffs, consistent with
limited liability. However, because the cash flow  can take on negative
values, our baseline analysis allows for potentially negative payoffs to
the debt. We extend our model to fully incorporate limited liability
in Appendix D in which we consider a setting where the cash flow is
bounded below by zero.

Preferences and Information. There is a unit mass of investors
ndexed by 𝑖 ∈ [0, 1]. Each investor 𝑖 is endowed with 𝜅 shares of the

stock and bond, and exhibits CARA utility with risk-tolerance 𝜏 over
er terminal wealth 𝑊𝑖. Let 𝑥𝐸 ,𝑖 and 𝑥𝐷 ,𝑖 denote investor 𝑖’s demands
or the equity and debt, respectively (so that 𝑥𝑘,𝑖 − 𝜅 is her net trade

in security 𝑘 ∈ {𝐷 , 𝐸}), and let 𝑃𝐸 denote the equity and 𝑃𝐷 the debt
rice per share/unit. The terminal wealth 𝑊𝑖 of investor 𝑖 is therefore:

𝑊𝑖 = 𝜅(𝑃𝐷 + 𝑃𝐸 ) + 𝑥𝐸 ,𝑖(𝑉𝐸 − 𝑃𝐸 ) + 𝑥𝐷 ,𝑖(𝑉𝐷 − 𝑃𝐷).

Investor 𝑖 observes a private signal 𝑠𝑖 of the form:

𝑠𝑖 = 𝜃 + 𝜀𝑖, (1)

where the error terms 𝜀𝑖 ∼ 𝑁
(

0, 𝜎2𝜀
)

are independent of all other
random variables.

Subjective Beliefs. We allow for a flexible specification of subjec-
tive beliefs about the private information of others. Following Banerjee
(2011), we assume that investor 𝑖’s beliefs about her own signal are
given by (1), but her beliefs about investor 𝑗’s signal are given by:

𝑠𝑗 =𝑖 𝜌 𝜃 +
√

1 − 𝜌2 𝜉𝑖 + 𝜀𝑗 , (2)

where the random variables 𝜉𝑖 ∼𝑖 𝑁(0, 𝜎2𝜃 ) and 𝜀𝑗 ∼𝑖 𝑁
(

0, 𝜎2𝜀
)

are
ndependent of all other random variables and each other. We use
 subscript 𝑖 on expectations, variances, and distributions to refer to
nvestor 𝑖’s subjective beliefs.
4 
The parameter 𝜌 ∈ [0, 1] captures the degree of disagreement
across investors.6 Specifically, when 𝜌 = 1, investors agree: all investors
hare common priors about the joint distribution of fundamentals and
ignals, and so exhibit rational expectations (as in Hellwig, 1980). In

this case, investors fully condition on the information in prices (in
addition to their private information) when updating their beliefs about
fundamentals. At the other extreme, when 𝜌 = 0, investors disagree
maximally and exhibit ‘‘pure’’ differences of opinion (as in Miller,
1977): each investor believes no other investor has payoff relevant
information, and so prices are not incrementally informative about pay-
offs. In this case, investors do not place any weight on price information
when updating their beliefs about cash flows. Finally, when 𝜌 ∈ (0, 1),
investors disagree partially about the informativeness of each other’s
signals, since each investor believes others’ signals are informative, but
less so than they actually are. As a result, each investor is partially
ismissive of the information in prices when forming beliefs.

The assumption that all investors can trade in both markets is made
or tractability, but also serves as a useful benchmark. It allows us to
ocus on the implications of belief heterogeneity on debt and equity
aluations without introducing differences in clienteles, investor infor-
ation, or risk aversion across these securities. In practice, one might

rgue that bond markets are more specialized and have less participa-
ion than equities. Although we expect the economic mechanisms that
e study to operate in richer settings, explicitly accounting for different
roups of investors in each security (e.g., investor specialization) is
ntractable in our framework.7
Equilibrium. An equilibrium consists of demands {𝑥𝐸 ,𝑖, 𝑥𝐷 ,𝑖}𝑖∈[0,1]

nd prices (𝑃𝐷, 𝑃𝐸 ) such that (i) the demands (𝑥𝐷 ,𝑖, 𝑥𝐸 ,𝑖) maximize
investor 𝑖’s expected utility, given her information 𝑖 = 𝜎(𝑠𝑖, 𝑃𝐷, 𝑃𝐸 )
nd subjective belief formation mechanism described above, and (ii)
he equilibrium prices (𝑃𝐷, 𝑃𝐸 ) are determined by market clearing

∫ 𝑥𝑘,𝑖𝑑 𝑖 + 𝑧 = 𝜅; 𝑘 ∈ {𝐷 , 𝐸}. (3)

4. Analysis

Because the equity and debt securities are effectively options on the
underlying cash flows, their payoffs are not normally distributed. As a
result, the equilibrium in which prices are linear in the fundamental
and liquidity trade, which is common in traditional CARA-Normal
ational expectations models, does not exist. Instead, we focus on the
ollowing more general class of equilibria, which is a two-asset version
f the equilibrium studied in Breon-Drish (2015) and Chabakauri et al.

(2022) and allows for non-linear price functions.8
We emphasize that this class of equilibria is not an approximation to

a linear equilibrium; rather, it entertains more general functional forms
or asset prices.

Definition 1. A generalized linear equilibrium is one in which there
exists an injective function (𝑃𝐷(⋅), 𝑃𝐸 (⋅)) mapping R2 into R2, and linear
tatistics of the form

6 The assumption that 𝜉𝑖 has the same distribution as 𝜃 ensures that investor
cannot detect the error in her subjective beliefs based on the unconditional
ean and variance of others’ signals. Note that investor 𝑖 believes that 𝜉𝑖

s the common ‘‘error’’ in all other investors’ signals. This is analogous to
he subjective beliefs of investors in other difference of opinions models
e.g., Scheinkman and Xiong, 2003) and in the ‘‘cursed equilibrium’’ of Eyster
t al. (2018).

7 As Section 6 illustrates, we can allow for differences in the informative-
ness of debt and equity prices by assuming that liquidity trading in the two
markets have different variances.

8 We follow existing applied work in focusing on equilibria in the gener-
alized linear class. Indeed, in classic CARA-Normal settings (e.g., Grossman
and Stiglitz, 1980, Hellwig, 1980), the set of generalized linear equilibria is
precisely the set of linear equilibria. The equilibria we characterize below are
unique in the class of generalized linear equilibria.
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𝑠𝑝1 = 𝑠 + 𝑏1𝑧 (4)

𝑠𝑝2 = 𝑠 + 𝑏2𝑧, (5)

where 𝑠 = ∫ 𝑠𝑗𝑑 𝑗 is the average private signal and 𝑏1, 𝑏2 are endogenous
constants such that the equilibrium debt and equity prices are given by
𝑃𝐷(𝑠𝑝1, 𝑠𝑝2) and 𝑃𝐸 (𝑠𝑝1, 𝑠𝑝2).

The key feature of such an equilibrium is that the information in
rices reduces to two linear statistics 𝑠𝑝1 and 𝑠𝑝2, corresponding to
he fact that investors observe two prices. This implies that Bayesian
pdating takes a tractable form as in linear noisy rational expectations
odels. As we will see, in the case of identical liquidity trading in both
arkets, in equilibrium, the debt and equity prices convey the same

nformation, and as such, the two price statistics are identical. We refer
to the single statistic conveyed by prices as

𝑠𝑝1 = 𝑠𝑝2 = 𝑠𝑝 ≡ 𝑠 + 𝑏𝑧 =𝑖 𝜌 𝜃 +
√

1 − 𝜌2 𝜉𝑖 + 𝑏𝑧. (6)

It is worth noting that the objective distribution of this signal is given
by 𝑠𝑝 = 𝜃 + 𝑏𝑧, which coincides with investors’ beliefs when 𝜌 = 1.

To solve for an equilibrium, we derive investors’ demands given
hese beliefs, apply market clearing, and verify that the resulting price
ndeed takes the ‘‘generalized linear’’ form from Definition 1.

4.1. Benchmarks

To provide intuition for the equilibrium that arises in the gen-
eral case, we start by characterizing the equilibrium in two natural
benchmarks.

4.1.1. Unlevered firm benchmark
First, consider the case in which the firm issues only equity (i.e.,

hen 𝐾 → −∞). In this case, the payoff to equity holders is normally
istributed as in traditional models, and so we recover the standard,
inear equilibrium. Moreover, since the firm only issues one type of
ecurity, investor 𝑖 infers a single linear statistic from the unlevered

equity price that takes the form in (6).
Given this signal, investor 𝑖’s conditional beliefs about cash flows 

re normal with moments given by

𝜇𝑖 ≡ E𝑖
[

|𝑠𝑖, 𝑃𝑈
]

= 𝑚 + 𝜎2𝑠

(

𝑠𝑖
𝜎2𝜀

+
𝑠𝑝
𝜌𝜎2𝑝

)

and (7)

𝜎2𝑠 ≡ V𝑖
[

|𝑠𝑖, 𝑃𝑈
]

=

(

1
𝜎2𝜃

+ 1
𝜎2𝜀

+ 1
𝜎2𝑝

)−1

,where (8)

2
𝑝 ≡ 1 − 𝜌2

𝜌2
𝜎2𝜃 +

𝑏2𝜎2𝑧
𝜌2

(9)

and where it is understood that when 𝜌 = 0, we take 1
𝜎2𝑝

= 1
𝜌𝜎2𝑝

= 0
in the above expressions. Standard calculations imply that investor 𝑖’s
optimal demand for the security is given by

𝑥𝑖 = 𝜏

(

𝜇𝑖 − 𝑃𝑈
𝜎2𝑠

)

, (10)

and market clearing implies that the equilibrium price is given by:

𝑃𝑈 = ∫ 𝜇𝑖𝑑 𝑖 +
𝜎2𝑠
𝜏

(𝑧 − 𝜅) .

This implies the following result.

Lemma 1 (Unlevered Firm Benchmark). Suppose that the firm only issues
quity (i.e., 𝐾 → −∞). Then, there is a unique linear equilibrium in which
 e

5 
the firm’s price satisfies:

𝑃𝑈 (⋅) = 𝑚 + 𝜎2𝑠

((

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)

(𝑠 + 𝑏𝑧) − 𝜅
𝜏

)

, (11)

where 𝑏 = 𝜎2𝜀
𝜏 , and 𝜎2𝑠 =

(

1
𝜎2𝜃

+ 1
𝜎2𝜀

+ 1
𝜎2𝑝

)−1
.

Notably, the above equilibrium coincides with the rational expec-
ations equilibrium in Hellwig (1980) when 𝜌 = 1. On the other hand,
hen 𝜌 = 0, investors ignore the information in prices (since the weight

hey put on 𝑠𝑝 in (7) is zero).

4.1.2. Risk-neutral, uninformed benchmark
As a second benchmark, consider the setting in which investors are

risk neutral (i.e., 𝜏 → ∞) and completely uninformed (i.e., 𝜎2𝜀 → ∞).
n this case, the price of each security is given by the unconditional
xpectation of its payoff i.e.,

𝑃𝐸 = E [max ( −𝐾 , 0)] and 𝑃𝐷 = E [min ( , 𝐾)] .

In what follows, the definition below will be convenient.

Definition 2. Suppose 𝑥 ∼ 𝑁(𝜇𝑥, 𝜎2𝑥). Let 𝑀𝐸 (𝜇𝑥, 𝜎2𝑥, 𝐾) and
𝐷(𝜇𝑥, 𝜎2𝑥, 𝐾) denote:

𝑀𝐸 (𝜇𝑥, 𝜎2𝑥, 𝐾) ≡ E [max (𝑥 −𝐾 , 0)]

=
[

1 −𝛷
(

𝐾 − 𝜇𝑥
𝜎𝑥

)]

⎡

⎢

⎢

⎢

⎣

𝜇𝑥 −𝐾 + 𝜎𝑥
𝜙
(

𝐾−𝜇𝑥
𝜎𝑥

)

1 −𝛷
(

𝐾−𝜇𝑥
𝜎𝑥

)

⎤

⎥

⎥

⎥

⎦

, (12)

𝑀𝐷(𝜇𝑥, 𝜎2𝑥, 𝐾) ≡ E [min (𝑥, 𝐾)]

= 𝐾 −𝛷
(

𝐾 − 𝜇𝑥
𝜎𝑥

)

⎡

⎢

⎢

⎢

⎣

𝐾 − 𝜇𝑥 + 𝜎𝑥
𝜙
(

𝐾−𝜇𝑥
𝜎𝑥

)

𝛷
(

𝐾−𝜇𝑥
𝜎𝑥

)

⎤

⎥

⎥

⎥

⎦

. (13)

It is worth noting that since max(𝑥 − 𝐾 , 0) is an increasing, convex
function of 𝑥−𝐾, we immediately have that 𝑀𝐸 (𝜇𝑥, 𝜎2𝑥 , 𝐾) is increasing
n 𝜇𝑥 and 𝜎2𝑥, but decreasing in 𝐾. Similarly, since min(𝑥, 𝐾) = 𝐾 +
min(𝑥−𝐾 , 0) is increasing and concave in 𝑥, we have that 𝑀𝐷(𝜇𝑥, 𝜎2𝑥, 𝐾)
s increasing in 𝜇𝑥 and 𝐾, but decreasing in 𝜎2𝑥.

Given the above definition, we can characterize the equilibrium in
his benchmark as follows.

Lemma 2 (Risk-neutral, Uninformed Benchmark). Suppose that investors
re risk neutral and uninformed (i.e., 𝜏 → ∞, 𝜎2𝜀 → ∞). Then, there is a

unique equilibrium in which the firm’s equity and debt prices are given by
𝑃𝐸 = 𝑀𝐸

(

𝑚, 𝜎2𝜃 , 𝐾
)

and 𝑃𝐷 = 𝑀𝐷
(

𝑚, 𝜎2𝜃 , 𝐾
)

. Moreover, the total value
of the firm is given by 𝑃𝐸 + 𝑃𝐷 = 𝑚.

The above results are intuitive. Note that Pr ( < 𝐾) = 𝛷
(

𝐾−𝑚
𝜎𝜃

)

reflects the probability that the firm defaults on its debt. Given this,
the price of equity is given by the probability of no default times the
conditional expected cash flows, given no default i.e.,

𝑃𝐸 = Pr ( > 𝐾) × E[ −𝐾| > 𝐾],

which corresponds to the expression for 𝑀𝐸 in (12), evaluated at the
firm’s cash flow mean and variance. Similarly, the price of debt is given
by the face value of debt, 𝐾, minus the probability of default times the
loss given default i.e.,

𝑃𝐷 = 𝐾 − Pr ( < 𝐾) × E[𝐾 − | < 𝐾],

which corresponds to the expression for 𝑀𝐷 in (13). Not surprisingly,
ince investors are uninformed and risk-neutral, the total value of the
irm reflects the unconditional expected cash flows. In the following
ubsection, we show that the equilibrium prices when investors are risk
verse and privately informed are natural generalizations of the above
xpressions.
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4.2. Equilibrium

To start, we study investors’ demands holding fixed the equity and
ebt prices. We then show that the firm’s equity and debt prices contain
he same information as in the unlevered firm benchmark, which lends
ractability to our model.

Lemma 3. Given equity and debt prices 𝑃𝐸 and 𝑃𝐷, investors’ demands
ake the form:
(

𝑥𝐸 ,𝑖
𝑥𝐷 ,𝑖

)

= 𝜏
𝜎2𝑠

[(

𝜇𝑖
𝜇𝑖

)

− 𝐺

(

𝑃𝐸
𝑃𝐷

)]

, (14)

for a function 𝐺(⋅) defined in the appendix. As a result, the firm’s equity
and debt prices contain the same information as in the unlevered firm
benchmark, i.e., they depend upon

{

𝑠𝑖
}

and 𝑧 only through the statistic 𝑠𝑝.

The first part of the lemma illustrates that investors’ demands are
additively separable in investors’ beliefs about the firm’s total cash
flow, 𝜇𝑖 = E𝑖 [], and the prices 𝑃𝐸 , 𝑃𝐷. Moreover, each investor
peculates on her beliefs in the same direction in both markets, and
xhibits the same trading aggressiveness in the two markets:
𝜕 𝑥𝐸 ,𝑖
𝜕 𝜇𝑖

=
𝜕 𝑥𝐷 ,𝑖
𝜕 𝜇𝑖

= 𝜏
𝜎2𝑠

= risk tolerance
posterior uncertainty . (15)

Intuitively, both securities are exposed to the firm’s underlying cash
flows in the same direction. One might posit that investors would
trade more aggressively in the security that is more exposed to a shift
in the firm’s cash flows. For instance, when the firm’s expected cash
flows 𝜇𝑖 are large, the debt almost certainly pays off 𝐾, and so the
equity is considerably more sensitive to a change in 𝜇𝑖. Thus, one might
xpect an investor with a positive signal to take a larger position in the

equity than the debt. However, while the expected payoffs to trading
on private information are greater in the security that is more exposed
to 𝜃, so too is the risk, and these two effects precisely offset.9

Eq. (15) holds regardless of the firm’s debt level 𝐾, which implies
that the firm’s capital structure does not influence the investors’ trading
aggressiveness. In addition, the total supplies of the equity and debt to
e absorbed by the investors, 𝜅−𝑧, are identical. Together, these results
mply that the equity and debt prices contain the same information
nd that this information is the same as in the case where the firm
s unlevered, as in Chabakauri et al. (2022). Therefore, investors’
xpectations and variances of total firm cash flows in equilibrium are

identical to those in Eqs. (7) and (8).
Building on these findings, the next proposition characterizes the

quilibrium price and investor demands.

Proposition 1. There exists a generalized linear equilibrium, unique
ithin this class, in which the equity and debt prices satisfy:

𝑃𝐸 =𝑀𝐸
(

𝑃𝑈 , 𝜎2𝑠 , 𝐾
)

and 𝑃𝐷 =𝑀𝐷
(

𝑃𝑈 , 𝜎2𝑠 , 𝐾
)

. (16)

Moreover, the total value of the equity and debt is equal to 𝑃𝑈 i.e., 𝑃𝑈 =
𝑃𝐸 + 𝑃𝐷, and investors’ equilibrium equity and debt demands satisfy:

𝑥𝐸 ,𝑖 = 𝑥𝐷 ,𝑖 = 𝜏
𝜇𝑖 − ∫ 𝜇𝑗𝑑 𝑗

𝜎2𝑠
− 𝑧 + 𝜅 . (17)

This proposition demonstrates that the firm’s equity and debt prices
re equal to their expected payoffs under the distribution  ∼ 𝑁(𝑃𝑈 , 𝜎2𝑠 ).
hat is,  ∼ 𝑁(𝑃𝑈 , 𝜎2𝑠 ) is the risk-neutral distribution of cash flows

n our equilibrium.10 Importantly, the mean of this distribution 𝑃𝑈 =

9 Note we have verified that this result on demand linearity in private
nformation holds when the firm’s cash flow  follows an arbitrary distribution
nd investors receive conditionally iid signals about  . It does not depend upon
ormally distributed cash flows.
10 Similarly, in the case of an unlevered firm, the price 𝑃𝑈 of the unlev-
red equity is precisely the expectation of the firm’s cash flows under this
istribution.
 s

6 
∫ 𝜇𝑖𝑑 𝑖+ 𝜎2𝑠
𝜏 (𝑧 − 𝜅) captures both how prices aggregate investors’ diverse

information signals (via the term ∫ 𝜇𝑖𝑑 𝑖), as well as the risk premium
associated with bearing the net supply of equity and debt (via the term
𝜎2𝑠
𝜏 (𝑧 − 𝜅)).

The result establishes that the total market price of the firm’s equity
nd debt, 𝑃𝐸 + 𝑃𝐷, is independent of the firm’s capital structure and

equal to the price were the firm unlevered 𝑃𝑈 . Moreover, consistent
ith the finding in Lemma 3 that investors speculate on their beliefs

equally in both markets, their equilibrium demands in the two markets
are identical and coincide with their demands in the unlevered firm
case.

Intuitively, because the investors have private information about the
firm’s total cash flows,  , their goal is to obtain exposure to  (either
positive or negative, depending on their signal).11 Specifically, since
ash flows (and signals) are normally distributed, and noise trading in

both markets is identical, investors want to hold portfolios that are only
exposed to  . Moreover, investors can always do this by reconstructing
a security that pays off in proportion to the firm’s total cash flows by
buying equal amounts of the outstanding debt and equity securities.
Importantly, because the noise trading in the two securities is identical
(as is the aggregate supply of each security), both security markets can
clear in this case regardless of the firm’s capital structure. As a result,
each investor’s equilibrium demands for debt and equity are equal, and
the equilibrium price of a claim to the firm’s total cash flows (i.e., 𝑃𝑈 )
is independent of the firm’s capital structure and equal to the sum of
the debt and equity prices (i.e., 𝑃𝐸 + 𝑃𝐷). This implies the Modigliani–
Miller theorem holds in this setting, even though investors have private
information.

Because the securities’ prices can be expressed as their expected pay-
ffs under a risk-neutral cash flow distribution, they satisfy a number of
ntuitive features. For instance, any feature that shifts up the unlevered

price, 𝑃𝑈 , while holding fixed posterior uncertainty 𝜎2𝑠 , will also cause
the prices of the debt and equity to increase. This yields the following
result.

Corollary 1. The firm’s equity and debt prices:

(i) increase in the firm’s mean cash flows, 𝑚,
(ii) increase in liquidity-trader demand, 𝑧, and
(iii) decrease in the per capita supply, 𝜅.

The firm’s equity (debt) price decreases (increases) in the face value of
debt, 𝐾. Moreover, the firm’s equity (debt) price is convex (concave) in
the risk-neutral expectation, 𝑃𝑈 .

Fig. 1 illustrates the equity and debt price functions as a function
f the risk-neutral mean 𝑃𝑈 . Importantly, note that the equity price is
onvex in the risk-neutral expectation 𝑃𝑈 of cash flows, while the debt
rice is concave in it. To understand the economic intuition, consider
he price of equity — the intuition is precisely reversed in the case
f debt. Note that the equity payoff is a convex function of the firm’s
ash flows. Intuitively, since equity payoffs are unbounded above, but
ounded below by zero, this implies that favorable cash flow news has
 larger price impact on equity than unfavorable cash flow news.

Similarly, the impact of liquidity trading on prices is also non-
inear. When liquidity traders sell the firm’s equity, investors must hold
arger long positions and demand a drop in price to do so. However,
ince the equity payoffs are truncated from below (i.e., equity payoffs
re positively skewed), the downside from being long is limited, and
he price compensation is relatively small.12 On the other hand, when

11 This distinguishes our setting from that of Simsek (2013), who models a
ecurity whose payoff has multiple components and shows that splitting the
ecurity into separate securities that allow investors to trade on the individual
omponents changes investors’ equilibrium risk exposures.
12 Investors with CARA utility exhibit a preference for (positive) skewness,
ee e.g., Eeckhoudt and Schlesinger (2006).
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Fig. 1. Price Function
This figure plots the equilibrium price of equity, debt, and a claim to the total cash
low of the firm as a function of the risk-neutral mean 𝑃𝑈 . The parameters are set to:
2
𝜃 = 𝜎2𝜀 = 𝜎2𝑧 = 𝜌 = 𝑚 = 𝜏 = 𝐾 = 1; 𝜅 = 0.1.

liquidity traders buy equity, informed investors bear the risk of being
hort. In this case, their downside is unlimited and so they charge a
arge increase in the price for bearing the risk.13

Since the risk-neutral expectation of cash flows, 𝑃𝑈 , is linear in (ag-
regate) investor beliefs and noise-trading demand, the above implies
hat the equity price is convex in 𝑃𝑈 . Analogously, the debt price is
oncave in 𝑃𝑈 . As we show in the next section, this has implications
or the expected returns on debt and equity.

5. Expected return on debt and equity

In our setting the (dollar) return on debt and equity can be ex-
pressed as 𝑅𝐷 = 𝑉𝐷 − 𝑃𝐷 and 𝑅𝐸 = 𝑉𝐸 − 𝑃𝐸 , respectively. When
the security payoff is linear in fundamental shocks and liquidity trade,
he expected return typically increases with the per capita supply of
he asset. For instance, note that the price of the unlevered firm from

Lemma 1 implies that the expected return on unlevered equity is given
by

E[𝑅𝑈 ] = E[ − 𝑃𝑈 ] =
𝜎2𝑠
𝜏
𝜅 .

This implies that if the per capita supply of the firm is zero (i.e., 𝜅 = 0),
so is the expected return, because the firm does not expose investors, on
verage, to any risk. The firm’s price under zero net supply corresponds
o the price of the idiosyncratic cash flows of a typical firm in the

economy. The reason is that, as the typical firm is a small part of
he overall economy, its idiosyncratic cash flows exhibit negligible
orrelation with the average investor’s wealth.

In contrast, when security payoffs are non-linear, this is no longer
rue. The following result illustrates that in general, the expected
eturns on debt and equity systematically differ from zero, even when
he per capita supply of shares is zero. This implies that idiosyncratic
isk affects the expected returns on debt and levered equity in our
odel. We show this more formally in Section 7, where we extend the

model to a multi-firm setting in which firm cash flows are driven by
idiosyncratic and systematic shocks.

13 This asymmetric risk-compensation effect is absent in traditional models
with linear prices because the value is symmetric and unbounded. How-
ever, it is analogous to the ‘‘skewness effect’’ discussed in Albagli et al.
(2021), Chabakauri et al. (2022), Cianciaruso et al. (2023), and Banerjee et al.
(2024b).
7 
Proposition 2. Suppose the per capita endowment of shares is zero
(i.e., 𝜅 = 0). Then:

(i) the expected return on equity is positive (i.e., E[𝑅𝐸 ] > 0) if and only
if V[𝑃𝑈 ] < V𝑖[𝜇𝑖].

(ii) the expected return on debt is positive (i.e., E[𝑅𝐷] > 0) if and only
if V[𝑃𝑈 ] > V𝑖[𝜇𝑖].

To gain intuition for this result, note that one can express the
xpected returns on equity and debt as

E[𝑅𝐸 ] = E[𝑉𝐸 − 𝑃𝐸 ] = E𝑖
[

𝑀𝐸 (𝜇𝑖, 𝜎2𝑠 , 𝐾)
]

− E
[

𝑀𝐸 (𝑃𝑈 , 𝜎2𝑠 , 𝐾)
]

and (18)

E[𝑅𝐷] = E[𝑉𝐷 − 𝑃𝐷] = E𝑖
[

𝑀𝐷(𝜇𝑖, 𝜎2𝑠 , 𝐾)
]

− E
[

𝑀𝐷(𝑃𝑈 , 𝜎2𝑠 , 𝐾)
]

, (19)

respectively.14 Now, the unconditional means of 𝜇𝑖 and 𝑃𝑈 both equal 𝑚
the assumption that 𝜅 = 0 ensures the latter). Moreover, since 𝑀𝐸 (⋅) is
onvex in its first argument, the sign of expected equity returns depends
n the relative variance of 𝜇𝑖 versus 𝑃𝑈 — the expected return on
quity is positive when the variance of a typical investor’s subjective

expectation of cash flows, 𝜇𝑖, is higher than the variance of the risk-
neutral expectation of cash flows, 𝑃𝑈 . Similarly, since 𝑀𝐷(⋅) is concave
in its first argument, the expected return on debt is positive when the
difference in the two variances is flipped.

The following corollary shows that disagreement 𝜌 plays a pivotal
role in driving the sign of expected returns.

Corollary 2. Suppose the per capita endowment is zero (i.e., 𝜅 = 0).

(i) When 𝜎2𝑧 >
𝜏2

𝜎2𝜀
, then for any value of 𝜌 ∈ [0, 1], the expected return

on equity is negative, and the expected return on debt is positive
i.e., E[𝑅𝐸 ] < 0 and E[𝑅𝐷] > 0.

(ii) When 𝜎2𝑧 <
𝜏2

𝜎2𝜀
, then there exists 𝜌∗ ∈ (0, 1) such that the expected

return on equity is positive when 𝜌 < 𝜌∗ and negative otherwise, and
the expected return on debt is negative when 𝜌 < 𝜌∗ and positive
otherwise.

Note while the expected return on one of the securities is always
egative, which may appear inconsistent with empirical evidence, we
how in Section 7 that raw expected returns on both securities are

typically positive upon introducing an explicit systematic risk factor to
the model. Moreover, our results continue to hold in this case.

Recall that Proposition 2 establishes that the key quantity that deter-
ines the signs of the expected returns is V[𝑃𝑈 ] −V𝑖[𝜇𝑖], which reflects

he difference between the variance of the risk-neutral expectation
f cash flows and the variance of a typical investor’s expectation of
ash flows. The difference in variances is driven by two countervailing
ffects. On the one hand, the risk-neutral expectation 𝑃𝑈 can be less
ariable than the expectation 𝜇𝑖 of the typical investor because it
eflects the aggregate (or average) valuation (i.e., V[∫ 𝜇𝑗𝑑 𝑗] < V𝑖[𝜇𝑖]).
n fact, in the limit when the volatility of noise trading approaches
ero (i.e., 𝜎𝑧 → 0), the risk-neutral expectation 𝑃𝑈 perfectly reflects
undamentals, and so is always (weakly) less volatile than the typical
nvestor’s beliefs i.e., V[𝑃𝑈 ] ≤ V𝑖[𝜇𝑖].15 On the other hand, 𝑃𝑈 can be
ore variable that 𝜇𝑖 because it is more sensitive to liquidity-trading

hocks via the ‘‘risk compensation’’ term 𝜎2𝑠
𝜏 𝑧. For instance, in the

benchmark with no private information (i.e., when 1∕𝜎2𝜀 → 0), the
ypical investor’s conditional expectation is constant, and so V𝑖[𝜇𝑖] <
[𝑃𝑈 ] so long as there is some noise trading.

Importantly, the relative impact of these forces depends on (i)
he magnitude of noise-trading volatility relative to the precision of

14 The second equality follows from the fact that investors’ unconditional
istribution of cash flows coincides with the objective distribution and so we

have E[𝑉𝐸 ] = E𝑖[𝑉𝐸 ] and E[𝑉𝐷] = E𝑖[𝑉𝐷].
15 The inequality is strict as long as investors do not exhibit rational

expectations i.e., for all 𝜌 < 1, and their information is noisy i.e., 𝜎 > 0.
𝜀
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Fig. 2. Expected Return Comparative Statics
his figure plots expected returns on the equity and debt as a function of the model parameters. The parameters are set to: 𝜎2𝜃 = 𝜎2𝑧 = 0.752; 𝜎2𝜀 = 𝑚 = 𝜏 = 𝐾 = 1; 𝜅 = 0; 𝜌 = 0.5.
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private information, and (ii) the degree of disagreement. When the
volatility of noise trading is sufficiently high relative to the precision
of private information (i.e., 𝜎2𝑧 > 𝜏2

𝜎2𝜀
), the second channel dominates

irrespective of the degree of disagreement. As a result, the variance of
he risk-neutral expectation is higher than that of a typical investor’s

expectation (i.e., V[𝑃𝑈 ] > V𝑖[𝜇𝑖]), and consequently, the expected
return on debt (equity) is always positive (negative).

However, when noise-trading volatility is not too high, the relative
impact of the two forces depends on the degree of disagreement.
pecifically, when disagreement is high (i.e., 𝜌 is low), investors put
elatively less weight on the price and more weight on their private

information, and as a result, the first channel dominates. This implies
he risk-neutral expectation is less volatile than that of a typical investor
i.e., V[𝑃𝑈 ] < V𝑖[𝜇𝑖]) and consequently, the expected return on debt
equity) is negative (positive). On the other hand, when disagreement

is low (i.e., 𝜌 is high), investors heavily weight the price, and so the
second channel dominates and the implications for debt and equity
eturns are reversed.

We next characterize how expected returns on the two securities
relate to the model’s parameters.

Corollary 3. Suppose the per capita endowment of shares is zero (i.e., 𝜅 =
0).

(i) The magnitudes of the expected returns on the debt and equity,
|E[𝑅𝐸 ]|, |E[𝑅𝐷]|, are hump-shaped in 𝐾 and maximized at 𝐾 = 𝑚.

(ii) Expected equity returns decrease and expected debt returns increase
with liquidity-trading volatility 𝜎𝑧.

This corollary follows directly from Eqs. (18) and (19). Together
with Jensen’s inequality, these equations reveal that two quantities
rive the magnitude of expected returns on the securities: the extent of
onvexity/concavity the security’s expected payoff in the expected cash

flow 𝜕2

𝜕 𝑡2𝑀𝑥(𝑡, 𝜎2𝑠 , 𝐾) and the magnitude of V[𝑃𝑈 ] −V𝑖[𝜇𝑖]. Part (i) of the
corollary follows because, in the two limits in which leverage 𝐾 is large
r small, one of the debt or equity securities is approximately linear,

hile the other has value close to zero. Thus, in either such limit, the r

8 
extent of convexity/concavity, 𝜕2

𝜕 𝑡2𝑀𝑥(𝑡, 𝜎2𝑠 , 𝐾), is close to zero for both
debt and equity. When 𝐾 = 𝑚, the firm’s expected cash flows lie directly
at the point of default (E[] = 𝐾), when debt and equity payoffs are the
most concave/convex. This can also be understood by via the analogy
between equity/debt and call/put options: the convexity, or ‘‘vega’’,
of option prices tends to be largest for options that are approximately
at the money. Part (ii) of the corollary follows since, when liquidity-
rading volatility increases, the variance of 𝑃𝑈 , and thus V[𝑃𝑈 ] −V𝑖[𝜇𝑖],
ncreases, which reduces equity returns and increases debt returns.

Fig. 2 illustrates the corollary. The upper-left panel demonstrates
how expected returns vary with the firm’s leverage, in terms of the
robability of default.16 The plot shows that the magnitudes of these

returns are maximized when the debt level is equal to the firm’s
expected cash flows, corresponding to a 50% default probability (which
corresponds to 𝐾 = 𝑚). These results suggest that for the typical firm
with default probability well below 50%, expected returns on debt
ncrease, and expected returns on equity fall, with default risk. More-
ver, the marginal impact of distress risk on expected debt returns is
trongest for firms that have a low degree of default risk. As we discuss
n Section 8, these findings are consistent with empirical evidence.

The figure further shows that prior uncertainty and private informa-
ion quality, which we can jointly capture via the signal-to-noise ratio
𝜎2𝜃

𝜎2𝜃+𝜎
2
𝜀
, have a non-monotonic impact on expected returns. Intuitively,

hen investors’ private information quality is very high, their beliefs
onverge towards the true value of the firm, and hence expected returns
ust converge to zero. When investors’ private information quality is

ery low, they rely on their common priors and so the only force that
rives V

[

𝑃𝑈
]

− V𝑖
[

𝜇𝑖
]

is liquidity trade. Thus, equity and debt returns
re negative and positive, respectively. Finally, for intermediate values
f private information quality, investors’ beliefs are more dispersed and
rices aggregate these diverse beliefs. As discussed above, this reduces
[

𝑃𝑈
]

− V𝑖
[

𝜇𝑖
]

, thereby raising equity and lowering debt returns.

16 Both expected returns and default risk depend on 𝑚 and 𝐾 only through
−𝐾, and so this plot looks identical regardless of whether variation in default

isk is driven by 𝐾 or 𝑚.
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6. Extension: Differing liquidity trade in debt and equity

In this section, we consider a generalization of the baseline setting in
hich liquidity-traders’ demands in the debt and equity markets differ,

but are potentially correlated. Specifically, in contrast to the baseline
etting described in Section 3, demand shocks 𝑧 = (𝑧𝐷, 𝑧𝐸 ) ∈ R2

follow a general bivariate normal distribution 𝑧 ∼ 𝑁(𝟎, 𝛴𝑧) with 𝛴𝑧 an
arbitrary 2 × 2 positive definite covariance matrix.17 As in the baseline
etting, we let 𝑥𝐷 ,𝑖 and 𝑥𝐸 ,𝑖 denote the investor’s demand for debt and

equity respectively, with 𝑥𝑖 = (𝑥𝐷 ,𝑖, 𝑥𝐸 ,𝑖) the vector of demands.
The definition of a generalized linear equilibrium is analogous to

hat above, but generalized to account for the fact that in this setting
he debt and equity prices generally depend on two non-identical linear
tatistics.

Definition 3. A generalized linear equilibrium is one in which there
exists an injective function 𝑃 (⋅, ⋅) = (𝑃𝐷(⋅), 𝑃𝐸 (⋅)) mapping R2 into R2

and linear statistics of the form

𝑠𝑝1 = ∫ 𝑠𝑗𝑑 𝑗 + 𝑏1𝐷𝑧𝐷 + 𝑏1𝐸𝑧𝐸

𝑠𝑝2 = ∫ 𝑠𝑗𝑑 𝑗 + 𝑏2𝐷𝑧𝐷 + 𝑏2𝐸𝑧𝐸

such that the equilibrium price vector is

𝑃 (𝑠𝑝1, 𝑠𝑝2) =
(

𝑃𝐷(𝑠𝑝1, 𝑠𝑝2)
𝑃𝐸 (𝑠𝑝1, 𝑠𝑝2)

)

.

Let 𝑠 ≡ ∫ 𝑠𝑗𝑑 𝑗 denote the cross-sectional average signal and let

𝑠𝑝 = 𝟏𝑠 + 𝐵 𝑧
concisely denote the stacked vector of price-signals, with 𝟏 a con-
formable vector of ones and

𝐵 =
( 𝑏1𝐷 𝑏1𝐸
𝑏2𝐷 𝑏2𝐸

)

the 2 × 2 matrix of coefficients on 𝑧. In the main text we will focus on
he case in which 𝛴𝑧 is invertible (i.e., strictly positive definite).18

Given 𝑠𝑖 and the conjectured 𝑠𝑝, investor 𝑖’s beliefs about the firm
ash flow  are normal with conditional moments

𝜇𝑖 ≡ E
[

|𝑠𝑖, 𝑠𝑝
]

= 𝑚 + 𝜎2𝑠

(

𝑠𝑖
𝜎2𝜀

+ 𝟏′𝛴−1
𝑝

1
𝜌
𝑠𝑝

)

, and (20)

𝜎2𝑠 ≡ V
[

|𝑠𝑖, 𝑠𝑝
]

=

(

1
𝜎2𝜃

+ 1
𝜎2𝜀

+ 𝟏′𝛴−1
𝑝 𝟏

)−1

, (21)

where 𝛴𝑝 ≡ 1−𝜌2

𝜌2
𝜎2𝜃𝟏𝟏

′ + 1
𝜌2
𝐵 𝛴𝑧𝐵′.19 These are the analogues to

Eqs. (7)–(8) in the benchmark analysis.
We next extend our characterization of the investor’s optimal de-

mand in Lemma 3 to this case.

Lemma 4. Fix any 𝑃 =
(

𝑃𝐷, 𝑃𝐸
)

∈ R2. The optimal demand of trader 𝑖
s given by

𝑥𝑖 =
𝜏
𝜎2𝑠

(

𝟏𝜇𝑖 − 𝐺 (𝑃 )
)

,

17 The proofs of all results in this section allow for an arbitrary mean vector
𝜇𝑧 ∈ R2 and allow for a covariance matrix 𝛴𝑧 that is only positive semi-
definite. In the text, we normalize the means to zero and consider only strictly
positive definite 𝛴𝑧 for expositional clarity.

18 The case in which 𝛴𝑧 is singular (e.g., perfectly correlated liquidity trade
across both markets, or one of the liquidity trades constant) is considered in
the formal derivations in the appendix.

19 Because 𝛴𝑧 is assumed positive definite, it follows that 𝐵 𝛴𝑧𝐵′ is positive
definite. Furthermore, 𝛴𝑝, being a sum of a positive definite and positive
semidefinite matrix is itself positive definite and therefore invertible, where
it is understood that we take 𝛴−1

𝑝 = 𝟎 and 𝛴−1
𝑝

1
𝜌
= (𝜌𝛴𝑝)−1 = 𝟎 in the above

expressions when 𝜌 = 0.
 w

9 
where 𝐺 ∶ R2 → R2 is a function defined in the proof.
As before, investor 𝑖’s optimal demand is additively separable in

er beliefs 𝜇𝑖 and the prices, and her trading aggressiveness again
emains the same in each security. The equilibrium debt and equity
rices follow from imposing market clearing and matching coefficients
n the price-signal vector 𝑠𝑝.

Proposition 3. There exists a generalized linear equilibrium in the
financial market, unique within the generalized linear class. The vector of
quilibrium asset prices takes the form

𝑃 = 𝑔′
(

𝟏
∫ 𝜇𝑗 𝑑 𝑗
𝜎2𝑠

− 1
𝜏
(𝜅𝟏 − 𝑧)

)

(22)

= 𝑔′
(

1
𝜎2𝑠

(

𝟏 𝑚 + 𝜎2𝑠

(

𝐼 1
𝜎2𝜀

+ 𝟏𝟏′𝛴−1
𝑝

1
𝜌

)

𝑠𝑝 −
𝜎2𝑠
𝜏
𝟏𝜅

))

(23)

where the equilibrium coefficient matrix is 𝐵 =
⎛

⎜

⎜

⎝

𝜎2𝜀
𝜏 0

0 𝜎2𝜀
𝜏

⎞

⎟

⎟

⎠

, and 𝑔′ ∶ R2 →

2 is the gradient of a function 𝑔 ∶ R2 → R, both given in closed-form
n Appendix A.

The above result extends the generalized linear equilibrium char-
cterized in Proposition 1. Combining the expression for the optimal

demand from Lemma 6 and the equilibrium price in this proposition im-
mediately yields the equilibrium quantity demanded by each investor,
which we record in the following corollary.

Corollary 4. The equilibrium demand of investor 𝑖 is

𝑥𝑖 = 𝜏
𝜇𝑖 − ∫ 𝜇𝑗𝑑 𝑗

𝜎2𝑠
𝟏 + 𝜅𝟏 − 𝑧. (24)

This result shows that the speculative portion of each investor’s
holdings are equal across the debt and equity markets, and, as in our
benchmark model, are given by 𝜏

𝜇𝑖−∫ 𝜇𝑗𝑑 𝑗
𝜎2𝑠

. Thus, investors’ debt and
equity demands differ if and only if the liquidity trade in the debt and
equity markets differ.

6.1. Cross-market demand spillovers

Fig. 3 illustrates how the equity and debt prices respond to liquidity-
rader demand in each market. Specifically, liquidity-trader demand
or a given security affects not only the price of that security, but

also the price of the other security. Intuitively, this is driven by both
information and risk effects. Since demand in either security may be
perceived as informed, it raises investors’ expectations of cash flows,
and consequently, the price of both securities. In addition, holding debt
(equity) exposes an investor to the risk of the firm’s underlying cash
flows, which also makes them view the equity (debt) as riskier. Thus,
equity demand also raises the price of debt, and vice versa, via investor
risk aversion. However, demand for equity has a much stronger effect
on the equity price than on the debt price through this risk aversion
effect, and vice versa. As a result, the demand spillover between the
two markets is incomplete in the sense that 𝑧𝐸 has a stronger impact
on the equity price than 𝑧𝐷, and 𝑧𝐷 has a stronger impact on the debt
price than 𝑧𝐸 .

As in the baseline model (e.g., see Fig. 1), the equity (debt) price is
a convex (concave) function of demand in each market. This, in turn,
implies that our main results regarding expected returns continue to
hold in this case. Interestingly, however, the total price of the firm
i.e., 𝑃𝐸 +𝑃𝐷) is convex in equity liquidity-trader demand, but concave
n debt liquidity-trader demand. As we discuss further in the next
ubsection, this implies that the Modigliani–Miller theorem no longer
olds in this setting. Instead, the sum of the firm’s debt and equity
rices is greater (lower) than the price of an unlevered firm, on average,
hen the volatility of equity liquidity trading is higher (lower) than
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Fig. 3. Cross-Market Demand Spillovers
his figure plots the expected security prices conditional on equity liquidity trade 𝑧𝐸 (left panel) and debt liquidity trade 𝑧𝐷 (right panel). The parameters are set to:
𝜎2𝜃 = 1.52; 𝜎2𝜀 = V

[

𝑧𝐸
]

= V
[

𝑧𝐷
]

= 𝑚 = 𝜏 = 𝐾 = 1; 𝜅 = 0;C [

𝑧𝐸 , 𝑧𝐷] = 0.
Fig. 4. Leverage and Debt-Equity Price Correlation
his figure plots the correlation between the debt and equity prices as a function of the firm’s default risk. The parameters are set to: 𝑚 = 3;𝐾 = 2; 𝜎2𝜃 = 1; 𝜎2𝜀 = V

[

𝑧𝐸
]

= V
[

𝑧𝐷
]

=
𝜏 = 1; 𝜅 = 0;C [

𝑧𝐸 , 𝑧𝐷] = 0.
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that of debt liquidity trading.
The incomplete spillover of demand shocks across securities also

affects the correlation between equity and debt prices. As Fig. 4 il-
ustrates, the correlation between debt and equity prices is maximized
hen the likelihood of default is 50%.20 Intuitively, when the default

probability approaches zero, the payoff to debt is almost risk-free, and
so demand shocks in either security have little impact on the debt
price but significant impact on the equity price. Similarly, when the
probability of default approaches one, the value of equity approaches
zero and is relatively insensitive to demand shocks, but the price of
debt remains responsive to such shocks. As a result, the correlation in
prices approaches zero in both extremes. In contrast, for intermediate
levels of distress, both security prices are sensitive to demand shocks,
and so price correlation is high.

6.2. Capital structure and total firm valuation

We next show that, in contrast to our baseline specification, the
Modigliani–Miller theorem does not hold, i.e., the firm’s equity and

20 Pasquariello and Sandulescu (2024) derive a similar result in a Kyle model
where risk-neutral market makers specialize in either debt or equity, while
investors can trade both securities. As such, the market making in their model
is segmented: the price in each market depends only on the order flow in that
market. In contrast, markets are integrated in our setting: investors can update

their beliefs from equity and debt prices and can trade in both markets. f

10 
debt prices do not, in general, sum to the price of the unlevered
firm: E

[

𝑃𝐸 + 𝑃𝐷
]

≠ E
[

𝑃𝑈
]

. As a result, the firm’s capital structure
an meaningfully impact its value, even in the absence of traditional
rictions (e.g., tax shields of debt, costs of financial distress).

In Fig. 5, we show that the expected price of the debt plus equity
relative to the price of the unlevered firm depends upon the relative
amount of liquidity trade in the two markets. For instance, the left
panel of Fig. 5 plots E

[

𝑃𝐸 + 𝑃𝐷
]

as a function of
√

V
[

𝑧𝐸
]

, holding fixed

he volatility of debt liquidity trade (i.e.,
√

V
[

𝑧𝐷
]

). The plot illustrates
hat the expected value of debt plus equity is higher than the expected

value of the unlevered firm (i.e., E
[

𝑃𝐸 + 𝑃𝐷
]

> E
[

𝑃𝑈
]

= 1) if and only
f the volatility of equity liquidity trading is higher than that of debt

liquidity trading (i.e.,
√

V
[

𝑧𝐸
]

>
√

V
[

𝑧𝐷
]

). Intuitively, this is because
iquidity trade in the equity market does not fully spill over into the
ebt market. As such, the price-increasing effect that equity liquidity-
rading volatility has on equity prices tends to raise the overall value
f the firm.

This result holds irrespective of whether investors use the informa-
ion in prices (i.e., whether 𝜌 = 1 or 𝜌 = 0), but is stronger when
nvestors do not condition on prices (i.e., when 𝜌 = 0). This is because,
ven though the effect of belief dispersion on expected prices in the
wo securities precisely offset, investors face more uncertainty when
hey do not condition on prices, and this increases the sensitivity of
rices to liquidity trading shocks. The right panel of Fig. 5 shows the
ame result by plotting the expected value of debt plus equity as a
unction of debt liquidity-trading volatility, holding fixed the equity
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Fig. 5. Violations of Modigliani–Miller
This figure plots the total expected firm price, E

[

𝑃𝐸 + 𝑃𝐷
]

, as a function of liquidity trade volatility in the two markets. The parameters are set to: 𝜎2𝜃 = 1.52; 𝜎2𝜀 = V
[

𝑧𝐸
]

= V
[

𝑧𝐷
]

=
𝑚 = 𝜏 = 𝐾 = 1; 𝜅 = 0;C [

𝑧𝐸 , 𝑧𝐷] = 0. Note that E[𝑃𝑈 ] = 𝑚 = 1.
Fig. 6. Optimal Capital Structure
This figure plots the total expected firm price, E

[

𝑃𝐸 + 𝑃𝐷
]

, as a function of the firm’s leverage, paramaterized in terms of its ex-ante probability of default, Pr ( < 𝐾). The
arameters are set to: 𝜎2𝜃 = 1.52; 𝜎2𝜀 = 𝑚 = 𝜏 = 𝐾 = 1; 𝜅 = 0;C [

𝑧𝐸 , 𝑧𝐷] = 0;V [

𝑧𝐸
]

= 4; and V
[

𝑧𝐷
]

= 1. Note that E[𝑃𝑈 ] = 𝑚 = 1. The solid dots indicate the point at which the firm’s
otal expected price is maximized.
𝐹
I
s
e

liquidity-trading volatility.
Fig. 6 illustrates how the firm’s capital structure influences its

aluation.21 When equity liquidity-trading volatility exceeds that in the
debt, the value of the levered firm is higher than an unlevered firm
E
[

𝑃𝐸 + 𝑃𝐷
]

> E
[

𝑃𝑈
]

. In this case, there is an interior optimal capital
structure that maximizes the firm’s valuation. Intuitively, an all equity
or all debt firm is suboptimal as, in either case, the firm has linear
payoffs, and so E

[

𝑃𝐸 + 𝑃𝐷
]

→ E
[

𝑃𝑈
]

. This implies that even in the
absence of traditional frictions associated with leverage, heterogeneity
in information, beliefs, and liquidity trading across debt and equity
markets causes the value of the firm to be maximized at an interior
level of debt.

7. Extension: Systematic risk and multiple firms

In this section, we illustrate how our results extend to a multi-firm
economy with systematic and idiosyncratic sources of risk. We show
that the condition that determines the sign of expected returns in our
aseline analysis now determines how the firm’s expected returns com-

pare to a benchmark without liquidity and informed trade. Moreover,
we verify that our comparative statics results continue to apply in this
setting.

21 In the plot, we express capital structure in terms of the unconditional
default probability Pr ( < 𝐾), which is a monotone function of the face value

but is unit-free and so more easily interpretable than the raw face value.
11 
Formally, assume now that investors trade in the securities of 𝑁
firms. Firm 𝑛’s total cash flows per share are:

𝑛 ≡ 𝑚𝑛 + 𝜃𝑛 + 𝛽𝑛𝐹 .

The terms 𝜃𝑛 ∼ 𝑁
(

0, 𝜎2𝜃
)

are independent across firms and the term
𝐹 ∼ 𝑁

(

0, 𝜎2𝐹
)

captures a common systematic risk factor. Moreover, 𝑚𝑛
denotes firm 𝑛’s expected cash flows and 𝛽𝑛 captures firm 𝑛’s cash-flow
beta.

We assume that the only source of systematic risk in the economy is
and that there is a tradeable factor security with payoff 𝐹 = 𝑚𝐹 +𝐹 .

nvestors are endowed with 𝜅 shares of the factor security and zero
hares of each firm’s equity and debt, which corresponds to a large
conomy where each individual firm is small.22 Thus, in aggregate,

investors have no exposure to 𝜃𝑛, and so 𝜃𝑛 is a purely idiosyncratic
source of risk and would not affect expected returns if the investors
were homogeneous.

We allow for arbitrary differences in leverage across firms: firm 𝑛
has debt and equity defined as in the baseline model, where the face
value of the debt is 𝐾𝑛. Investor 𝑖 now observes a private signal 𝑠𝑖𝑛

22 We can obtain similar results by taking the limit of an economy with
finite investors and firms as the number of investors and firms grows large.
In this case, each firm becomes a small part of the economy and so the per
capita supply of each firm approaches zero. However, to avoid the notational
burden of having to take limits throughout the analysis, it is more convenient

to simply assume that 𝐹 is the only systematic source of risk.
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about the idiosyncratic cash flows of each firm 𝑛:

𝑠𝑖𝑛 = 𝜃𝑛 + 𝜀𝑖𝑛, (25)

where the error terms 𝜀𝑖𝑛 ∼ 𝑁
(

0, 𝜎2𝜀
)

are independent of all other
random variables. We continue to allow investors to agree to disagree
about one another’s signals. Specifically, each investor 𝑖 believes that
others’ signals are of the form

𝑠𝑗 𝑛 = 𝜌𝜃𝑛 +
√

1 − 𝜌2𝜉𝑖𝑛 + 𝜀𝑗 𝑛
where 𝜉𝑖𝑛 ∼ 𝑁(0, 𝜎2𝜃 ) are independent of one another.

Finally, we assume that there are liquidity traders in each firm’s
stock who seek exposures of 𝑧𝑛 ∼ 𝑁

(

0, 𝜎2𝑧
)

to the idiosyncratic cash
flows of each firm 𝜃𝑛. Formally, these traders submit demands 𝑧𝑛 ∼
𝑁

(

0, 𝜎2𝑧
)

in the debt and equity of each firm and hedge the risk
exposure that these demands create by submitting demands of −𝛽𝑛𝑧𝑛
in the factor asset. Thus, market clearing in the factor security requires
that:

∫𝑖
𝑥𝑖𝐹 𝑑 𝑖 −

∑

𝑛
𝛽𝑛𝑧𝑛 = 𝜅 ,

and market clearing in each individual firm’s equity and debt requires
that:

∫𝑖
𝑥𝑖𝑛𝐸𝑑 𝑖 + 𝑧𝑛 = 0 and ∫𝑖

𝑥𝑖𝑛𝐷𝑑 𝑖 + 𝑧𝑛 = 0.

The assumption that liquidity traders hedge in this fashion enables
us to interpret the risk exposures they create as idiosyncratic. One
can interpret these traders as allocating a fixed trading budget across
stocks, while keeping their total allocation to systematic risk fixed.
Specifically, this ensures that liquidity trade in a given stock does not
affect the supply of systematic risk 𝐹 to be borne by the remaining
traders, and thus does not shift the price of the factor. Hence, the price
variation that such liquidity traders create would not be captured by
betas in standard factor models of returns and is purely idiosyncratic.
However, this assumption is generally not essential for our equilibrium
construction; except in the case in which 𝜌 = 1, our model allows as a
special case the limit in which there is no liquidity trade.23

7.1. Equilibrium and expected returns

Analogous to our baseline model, we search for an equilibrium in
hich each firm 𝑛’s price is a generalized linear function of investors’
ggregate signal about firm 𝑛’s cash flows, 𝑠̄𝑛 ≡ ∫𝑖 𝑠𝑖𝑛𝑑 𝑖, and liquidity
rade in firm 𝑛’s stock, 𝑧𝑛. The next proposition is analogous to our

Proposition 1.

Proposition 4. There exists a generalized linear equilibrium. The price of
the factor asset satisfies:

𝑃𝐹 = 𝑚𝐹 − 𝜏−1𝜎2𝐹 𝜅 . (26)

Each firm 𝑛’s equity and debt prices satisfy:

𝑃𝑛𝐸 =𝑀𝐸 (𝑃𝑛𝑈 , 𝜎2𝑠 + 𝛽2𝑛𝜎2𝐹 , 𝐾𝑛) and 𝑃𝑛𝐷 =𝑀𝐷(𝑃𝑛𝑈 , 𝜎2𝑠 + 𝛽2𝑛𝜎2𝐹 , 𝐾𝑛), (27)

where:

𝑃𝑛𝑈 = 𝑚𝑛 + 𝜎2𝑠

(

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)

(𝑠𝑛 + 𝑏𝑧𝑛) − 𝛽𝑛E𝑖[𝐹 − 𝑃𝐹 ], (28)

and where 𝑏, 𝜎2𝑠 , and 𝜎2𝑝 take the same form as in the baseline model.

This proposition illustrates that the equilibrium prices can again
e expressed as the risk-neutral expectation of security payoffs, where
he risk-neutral distribution of firm 𝑛’s cash flows is given by 𝑛 ∼
(𝑃𝑛𝑈 , 𝜎2𝑠 + 𝛽2𝑛𝜎

2
𝐹 ). Note that these prices differ from those in the

23 When 𝜌 = 1 and there is no liquidity trade, investors correctly infer that
irm 𝑛’s equity/debt prices perfectly reveal 𝜃𝑛, and so expected excess returns
i.e., expected returns after accounting for 𝛽 ) are zero.
𝑛

12 
single-asset model in two ways. First, each firm’s price includes a risk
remium that is proportional to its cash-flow beta, 𝛽𝑛. This enters
he debt and equity prices through the unlevered price statistic 𝑃𝑛𝑈 .

Second, the risk-neutral variance now includes a term that is driven by
the firm’s exposure to systematic risk, 𝛽2𝑛𝜎

2
𝐹 .

We next characterize each firm’s expected price and returns. Recall
that in our baseline model, we studied whether expected returns were
positive or negative; given that we excluded any source of systematic
risk, non-zero expected returns could be attributed to asymmetric
information and/or liquidity trade. In this setting, however, there is
 systematic risk, and so, even absent these forces, expected returns

would be non-zero. To understand how firm-specific asymmetric in-
formation and liquidity trade influence expected returns, we compare
expected returns to a frictionless benchmark without liquidity and
informed trade, i.e., 𝜎2𝑧 → 0 and 𝜎2𝜀 → ∞. In such a setting, returns
are driven only by exposures to the systematic factor. Specifically, let
𝑅𝑛𝐸 = 𝑉𝑛𝐸 − 𝑃𝑛𝐸 and 𝑅𝑛𝐷 = 𝑉𝑛𝐷 − 𝑃𝑛𝐷 denote the return on firm 𝑛’s
debt and equity, and let 𝑅̄𝑛𝐸 and 𝑅̄𝑛𝐷 denote the corresponding returns
in a frictionless economy in which 𝜎2𝑧 → 0 and 𝜎2𝜀 → ∞. The following
result shows that analogs to Proposition 2 and Corollary 3 obtain in
this setting.

Proposition 5.
(i) The expected excess return on equity is positive (i.e., E[𝑅𝑛𝐸−𝑅̄𝑛𝐸 ] >

0) if and only if V[𝑃𝑛𝑈 ] < V𝑖[E𝑖[𝜃𝑛|𝑠𝑖, 𝑠𝑝]].
(ii) The expected excess return on debt is positive (i.e., E[𝑅𝑛𝐷 − 𝑅̄𝑛𝐷] >

0) if and only if V[𝑃𝑛𝑈 ] > V𝑖[E𝑖[𝜃𝑛|𝑠𝑖, 𝑠𝑝]].

These results follow from similar arguments to those in our baseline
model. The sign of the expected excess return follows by applying
ensen’s inequality to the difference between the expectation of the
ecurity price in (27) and the expectation of the security price in an

economy without informed and liquidity trading (since the expected
price of the unlevered firm 𝑃𝑛𝑈 is identical across both economies). The
result clarifies that, in our setting, expected returns on debt and equity
can vary across firms even after controlling for their risk exposures.
Specifically, the sign of the expected excess return (or ‘‘alpha’’) on a
security depends on the difference between the variance of the risk-
neutral expectation of cash flows (i.e., V[𝑃𝑛𝑈 ]) and the variance of
cash flow expectations of a typical investor, just as in the benchmark
analysis.

The following corollary shows that the comparative statics results in
the baseline model (as characterized in Corollaries 2 and 3) continue
to hold in this case.

Corollary 5.
(i) When 𝜎2𝑧 >

𝜏2

𝜎2𝜀
, then for any value of 𝜌 ∈ [0, 1], the expected excess

return on equity is negative, and the expected excess return on debt
is positive.

(ii) When 𝜎2𝑧 <
𝜏2

𝜎2𝜀
, then there exists 𝜌∗ ∈ (0, 1) such that the expected

excess return on equity is positive when 𝜌 < 𝜌∗ and negative
otherwise, and the expected excess return on debt is negative when
𝜌 < 𝜌∗ and positive otherwise.

(iii) The magnitudes of the expected excess returns in the debt and equity
are hump-shaped in 𝐾 and maximized at 𝐾 = E[𝑃𝑛𝑈 ].

(iv) Expected excess equity returns decrease and expected excess debt
returns increase with liquidity-trading volatility 𝜎𝑧.

Intuitively, the magnitude of expected excess returns is again driven
by the variance difference V[𝑃𝑛𝑈 ] − V𝑖[E𝑖[𝜃𝑛]], which takes the same
orm as in our baseline model.24 Importantly, neither of the variances

24 Numerical results indicate that, similar to expected returns in our baseline
model, E[𝑅 − 𝑅̄ ] and E[𝑅 − 𝑅̄ ] are non-monotonic in default risk.
𝑛𝐷 𝑛𝐷 𝑛𝐸 𝑛𝐸
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V[𝑃𝑛𝑈 ] nor V𝑖[E𝑖[𝜃𝑛]] depend on the firm’s risk-factor loading 𝛽𝑛.25 As
uch, the above result establishes how firm-specific liquidity demand
𝑛 and disagreement 𝜌 affect expected returns on debt and equity, even
olding fixed a firm’s systematic risk-factor loadings 𝛽𝑛. The magnitude
f expected returns is again maximized when the face value of the firm’s
ebt is equal to the expected price of the unlevered firm. However,
he latter now includes a premium for systematic risk, and so expected
eturns tend to be maximized at a lower level of leverage than in the
ingle-firm model.

Fig. 7 illustrates these results and shows that the impact of private
nformation quality on excess returns also mirrors the single-firm case,

upon focusing on expected excess returns (i.e., the dashed yellow lines
in the figure). The figure also shows that, owing to the presence of
the systematic risk factor, expected raw returns on equity and debt are
generally positive — private information alters the magnitude of these
ositive returns.

8. Empirical implications

Our model generates predictions on expected debt and equity re-
turns and how these returns vary with financial distress, disagreement,
and the intensity of liquidity trade. Existing work proposes several
proxies for these constructs that render our predictions directly testable.
or instance, considerable work proxies for belief dispersion using
olume and analyst forecast dispersion (Diether et al., 2002, Banerjee,

2011).26 Moreover, Greenwood and Thesmar (2011) develops a proxy
or liquidity-trader volatility based upon the concentration of a firm’s

ownership and the correlation in the liquidity shocks its owners face.
e summarize our model’s predictions and their relation to existing

mpirical work below; several are consistent with existing empirical
nalyses while others have yet to be tested.

Given that a key feature of our model is the ability of both diversely-
informed investors and liquidity traders to take positions in debt,
our results apply most clearly to public debt markets. As such, when
referencing debt markets, we focus on the literature on public bond
markets. We further focus on our predictions for firms that are far from
bankruptcy (i.e., with less than 50% probability of default), as such
firms represent the vast majority of publicly-traded stocks.

Belief dispersion and expected returns. There is empirical evidence
hat proxies for belief dispersion — trading volume and analyst forecast
ispersion — are negatively related to expected equity returns (e.g., Lee

and Swaminathan, 2000, Diether et al., 2002, Cen et al., 2017) and
positively related to expected debt returns (Güntay and Hackbarth,
2010).27 Existing theories of belief dispersion often restrict attention
o linear security payoffs and so cannot jointly explain the observed
atterns in the two markets. Our model can reconcile this evidence,
ut also suggests that the relationship between belief dispersion and
xpected returns depends on the underlying driver of belief dispersion.

Specifically, in our model, dispersion in beliefs can arise either
ecause investors ‘‘agree to disagree’’ about the informativeness of
thers’ signals (i.e., 𝜌 < 1) or because they have different private

25 Note that even though 𝛽𝑛 affects the price 𝑃𝑛𝑈 , it does not affect its
ariance since the factor risk premium E[𝐹 − 𝑃𝐹 ] is constant.
26 We follow the literature in interpreting analyst forecast dispersion as a

measure of belief dispersion across investors. It is worth noting that while
nalyst forecasts are publicly observable in practice, investor beliefs in our
odel are private. However, we expect our main results to be qualitatively

imilar in a more general model in which a finite number of agents (analysts)
eveal their forecasts publicly, while the remaining investors in the economy
o not.
27 See Chang et al. (2022) for more recent evidence on the relationship

between belief dispersion and stock prices based on a plausibly exogenous
shock. Their finding that share prices exhibit larger declines in response to
cash-flow news is indirect evidence of a negative relation between belief
dispersion and expected equity returns.
13 
information and prices are noisy because of liquidity trading. To see
this, note that dispersion in beliefs can be captured by the variance
cross investors’ conditional expectations of cash flows, which reduces

to

 ≡ ∫𝑖

(

𝜇𝑖 − ∫𝑗
𝜇𝑗𝑑 𝑗

)2
𝑑 𝑖 = 1

𝜎2𝜀

(

1
𝜎2𝜃

+ 1
𝜎2𝜀

+ 1
𝜎2𝑝

)2

where we recall that 𝜎2𝑝 = 1−𝜌2

𝜌2
𝜎2𝜃 +

1
𝜌2
𝜎2𝑧

(

𝜎2𝜀
𝜏

)2
is investors’ perceived

variance of the error in the price signal. This shows that belief disper-
sion increases with (i) the extent to which investors disagree about the
informativeness of others’ signals (a decrease in 𝜌) and (ii) the volatility
of liquidity trading (an increase in 𝜎𝑧), all else equal. Intuitively, greater
ariability in liquidity trade reduces the informativeness of the stock
rice. Because this price is a common public signal, when it is noisier,

investors’ beliefs diverge.28

As clarified by Corollary 3, an increase in liquidity-trading volatility
decreases equity returns (increases debt returns). Thus, our model can
reconcile the broad empirical evidence as the consequence of variation
in the intensity of liquidity trade across firms. However, Corollary 2
also demonstrates that an increase in disagreement tends to have the
opposite effects, increasing equity returns and decreasing debt returns.
As such, our analysis indicates that the impact of belief dispersion on
expected returns may differ in settings where it is primarily driven by
disagreement as opposed to noise in prices.

As a reduced-form test of the model, Corollaries 2 and 3 (and
their multi-firm counterparts in Corollary 5) suggest the following
egressions, where the dependence of expected returns on systematic
isk-factor loadings is omitted for brevity and the predicted signs are

presented below the coefficients:

𝑅𝐸 ,𝑡+1 = 𝛾0,𝐸 + 𝛾1,𝐸
⏟⏟⏟

>0

𝐷 𝑖𝑠𝑎𝑔 ,𝑡 + 𝛾2,𝐸
⏟⏟⏟

<0

𝐿𝑖𝑞 𝑇 𝑟𝑎𝑑 𝑒𝑉 𝑜𝑙 ,𝑡;

𝑅𝐷 ,𝑡+1 = 𝛾0,𝐷 + 𝛾1,𝐷
⏟⏟⏟

<0

𝐷 𝑖𝑠𝑎𝑔 ,𝑡 + 𝛾2,𝐷
⏟⏟⏟

>0

𝐿𝑖𝑞 𝑇 𝑟𝑎𝑑 𝑒𝑉 𝑜𝑙 ,𝑡,

where 𝐷 𝑖𝑠𝑎𝑔 ,𝑡 reflects variation in belief dispersion driven by disagree-
ment and 𝐿𝑖𝑞 𝑇 𝑟𝑎𝑑 𝑒𝑉 𝑜𝑙 ,𝑡 reflects variation in belief dispersion driven by
asymmetric information and liquidity-trading volatility.

One approach to obtaining 𝐷 𝑖𝑠𝑎𝑔 ,𝑡 and 𝐿𝑖𝑞 𝑇 𝑟𝑎𝑑 𝑒𝑉 𝑜𝑙 ,𝑡 would be
to project measures of belief dispersion (e.g., analyst forecast dis-
persion) on measures of liquidity-trading volatility proposed above
(e.g., Greenwood and Thesmar, 2011, Friberg et al., 2024) and at-
tribute the residual to disagreement. Alternatively, one could directly
condition on proxies for disagreement: for instance, in a closely related
setting, Banerjee (2011) argues that disagreement 𝜌 is positively related
o the correlation between trading volume and return volatility.29

Note, as shown in the multiple-firm model in Section 7, our find-
ings on how disagreement and noise-trading volatility affect expected
eturns speak to returns after explicitly controlling for systematic risk
xposures. Specifically, the predictions are about ‘‘alphas’’ from the
erspective of an econometrician who accounts for systematic risk,
ven though these returns do not reflect any mispricing from the

28 This is consistent with the empirical literature which uses idiosyncratic
volatility as a proxy for belief dispersion and disagreement (e.g., see Boehme
et al., 2006, Wang et al., 2023, and Goulding et al., 2023 for a comprehensive
summary).

29 Specifically, in a dynamic setting where security prices are linear in
fundamentals, Banerjee (2011) shows that the correlation between trading
volume and return volatility is negative when investors agree to disagree
(i.e., 𝜌 = 0), but is positive when they have rational expectations (i.e., 𝜌 = 1).



S. Banerjee et al.

i

Journal of Financial Economics 165 (2025) 103995 
Fig. 7. Expected Returns with Systematic Risk
This figure plots expected returns as a function of model parameters for a given firm 𝑛 in both the model and in a benchmark without private information or liquidity trade. The
parameters are set to: 𝜎2𝜃 = 𝜎2𝑧 = 0.752;𝑚𝐹 = 𝑚𝑛 = 𝛽𝑛 = 𝜎2𝐹 = 𝜎2𝜀 = 𝜅 = 𝜏 = 1;𝐾𝑛 = 0.25; 𝜅 = 𝜌 = 0.5.
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s
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perspective of investors in the model.30

Distress risk and expected returns. Several empirical studies examine
the relationship between distress risk and equity returns, controlling
for standard systematic risk exposures, typically finding that greater

30 Note because debt and equity are non-linear securities, expected returns
n our model depend non-linearly on systematic risk exposures, 𝛽𝑛. Thus, to

control for the impact of these risk factors on expected returns, one should
apply a technique that controls for potential non-linearities, such as sorting
firms into portfolios based on standard risk factors. Indeed, this is common
in the existing literature that studies the returns to distressed securities

Campbell et al., 2008).
(e.g.,

14 
distress risk is associated with lower equity returns. Such a relationship
is difficult to reconcile with traditional models due to the forces of
diversification, leading the literature to propose that distress risk is mis-
riced (e.g., Campbell et al., 2008).31 Our analysis suggests that such

a relation can arise when investors are diversely informed and prices
are noisy, even when they rationally incorporate all the information
available to them (i.e., even when 𝜌 = 1). Note further that the U-
haped pattern in excess equity returns as a function of default risk that
rises in our model (see the upper-left panel of Fig. 7) is consistent with

31 See also Dichev (1998), Campbell et al. (2008), Penman et al. (2007),
and Caskey et al. (2012).
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the empirical patterns documented in Garlappi et al. (2008).
In the debt market, several studies find that default risk has an

excessive impact on credit spreads, after controlling for exposure to
relevant systematic risk factors (commonly referred to as the credit-
spread puzzle).32 While our model does not provide a quantitative
resolution of the puzzle, it implies that asymmetric information may
lead to a stronger relationship between distress risk and expected
bond returns than one obtains in representative investor models (see
Proposition 5 and the upper-right panel of Fig. 7).

Moreover, the specific pattern in expected debt returns as a function
of default risk that arises in our model — an increasing and then de-
creasing relationship — is consistent with empirical evidence (e.g., Ang,
2014, Chapter 9). Importantly, our findings hold even though investors’
private information and liquidity trade are both idiosyncratic in the
model, and so are unlikely to be captured by the systematic risk
exposures explored in the existing literature.

Our model offers several predictions that may help to distinguish it
rom other theories. First, as discussed in Corollaries 3 and 5, it predicts

that the marginal impact of distress risk on expected debt returns is
strongest for firms that have a low degree of default risk. Second, our
model predicts that the relationship between distress risk and expected
stock returns depends on (i) the extent to which investors disagree and
(ii) the prevalence of liquidity trade in a firm’s stock and bonds. In
particular, our analysis motivates the following regressions for firms
with less than 50% probability of default, where the dependence on
systematic risk-factor loadings and the main effects are omitted for
brevity and the predicted signs are presented below the coefficients:

𝑅𝐸 ,𝑡+1 = 𝛾0,𝐸 + 𝛾1,𝐸
⏟⏟⏟

>0

𝐷 𝑖𝑠𝑡𝑟𝑒𝑠𝑠𝑡 ×𝐷 𝑖𝑠𝑎𝑔 𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡

+ 𝛾2,𝐸
⏟⏟⏟

<0

𝐷 𝑖𝑠𝑡𝑟𝑒𝑠𝑠𝑡 × 𝐿𝑖𝑞 𝑇 𝑟𝑎𝑑 𝑒𝑉 𝑜𝑙𝑡;

𝐷 ,𝑡+1 = 𝛾0,𝐷 + 𝛾1,𝐷
⏟⏟⏟

<0

𝐷 𝑖𝑠𝑡𝑟𝑒𝑠𝑠𝑡 ×𝐷 𝑖𝑠𝑎𝑔 𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑡

+ 𝛾2,𝐷
⏟⏟⏟

>0

𝐷 𝑖𝑠𝑡𝑟𝑒𝑠𝑠𝑡 × 𝐿𝑖𝑞 𝑇 𝑟𝑎𝑑 𝑒𝑉 𝑜𝑙𝑡.

These predictions follow from the observation that the expected re-
urn on equity (debt) is decreasing (increasing) in the difference in
ariances, V[𝑃𝑈 ] − V𝑖[𝜇𝑖] (see Propositions 2 and 5), which increases

in liquidity-trading volatility and is greater when investors exhibit DO
than when they exhibit RE.

Co-movement in equity and bond prices. The analysis in Section 6.1
implies that shocks to demand in either security impact both debt and
equity prices, and so induce correlation in these securities’ prices. Our
results are broadly consistent with the evidence in Back and Crotty
(2015), who show that while the unconditional correlation between
stock and bond returns is low, the correlation in the parts driven
y order flow is quite large. Our analysis suggests that the stock-
ond correlation is higher when liquidity trading in the two markets
s more correlated. Our results are also consistent with the evidence
f Pasquariello and Sandulescu (2024), who document that the stock-

bond correlation is low when the firm-level default probability is either
ery high or very low, but higher otherwise.

Capital structure and firm valuation. When liquidity traders’ de-
mands in equity and bond markets are not identical, our model implies
hat the capital structure of the firm affects its total valuation, even
n the absence of traditional frictions (e.g., tax shields of debt, distress
osts). Since we expect that for most firms, the probability of default is
ower than 50% and the volatility of liquidity trading in equity is higher

32 See, e.g., Elton et al. (2001), Driessen (2005), Huang and Huang (2012),
nd Bai et al. (2015).
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than that in debt, our model predicts that an increase in leverage leads
to an increase in firm value. Moreover, the model predicts that, ceteris
paribus, the impact of an increase in leverage is larger when investors
dismiss the information in prices (see Fig. 6).

9. Conclusion

We develop a model where privately-informed, risk-averse investors
trade alongside liquidity traders in the debt and equity of a firm.
Our model can reconcile the disparate relationships between belief
dispersion and debt and equity returns documented in past work.
We further show that the impact of private information on security
valuation depends on the firm’s likelihood of default, the intensity of
liquidity trading in each market, and the extent to which investors learn
from prices. Finally, we show that a firm’s capital structure can affect
its total valuation even in the absence of traditional frictions associated
with debt issuance.

Our model generates a number of novel empirical predictions about
the relation among disagreement, liquidity trading, distress risk, and
debt and equity valuation. Moreover, our model serves as a useful
benchmark for future theoretical analysis. For instance, it would be
interesting to explore the incentives of investors to acquire information
(e.g., Davis, 2017) in our setting when the liquidity trading in debt and
equity are not identical, as well as to study the effects of segmentation
across debt and equity markets. It would also be interesting to study
how joint trade in equity and debt influences managers’ investment
decisions, both through their costs of capital and through managerial
earning from debt and equity prices (as explored by Davis and Gondhi,

2024).
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Appendix A. Proofs

A.1. Proof of Lemmas 1 and 2

These results are limiting cases of Proposition 1 below.

A.2. Proof of Lemma 3

This result is a special case of Lemma 6, where we define 𝐺(𝑃 ) ≡
𝜎2𝑠 × (𝑔′)−1(𝑃 ) to condense notation in the statement of the Lemma.

A.3. Proof of Proposition 1

The existence of a generalized linear equilibrium is a special case of
Proposition 6 and the representation of the equilibrium demands is a
special case of Corollary 4. It remains to show that the expression for
the equilibrium price from Proposition 6 can be represented in terms



S. Banerjee et al.

s
R

y

p

−

o

Journal of Financial Economics 165 (2025) 103995 
of the 𝑀𝐸 and 𝑀𝐷 functions and that the equilibrium debt and equity
prices sum to 𝑃𝑈 . From Proposition 6, we have that the equilibrium
price vector satisfies

𝑃 = 𝑔′
(

1
𝜎2𝑠

(

𝟏 𝑚 + 𝟏𝜎2𝑠

(

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)

𝑠𝑝 −
𝜎2𝑠
𝜏
𝟏𝜅

))

= 𝑔′
(

𝟏
𝑃𝑈 (𝜃 , 𝑧)
𝜎2𝑠

)

,

where the second line uses the definition of 𝑃𝑈 (from Lemma 1) to
implify the argument of the gradient 𝑔′ and where the function 𝑔 ∶
2 → R satisfies

𝑔

(

𝑦1
𝑦2

)

= log
(

exp
{1
2
𝜎2𝑠 𝑦

2
1

}

𝛷

(

𝐾 − 𝜎2𝑠 𝑦1
𝜎𝑠

)

+ exp
{

(

𝑦1 − 𝑦2
)

𝐾 + 1
2
𝜎2𝑠 𝑦

2
2

}

(

1 −𝛷
(

𝐾 − 𝜎2𝑠 𝑦2
𝜎𝑠

)))

.

Computing the two partial derivatives that make up the gradient 𝑔′
ields

𝜕 𝑔
𝜕 𝑦1

=

⎛

⎜

⎜

⎜

⎜

⎝

𝜎2𝑠 𝑦1 − 𝜎𝑠

𝜙
(

𝐾−𝜎2𝑠 𝑦1
𝜎𝑠

)

𝛷
(

𝐾−𝜎2𝑠 𝑦1
𝜎𝑠

)

⎞

⎟

⎟

⎟

⎟

⎠

exp
{ 1
2 𝜎

2
𝑠 𝑦

2
1

}

𝛷

(

𝐾−𝜎2𝑠 𝑦1
𝜎𝑠

)

exp
{ 1
2 𝜎

2
𝑠 𝑦

2
1

}

𝛷

(

𝐾−𝜎2𝑠 𝑦1
𝜎𝑠

)

+exp
{

(𝑦1−𝑦2)𝐾+ 1
2 𝜎

2
𝑠 𝑦

2
2

}

(

1−𝛷

(

𝐾−𝜎2𝑠 𝑦2
𝜎𝑠

))

+𝐾
exp

{

(𝑦1−𝑦2)𝐾+ 1
2 𝜎

2
𝑠 𝑦

2
2

}

(

1−𝛷

(

𝐾−𝜎2𝑠 𝑦2
𝜎𝑠

))

exp
{ 1
2 𝜎

2
𝑠 𝑦

2
1

}

𝛷

(

𝐾−𝜎2𝑠 𝑦1
𝜎𝑠

)

+exp
{

(𝑦1−𝑦2)𝐾+ 1
2 𝜎

2
𝑠 𝑦

2
2

}

(

1−𝛷

(

𝐾−𝜎2𝑠 𝑦2
𝜎𝑠

)) ;

𝜕 𝑔
𝜕 𝑦2

=

⎛

⎜

⎜

⎜

⎜

⎝

𝜎2𝑠 𝑦2 + 𝜎𝑠

𝜙
(

𝐾−𝜎2𝑠 𝑦2
𝜎𝑠

)

1 −𝛷
(

𝐾−𝜎2𝑠 𝑦2
𝜎𝑠

)
−𝐾

⎞

⎟

⎟

⎟

⎟

⎠

exp
{

(𝑦1−𝑦2)𝐾+ 1
2 𝜎

2
𝑠 𝑦

2
2

}

(

1−𝛷

(

𝐾−𝜎2𝑠 𝑦2
𝜎𝑠

))

exp
{ 1
2 𝜎

2
𝑠 𝑦

2
1

}

𝛷

(

𝐾−𝜎2𝑠 𝑦1
𝜎𝑠

)

+exp
{

(𝑦1−𝑦2)𝐾+ 1
2 𝜎

2
𝑠 𝑦

2
2

}

(

1−𝛷

(

𝐾−𝜎2𝑠 𝑦2
𝜎𝑠

)) .

Evaluating these expressions at 𝑦1 = 𝑦2 =
𝑃𝑈
𝜎2𝑠

gives the debt and equity
rices, respectively:

𝑃𝐷 =
𝜕 𝑔
𝜕 𝑦1

|

|

|

|𝑦1=𝑦2=
𝑃𝑈
𝜎2𝑠

=

⎛

⎜

⎜

⎜

⎝

𝑃𝑈 − 𝜎𝑠
𝜙
(

𝐾−𝑃𝑈
𝜎𝑠

)

𝛷
(

𝐾−𝑃𝑈
𝜎𝑠

)

⎞

⎟

⎟

⎟

⎠

𝛷
(

𝐾 − 𝑃𝑈
𝜎𝑠

)

+𝐾
(

1 −𝛷
(

𝐾 − 𝑃𝑈
𝜎𝑠

))

=𝑀𝐷(𝑃𝑈 , 𝜎2𝑠 , 𝐾),

and

𝑃𝐸 =
𝜕 𝑔
𝜕 𝑦2

|

|

|

|𝑦1=𝑦2=
𝑃𝑈
𝜎2𝑠

=

⎛

⎜

⎜

⎜

⎝

𝑃𝑈 + 𝜎𝑠
𝜙
(

𝐾−𝑃𝑈
𝜎𝑠

)

1 −𝛷
(

𝐾−𝑃𝑈
𝜎𝑠

) −𝐾

⎞

⎟

⎟

⎟

⎠

(

1 −𝛷
(

𝐾 − 𝑃𝑈
𝜎𝑠

))

=𝑀𝐸 (𝑃𝑈 , 𝜎2𝑠 , 𝐾),

as claimed. Adding the expressions above immediately yields that the
overall firm value is:
𝑃𝐷 + 𝑃𝐸 =𝑀𝐸

(

𝑃𝑈 , 𝜎2𝑠 , 𝐾
)

+𝑀𝐷
(

𝑃𝑈 , 𝜎2𝑠 , 𝐾
)

= 𝑃𝑈 .

A.4. Proof of Corollary 1

It is straightforward to verify that 𝑀𝐸 (𝑥, ⋅, ⋅) and 𝑀𝐷(𝑥, ⋅, ⋅) increase
in 𝑥. Hence, results (i)-(iii) follow from the fact that, as can be seen in
Lemma 1, 𝑃𝑈 increases in 𝜃 and 𝑧 and decreases in 𝜅. To verify that the
equity and debt prices decrease and increase in 𝐾, respectively, note:
𝜕
𝜕 𝐾𝑀𝐷(𝑃𝑈 , 𝜎2𝑠 , 𝐾) = − 𝜕

𝜕 𝐾𝑀𝐸 (𝑃𝑈 , 𝜎2𝑠 , 𝐾)

= 1 −𝛷
(

𝐾 − 𝑃𝑈
)

−
𝐾 − 𝑃𝑈 𝜙

(

𝐾 − 𝑃𝑈
)

− 𝜙′
(

𝐾 − 𝑃𝑈
)

𝜎𝑠 𝜎𝑠 𝜎𝑠 𝜎𝑠

16 
= 1 −𝛷
(

𝐾 − 𝑃𝑈
𝜎𝑠

)

> 0.

A.5. Proof of Proposition 2

Observe that 𝑃𝑈 is unconditionally normally distributed with mean

E
[

𝑃𝑈
]

= E

[

∫ 𝜇𝑗𝑑 𝑗 +
𝜎2𝑠
𝜏

(𝑧 − 𝜅)

]

= ∫ E
[

𝜇𝑗
]

𝑑 𝑗 − 𝜎2𝑠
𝜏
𝜅

= 𝑚 −
𝜎2𝑠
𝜏
𝜅 . (A.1)

Thus, we have:

E
[

𝑃𝐸
(

𝑃𝑈
)]

= E
{

E
[

max (𝑥 −𝐾 , 0) |𝑥 ∼ 𝑁
(

𝑃𝑈 , 𝜎2𝑠
)]}

= E
{

E
[

max
(

𝑥 + 𝑃𝑈 −𝐾 , 0) |𝑥 ∼ 𝑁
(

0, 𝜎2𝑠
)]}

= E
[

max (𝑥 + 𝑦 −𝐾 , 0) |𝑥 ∼ 𝑁
(

0, 𝜎2𝑠
)

, 𝑦 ∼ 𝑁
(

E
[

𝑃𝑈
]

,V
[

𝑃𝑈
])]

= E
[

max (𝑥 −𝐾 , 0) |𝑥 ∼ 𝑁

(

𝑚 −
𝜎2𝑠
𝜏
𝜅 , 𝜎2𝑠 + V

[

𝑃𝑈
]

)]

=𝑀𝐸

(

𝑚 −
𝜎2𝑠
𝜏
𝜅 , 𝛺 , 𝐾

)

.

where we have defined 𝛺 ≡ 𝜎2𝑠 +V[𝑃𝑈 ] = 𝜎2𝜃 −V𝑖[𝜇𝑖] +V[𝑃𝑈 ], using the
law of total variance to express 𝜎2𝑠 = 𝜎2𝜃 −V𝑖[𝜇𝑖] in the second equality.
The debt result follows analogously.

We next show how the equity payoffs compare to equity expected
cash flows; the result for debt follows analogously. Observe that, as
𝜅 → 0, the expected equity price approaches 𝑀𝐸 (𝑚, 𝛺 , 𝐾). Now, the
expected equity payoff equals:

E [max (𝜃 −𝐾 , 0)] =𝑀𝐸
(

𝑚, 𝜎2𝜃 , 𝐾
)

.

Thus, equity earns negative expected returns if and only if 𝑀𝐸 (𝑚, 𝛺 , 𝐾)
𝑀𝐸

(

𝑚, 𝜎2𝜃 , 𝐾
)

> 0 and earns positive expected returns if and only if
𝑀𝐸 (𝑚, 𝛺 , 𝐾) −𝑀𝐸

(

𝑚, 𝜎2𝜃 , 𝐾
)

< 0. Now, note that the derivative of 𝑀𝐸
with respect to its second argument is:
𝜕 𝑀𝐸 (𝑚, 𝑥, 𝐾)

𝜕 𝑥 = 𝜕
𝜕 𝑥

{

𝑥
1
2 𝜙

(

𝑥−
1
2 (𝐾 − 𝑚)

)

−
[

1 −𝛷
(

𝑥−
1
2 (𝐾 − 𝑚)

)]

(𝐾 − 𝑚)
}

= 1
2
𝑥−

1
2 𝜙

(

𝑥−
1
2 (𝐾 − 𝑚)

)

> 0.

Thus, we have that:

𝑀𝐸 (𝑚, 𝛺 , 𝐾) −𝑀𝐸
(

𝑚, 𝜎2𝜃 , 𝐾
)

≷ 0 ⇔ 𝛺 − 𝜎2𝜃 ≷ 0 ⇔ V[𝑃𝑈 ] − V𝑖[𝜇𝑖] ≷ 0,

which completes the proof of statements (i) and (ii) in the proposition.

A.6. Proof of Corollary 2

As in the proof of Proposition 2, let 𝛺 ≡ 𝜎2𝑠 + V[𝑃𝑈 ]. From
Proposition 2, to sign expected returns, it suffices to determine the sign
f 𝛺−𝜎2𝜃 = V(𝑃𝑈 ) +𝜎2𝑠 −𝜎2𝜃 in terms of the deep parameters of the model.

We can write the unconditional variance of 𝑃𝑈 as

V
(

𝑃𝑈
)

=
(

𝜎2𝑠
)2 V

((

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)

(

𝑠 + 𝑏𝑧
)

)

=
(

𝜎2𝑠
)2

⎛

⎜

⎜

⎝

(

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)2

𝜎2𝜃 +

(

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)2

𝑏2𝜎2𝑧
⎞

⎟

⎟

⎠

=
(

𝜎2𝑠
)2

⎛

⎜

⎜

⎝

(

1
𝜎2𝑠

+ 1
𝜌𝜎2𝑝

− 1
𝜎2𝑝

− 1
𝜎2𝜃

)2

𝜎2𝜃 +

(

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)2

𝑏2𝜎2𝑧
⎞

⎟

⎟

⎠

= 𝜎2𝜃 − 𝜎
2
𝑠

+
(

𝜎2𝑠
)2

⎛

⎜

⎜

𝜎2𝜃

(

1
𝜌𝜎2

+ 1
𝜎2

)2

− 𝜎2𝜃

(

1
𝜎2

+ 1
𝜎2

)2
⎝

𝑝 𝜀 𝑝 𝜀
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+

(

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)2

𝑏2𝜎2𝑧 −

(

1
𝜎2𝜀

+ 1
𝜎2𝑝

)

⎞

⎟

⎟

⎠

where the third equality adds and subtracts 1
𝜎2𝜃

+ 1
𝜎2𝑝

inside the first term

n the large parentheses and uses the definition of 1
𝜎2𝑠

= 1
𝜎2𝜃

+ 1
𝜎2𝜀

+ 1
𝜎2𝑝

to
implify. The final equality does algebraic manipulations and collects
erms. Hence, the sign of 𝛺 − 𝜎2𝜃 is pinned down by the sign of

𝜎2𝜃

(

1
𝜌𝜎2𝑝

+ 1
𝜎2𝜀

)2

−𝜎2𝜃

(

1
𝜎2𝑝

+ 1
𝜎2𝜀

)2

+

(

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)2

𝑏2𝜎2𝑧 −

(

1
𝜎2𝜀

+ 1
𝜎2𝑝

)

(A.2)

The limits of the expression in Eq. (A.2) as 𝜌 tends to zero and
ne, being careful to account for the fact that 𝜎2𝑝 = 1−𝜌2

𝜌2
𝜎2𝜃 +

𝑏2𝜎2𝑧
𝜌2

itself
depends on 𝜌, are

lim
𝜌→0

⎛

⎜

⎜

⎝

𝜎2𝜃

(

1
𝜌𝜎2𝑝

+ 1
𝜎2𝜀

)2

− 𝜎2𝜃

(

1
𝜎2𝑝

+ 1
𝜎2𝜀

)2

+

(

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)2

𝑏2𝜎2𝑧 −

(

1
𝜎2𝜀

+ 1
𝜎2𝑝

)

⎞

⎟

⎟

⎠

(A.3)

= 1
𝜎2𝜀

(

𝑏2𝜎2𝑧
𝜎2𝜀

− 1
)

(A.4)

lim
𝜌→1

⎛

⎜

⎜

⎝

𝜎2𝜃

(

1
𝜌𝜎2𝑝

+ 1
𝜎2𝜀

)2

− 𝜎2𝜃

(

1
𝜎2𝑝

+ 1
𝜎2𝜀

)2

+

(

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)2

𝑏2𝜎2𝑧 −

(

1
𝜎2𝜀

+ 1
𝜎2𝑝

)

⎞

⎟

⎟

⎠

(A.5)

=
(

1
𝜎2𝜀

+ 1
𝑏2𝜎2𝑧

) 𝑏2𝜎2𝑧
𝜎2𝜀

(A.6)

Furthermore, the expression in Eq. (A.2) is strictly increasing in 𝜌
ince

𝜕
𝜕 𝜌

⎛

⎜

⎜

⎝

𝜎2𝜃

(

1
𝜌𝜎2𝑝

+ 1
𝜎2𝜀

)2

− 𝜎2𝜃

(

1
𝜎2𝑝

+ 1
𝜎2𝜀

)2

+

(

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)2

𝑏2𝜎2𝑧 −

(

1
𝜎2𝜀

+ 1
𝜎2𝑝

)

⎞

⎟

⎟

⎠

(A.7)

= 2
(

𝜎2𝜃 + 𝑏
2𝜎2𝑧

) (
(1 − 𝜌)2 𝜎2𝜃 + 𝑏2𝜎2𝑧

)

𝜎2𝜀
(

(1 − 𝜌2)𝜎2𝜃 + 𝑏2𝜎2𝑧
)2

> 0. (A.8)

It follows that for 𝜎2𝑧 >
𝜏2

𝜎2𝜀
⇔

𝑏2𝜎2𝑧
𝜎2𝜀

> 1 we have 𝛺 − 𝜎2𝜃 > 0 for all

𝜌 ∈ [0, 1]. On the other hand, for 𝜎2𝑧 <
𝜏2

𝜎2𝜀
⇔

𝑏2𝜎2𝑧
𝜎2𝜀

< 1 the above implies
hat there exists some 𝜌∗ such that for all 𝜌 < 𝜌∗ we have 𝛺 − 𝜎2𝜃 < 0

while for all 𝜌 > 𝜌∗ we have 𝛺 − 𝜎2𝜃 > 0.

A.7. Proof of Corollary 3

Part (i) We consider equity returns; the proof for debt returns is
nalogous. We have

sgn
( 𝜕
𝜕 𝐾

|

|

E[𝑅𝐸 ]||
)

= sgn
(

sgn
(

E[𝑅𝐸 ]
) 𝜕
𝜕 𝐾 E[𝑅𝐸 ]

)

= sgn(E[𝑅𝐸 ]) sgn
( 𝜕
𝜕 𝐾 E[𝑅𝐸 ]

)

= − sgn (𝛺 − 𝜎2𝜃
)

sgn
( 𝜕
𝜕 𝐾 E[𝑅𝐸 ]

)

.

where, again, 𝛺 = 𝜎2𝑠 +V[𝑃𝑈 ] is as defined in the proof of Proposition 2.
Differentiating the expected return with respect to 𝐾 yields
𝜕
𝜕 𝐾 E[𝑅𝐸 ] = 𝜕

𝜕 𝐾
(

𝑀𝐸 (𝑚, 𝜎2𝜃 , 𝐾) −𝑀𝐸 (𝑚, 𝛺 , 𝐾)
)

= 𝜕
𝜕 𝐾 ∫

𝜎2𝜃

𝛺

𝜕
𝜕 𝑥𝑀𝐸 (𝑚, 𝑥, 𝐾)𝑑 𝑥

= ∫

𝜎2𝜃

𝛺

𝜕2

𝜕 𝐾 𝜕 𝑥𝑀𝐸 (𝑚, 𝑥, 𝐾)𝑑 𝑥,

where the second equality uses the fundamental theorem of calculus to
express the difference in the 𝑀𝐸 function an integral. Computing the
cross-partial derivative of 𝑀 yields
𝐸

17 
𝜕2

𝜕 𝐾 𝜕 𝑥𝑀𝐸 (𝑚, 𝑥, 𝐾) = 𝜕
𝜕 𝐾

1
2

1
√

𝑥
𝜙

(

𝐾 − 𝑚
√

𝑥

)

= 1
2
1
𝑥
𝜙′

(

𝐾 − 𝑚
√

𝑥

)

= 1
2
1
𝑥
𝑚 −𝐾
√

𝑥
𝜙

(

𝐾 − 𝑚
√

𝑥

)

.

Hence, for 𝐾 < 𝑚, we have

sgn
( 𝜕
𝜕 𝐾 E[𝑅𝐸 ]

)

= sgn
⎛

⎜

⎜

⎜

⎜

⎝

∫

𝜎2𝜃

𝛺

𝜕2

𝜕 𝐾 𝜕 𝑥𝑀𝐸 (𝑚, 𝑥, 𝐾)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0

𝑑 𝑥
⎞

⎟

⎟

⎟

⎟

⎠

= − sgn(𝛺 − 𝜎2𝜃 ),

and therefore

sgn
( 𝜕
𝜕 𝐾

|

|

E[𝑅𝐸 ]||
)

= sgn2 (𝛺 − 𝜎2𝜃
)

> 0.

On the other hand for 𝐾 > 𝑚,

sgn
( 𝜕
𝜕 𝐾 E[𝑅𝐸 ]

)

= sgn
⎛

⎜

⎜

⎜

⎜

⎝

∫

𝜎2𝜃

𝛺

𝜕2

𝜕 𝐾 𝜕 𝑥𝑀𝐸 (𝑚, 𝑥, 𝐾)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

<0

𝑑 𝑥
⎞

⎟

⎟

⎟

⎟

⎠

= sgn(𝛺 − 𝜎2𝜃 ),

and therefore

sgn
( 𝜕
𝜕 𝐾

|

|

E[𝑅𝐸 ]||
)

= − sgn2 (𝛺 − 𝜎2𝜃
)

< 0.

Because |

|

E[𝑅𝐸 ]|| is strictly increasing in 𝐾 for 𝐾 < 𝑚 and strictly
ecreasing in 𝐾 for 𝐾 > 𝑚, it follows that |

|

E[𝑅𝐸 ]|| is hump-shaped in
and achieves its maximum at 𝐾 = 𝑚.
Part (ii) Consider debt returns. We have that:

𝜕E
[

𝑅𝐷
]

𝜕 𝜎𝑧
=
𝜕 𝑀𝐷

(

𝑚, 𝜎2𝜃 , 𝐾
)

𝜕 𝜎𝑧
−
𝜕 𝑀𝐷 (𝑚, 𝛺 , 𝐾)

𝜕 𝜎𝑧
= − 𝜕 𝑀𝐷 (𝑚, 𝛺 , 𝐾)

𝜕 𝛺
𝜕 𝛺
𝜕 𝜎𝑧

∝ 𝜕 𝛺
𝜕 𝜎𝑧

.

Similarly, for equity returns, we obtain 𝜕E[𝑅𝐸 ]
𝜕 𝜎𝑧 ∝ − 𝜕 𝛺

𝜕 𝜎𝑧 . Now, we have
he equation in Box I.

A.8. Proof of Lemma 4

This is a special case of Lemma 6, where we define the function
𝐺(𝑃 ) = 𝜎2𝑠 × (𝑔′)−1(𝑃 ) in the text.

A.9. Proof of Proposition 3

This is a special case of Proposition 6 in which 𝜇𝑧 = (0, 0) and 𝛴𝑧 is
ositive definite.

A.10. Proof of Proposition 4

The existence of equilibrium and the specific expressions for the
security prices follow from Proposition 7 after specializing the vector
notation to isolate individual assets. In the vector representation of
prices as risk-neutral expected payoffs, the risk-neutral mean for a given
irm 𝑛’s cash flow (or for the factor cash flow) is the unlevered price,
𝑃𝑛𝑈 (or 𝑃𝐹 for the factor) given in Lemma 7. Similarly, the risk-neutral
variance for a given cash flow is the 𝑛th (or (𝑁 + 1)st, in the case of
the factor) diagonal element of the cash flow variance matrix 𝛤 =
(

𝜎2𝑠 𝐼+𝜎
2
𝐹 𝛽 𝛽′ 𝜎2𝐹 𝛽

𝜎2𝐹 𝛽
′ 𝜎2𝐹

)

. Finally, we can write 1
𝜏 𝜎

2
𝐹 𝜅 = 𝑚𝐹 − 𝑃𝐹 = E𝑖[𝐹 ] − 𝑃𝐹 ,

hich allows one to express the final term in Eq. (28) in the form of the
ash flow beta times the factor expected return. Substituting in these

values yields the expression in the Proposition.
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𝜕 𝛺
𝜕 𝜎𝑧

=

2𝜎4𝜃𝜎𝑧𝜎
4
𝜀

⎛

⎜

⎜

⎜

⎜

⎝

𝜏4𝜎2𝜃𝜎
2
𝑧𝜎

4
𝜀

(

3
(

1 − 𝜌2)2 𝜎4𝜃 +
(

3 − 𝜌3(𝜌 + 2)) 𝜎2𝜃𝜎2𝜀 + 2𝜌3𝜎4𝜀
)

+(1 − 𝜌)𝜏6𝜎4𝜃
(

(1 − 𝜌)2(𝜌 + 1)3𝜎4𝜃 + (1 − 𝜌)(𝜌 + 1) (2𝜌2 + 𝜌 + 1) 𝜎2𝜃𝜎2𝜀 + 2𝜌3𝜎4𝜀
)

3𝜏2𝜎2𝜃𝜎
4
𝑧𝜎

8
𝜀
(

𝜎2𝜀 +
(

1 − 𝜌2) 𝜎2𝜃
)

+ 𝜎6𝑧𝜎
12
𝜀

(

𝜎2𝜃 + 𝜎
2
𝜀
)

⎞

⎟

⎟

⎟

⎟

⎠

𝜏2
(

𝜎2𝑧𝜎4𝜀
(

𝜎2𝜃 + 𝜎
2
𝜀
)

+ 𝜏2𝜎2𝜃
(

𝜎2𝜀 +
(

1 − 𝜌2) 𝜎2𝜃
))

3
> 0.

Box I.
v
a
a
c
e

g

f
d
s
a

f
(

A.11. Proof of Proposition 5

Analogously to the representation of unconditional expected prices
n Proposition 2, we can write firm 𝑛’s unconditional expected equity
nd debt prices as:

E
[

𝑃𝑛𝐸
]

=𝑀𝐸
(

E[𝑃𝑛𝑈 ],V[𝑃𝑛𝑈 ] + 𝜎2𝑠 + 𝛽2𝑛𝜎2𝐹 , 𝐾𝑛
)

=𝑀𝐸
(

𝑚𝑛 − 𝛽𝑛E[𝐹 − 𝑃𝐹 ],V[𝑃𝑛𝑈 ] + 𝜎2𝑠 + 𝛽2𝑛𝜎2𝐹 , 𝐾𝑛
)

;

E
[

𝑃𝑛𝐷
]

=𝑀𝐷
(

E[𝑃𝑛𝑈 ],V[𝑃𝑛𝑈 ] + 𝜎2𝑠 + 𝛽2𝑛𝜎2𝐹 , 𝐾𝑛
)

=𝑀𝐷
(

𝑚𝑛 − 𝛽𝑛E[𝐹 − 𝑃𝐹 ],V[𝑃𝑛𝑈 ] + 𝜎2𝑠 + 𝛽2𝑛𝜎2𝐹 , 𝐾𝑛
)

.

Next, note that in the no information, no liquidity trade benchmark, we
still have that E[𝑃𝑛𝑈 ] = 𝑚𝑛 − 𝛽𝑛E[𝐹 − 𝑃𝐹 ] but in that case the variance
of the unlevered price is zero, V

[

𝑃𝑛𝑈
]

= 0 and investors’ conditional
cash flow variance is equal to the prior variance 𝜎2𝑠 = 𝜎2𝜃 . Thus, given
the convexity of 𝑀𝐸 and concavity of 𝑀𝐷, we have that debt (equity)
returns are higher (lower) than under the benchmark if and only if
V
[

𝑃𝑛𝑈
]

+ 𝜎2𝑠 + 𝛽
2
𝑛𝜎

2
𝐹 < 𝜎2𝜃 + 𝛽2𝑛𝜎2𝐹 ⇔ V

[

𝑃𝑛𝑈
]

< 𝜎2𝜃 − 𝜎2𝑠 = V𝑖[E𝑖[𝜃𝑛|𝑠𝑖, 𝑠𝑝]].

A.12. Proof of Corollary 5

Parts (i) and (ii) Note from Proposition 4 that V[𝑃𝑛𝑈 ] and
V𝑖[E𝑖[𝜃𝑛|𝑠𝑖, 𝑠𝑝] take on the same values as in the single-firm model.
Consequently, applying Proposition 5, the conditions for expected
excess returns to be positive and negative are the same as in the
single-firm model.

Part (iii) Recall from the proof of part (i) of Corollary 3 that
gn

(

𝜕2𝑀𝐸 (𝑚,𝑥,𝐾)
𝜕 𝐾 𝜕 𝑥

)

= sgn(𝑚 −𝐾). Hence, we have

sgn
(

𝜕
𝜕 𝐾𝑛

E[𝑅𝑛𝐸 − 𝑅̄𝑛𝐸 ]
)

= sgn
(

∫

𝜎2𝜃+𝛽
2
𝑛 𝜎

2
𝐹

V[𝑃𝑛𝑈 ]+𝜎2𝑠+𝛽2𝑛 𝜎
2
𝐹

𝜕2

𝜕 𝐾 𝜕 𝑥𝑀𝐸 (E[𝑃𝑛𝑈 ], 𝑥, 𝐾𝑛)𝑑 𝑥
)

= sgn(𝜎2𝜃 − V[𝑃𝑛𝑈 ] − 𝜎2𝑠 ) sgn(E[𝑃𝑛𝑈 ] −𝐾𝑛)

= sgn(E[𝑅𝑛𝐸 − 𝑅̄𝑛𝐸 ]) sgn(E[𝑃𝑛𝑈 ] −𝐾𝑛).

This immediately implies that the magnitude of expected excess equity
returns is maximized when E[𝑃𝑛𝑈 ] − 𝐾𝑛 = 0; the result for expected
excess debt returns follows similarly.

Part (iv) Consider excess debt returns. We have that:
𝜕E

[

𝑅𝑛𝐷 − 𝑅̄𝑛𝐷
]

𝜕 𝜎𝑧
=
𝜕 𝑀𝐷

(

E[𝑃𝑛𝑈 ], 𝜎2𝜃 + 𝛽2𝑛𝜎2𝐹 , 𝐾
)

𝜕 𝜎𝑧
−
𝜕 𝑀𝐷

(

E[𝑃𝑛𝑈 ],V[𝑃𝑛𝑈 ] + 𝜎2𝑠 + 𝛽2𝑛𝜎2𝐹 , 𝐾
)

𝜕 𝜎𝑧
= −

𝜕 𝑀𝐷
(

E[𝑃𝑛𝑈 ],V[𝑃𝑛𝑈 ] + 𝜎2𝑠 + 𝛽2𝑛𝜎2𝐹 , 𝐾
)

𝜕(V[𝑃𝑛𝑈 ] + 𝜎2𝑠 )

×
𝜕(V[𝑃𝑛𝑈 ] + 𝜎2𝑠 )

𝜕 𝜎𝑧
∝
𝜕(V[𝑃𝑛𝑈 ] + 𝜎2𝑠 )

𝜕 𝜎𝑧
.

Note that V[𝑃𝑛𝑈 ] + 𝜎2𝑠 is equal to V[𝑃𝑈 ] + 𝜎2𝑠 = 𝛺 in the single-firm
model, and, from the proof of part (ii) of Corollary 3, 𝜕 𝛺

𝜕 𝜎𝑧 > 0. The
esult for expected excess equity returns follows analogously.

Appendix B. Equilibrium with arbitrary, correlated liquidity trad-
ing
18 
In this section, we characterize the equilibrium in the fully-general
ersion of the model in which liquidity trading 𝑧 = (𝑧𝐷, 𝑧𝐸 ) follows
 general bivariate normal distribution 𝑁(𝜇𝑧, 𝛴𝑧) where 𝜇𝑧 ∈ R is an
rbitrary vector of means, and 𝛴𝑧 is an arbitrary positive semi-definite
ovariance matrix. As in the text, we consider equilibria of the ‘‘gen-
ralized linear’’ form specified in Definition 3 where the endogenous

price statistics take the form

𝑠𝑝 = 𝟏𝑠 + 𝐵
(

𝑧 − 𝜇𝑧
)

.

with 𝐵 =
( 𝑏1𝐷 𝑏1𝐸
𝑏2𝐷 𝑏2𝐸

)

the 2 × 2 matrix of coefficients to be determined.

We begin by characterizing an arbitrary investor 𝑖’s conditional
distribution of the vector of debt and equity payoffs, 𝑉 = (𝑉𝐷, 𝑉𝐸 ),
iven arbitrary 𝑁(𝜇𝑖, 𝜎2𝑠 ) beliefs about the underlying firm cash flow
. In this derivation, and others throughout these Appendices, we

ollow the convention that cumulative distribution functions (CDF) are
enoted by 𝐹(⋅) and probability density functions (PDF) by 𝑓(⋅), with
ubscripts corresponding to the relevant random variable. E.g., the CDF
nd PDF of  are written 𝐹 and 𝑓 , respectively.

Lemma 5. Suppose that  is conditionally normally distributed with
mean 𝜇𝑖 and variance 𝜎2𝑠 . Then the vector 𝑉 = (min ( , 𝐾) ,max ( −𝐾 , 0))
ollows a bivariate exponential family with moment-generating function
MGF) that is finite for any 𝑢 ∈ R2, and is given explicitly by

E𝑖
[

exp
{

𝑢′𝑉
}]

= exp
{

𝑔

(

𝑢 + 𝟏
𝜇𝑖
𝜎2𝑠

)

− 𝑔

(

𝟏
𝜇𝑖
𝜎2𝑠

)}

where the function 𝑔 ∶ R2 → R is defined as

𝑔

(

𝑦1
𝑦2

)

= log
(

exp
{1
2
𝜎2𝑠 𝑦

2
1

}

𝛷

(

𝐾 − 𝜎2𝑠 𝑦1
𝜎𝑠

)

+ exp
{

(

𝑦1 − 𝑦2
)

𝐾 + 1
2
𝜎2𝑠 𝑦

2
2

}

(

1 −𝛷
(

𝐾 − 𝜎2𝑠 𝑦2
𝜎𝑠

)))

. (B.1)

Proof. The claim about finiteness follows immediately once we have
proven that the MGF takes the given form since, by inspection, the
function 𝑔 is finite on all of R2. The claim that the distribution is an
exponential family also follows immediately from the functional form
(see e.g., Sampson, 1975, Hoffmann and Schmidt, 1982). To establish
the expression for the MGF, write
E𝑖

[

exp
{

𝑢′𝑉
}]

= ∫

∞

−∞
exp

{

𝑢1 min {𝑡, 𝐾} + 𝑢2 max {𝑡 −𝐾 , 0}} 𝑑 𝐹 (𝑡|𝑠𝑖, 𝑠𝑝)

= ∫

𝐾

−∞
exp

{

𝑢1𝑡
}

𝑑 𝐹 (𝑡|𝑠𝑖, 𝑠𝑝) + ∫

∞

𝐾
exp

{

𝑢1𝐾 + 𝑢2 (𝑡 −𝐾)
}

𝑑 𝐹 (𝑡|𝑠𝑖, 𝑠𝑝)

= exp
{

𝜇𝑖𝑢1 +
1
2
𝜎2𝑠 𝑢

2
1

}

𝛷

(

𝐾 − 𝜇𝑖 − 𝜎2𝑠 𝑢1
𝜎𝑠

)

+ exp
{

(

𝑢1 − 𝑢2
)

𝐾 + 𝜇𝑖𝑢2 +
1
2
𝜎2𝑠 𝑢

2
2

}

(

1 −𝛷
(

𝐾 − 𝜇𝑖 − 𝜎2𝑠 𝑢2
𝜎𝑠

))

= exp
{

1
2
𝜎2𝑠

(

𝜇𝑖
𝜎2𝑠

+ 𝑢1

)2

− 1
2
𝜎2𝑠

(

𝜇𝑖
𝜎2𝑠

)2
}

𝛷

⎛

⎜

⎜

⎜

𝐾 − 𝜎2𝑠
(

𝜇𝑖
𝜎2𝑠

+ 𝑢1
)

𝜎𝑠

⎞

⎟

⎟

⎟

⎝ ⎠
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+ exp
{

(

𝑢1 − 𝑢2
)

𝐾 + 1
2
𝜎2𝑠

(

𝜇𝑖
𝜎2𝑠

+ 𝑢2

)2

− 1
2
𝜎2𝑠

(

𝜇𝑖
𝜎2𝑠

)2
}

×

⎛

⎜

⎜

⎜

⎝

1 −𝛷
⎛

⎜

⎜

⎜

⎝

𝐾 − 𝜎2𝑠
(

𝜇𝑖
𝜎2𝑠

+ 𝑢2
)

𝜎𝑠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

exp

{

1
2
𝜎2𝑠

(

𝜇𝑖
𝜎2𝑠

+ 𝑢1

)2
}

𝛷

⎛

⎜

⎜

⎜

⎝

𝐾 − 𝜎2𝑠
(

𝜇𝑖
𝜎2𝑠

+ 𝑢1
)

𝜎𝑠

⎞

⎟

⎟

⎟

⎠

+ exp
{

(

𝑢1 − 𝑢2
)

𝐾 + 1
2
𝜎2𝑠

(

𝜇𝑖
𝜎2𝑠

+ 𝑢2

)2
}⎛

⎜

⎜

⎜

⎝

1 −𝛷
⎛

⎜

⎜

⎜

⎝

𝐾 − 𝜎2𝑠
(

𝜇𝑖
𝜎2𝑠

+ 𝑢2
)

𝜎𝑠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

exp

{

−1
2
𝜎2𝑠

(

𝜇𝑖
𝜎2𝑠

)2
}

.

Taking the logarithm, this expression is identical to that in the Lemma
after recognizing that 𝑔 as defined in the statement of the Lemma
satisfies 𝑔

( 𝑦
𝑦

)

= 1
2𝜎

2
𝑠 𝑦

2 when both arguments are identical. □

With trader beliefs pinned down, we next characterize the optimal
emand.

Lemma 6. Fix any 𝑃 =
(

𝑃𝐷, 𝑃𝐸
)

in set of no-arbitrage prices {(𝑝𝐷, 𝑝𝐸 ) ∶
𝑝𝐷 < 𝐾 , 𝑝𝐸 > 0}. There is a unique optimal demand for trader 𝑖, given by

𝑥𝑖 = 𝜏

(

𝟏
𝜇𝑖
𝜎2𝑠

−
(

𝑔′
)−1 (𝑃 )

)

where
(

𝑔′
)−1 ∶ R2 → R2 is the inverse of the gradient 𝑔′

( 𝑦1
𝑦2

)

≡

( 𝜕
𝜕 𝑦1 𝑔
𝜕
𝜕 𝑦2 𝑔

)

.

Proof. From Lemma 5, we can compute the trader’s conditional
xpected utility given an arbitrary demand 𝑥𝑖 as

E𝑖
[

− exp
{

−1
𝜏
𝑥′𝑖 (𝑉 − 𝑃 )

}

|𝑠𝑖, 𝑠𝑝
]

= − exp
{

1
𝜏
𝑥′𝑖𝑃 + 𝑔

(

𝟏
𝜇𝑖
𝜎2𝑠

− 1
𝜏
𝑥𝑖

)

− 𝑔

(

𝟏
𝜇𝑖
𝜎2𝑠

)}

.

Letting 𝑔′ =
( 𝜕

𝜕 𝑦1 𝑔
𝜕
𝜕 𝑦2 𝑔

)

denote the gradient of 𝑔, the FOC is

0 = 𝑔′
(

𝟏
𝜇𝑖
𝜎2𝑠

− 1
𝜏
𝑥𝑖

)

− 𝑃 . (B.2)

Note that the Hessian matrix 𝑔′′ ≡
⎛

⎜

⎜

⎜

⎝

𝜕2

𝜕 𝑦21
𝑔 𝜕2

𝜕 𝑦1𝜕 𝑦2 𝑔
𝜕2

𝜕 𝑦1𝜕 𝑦2 𝑔
𝜕2

𝜕 𝑦22
𝑔

⎞

⎟

⎟

⎟

⎠

is necessarily posi-

ive definite, owing to the fact that it is the matrix of 2nd derivatives
f the cumulant generating function of 𝑉 , which is strictly convex. It
ollows that the optimum, if it exists, is unique and the FOC in (B.2) is

sufficient to characterize it. Hence, it suffices to show that there exists
 demand 𝑥𝑖 ∈ R2 that satisfies Eq. (B.2).

Due to the positive-definiteness of 𝑔′′ it follows that the gradient
′ is injective and therefore invertible on its range. Hence, if we can
stablish that the range is the set of no-arbitrage prices {(𝑝𝐷, 𝑝𝐸 ) ∶ 𝑝𝐷 <
 , 𝑝𝐸 > 0}, the existence and characterization of the optimal demand
ill follow immediately from rearranging the FOC in Eq. (B.2).

Let 𝑆 = {(𝑣𝐷, 𝑣𝐸 ) ∶ 𝑣𝐷 < 𝐾 , 𝑣𝐸 = 0} ∪ {(𝑣𝐷, 𝑣𝐸 ) ∶ 𝑣𝐷 = 𝐾 , 𝑣𝐸 > 0}
denote the support of the payoff vector (𝑉𝐷, 𝑉𝐸 ). We claim that the
range of 𝑔′ is the interior of the closed convex hull of 𝑆, which is
precisely the set of no-arbitrage prices. This follows from the following.
First, because the CGF 𝑔 is defined on all of R2, and furthermore
because R2 is open, the exponential family described by the CGF is
necessarily ‘‘regular’’ as defined by Barndorff-Nielsen (2014). It follows
from Theorem 8.2 of Barndorff-Nielsen (2014) that the exponential
amily is ‘‘steep’’ and therefore from Theorem 9.2 in Barndorff-Nielsen
19 
(2014) that the gradient 𝑔′ maps R2 onto the interior of the closed
convex hull of the support 𝑆. This set, int conv(𝑆) = {(𝑥, 𝑦) ∶ 𝑥 < 𝐾 , 𝑦 >
0}, is the set of candidate prices in which the debt price is less than
the face value 𝐾 and the equity price is greater than zero, which is
precisely the set of prices that do not admit arbitrage. □

Proposition 6. There exists an equilibrium in the financial market. The
vector of equilibrium asset prices takes the form

𝑃 = 𝑔′
(

𝟏
∫ 𝜇𝑗 𝑑 𝑗
𝜎2𝑠

− 1
𝜏
(𝜅𝟏 − 𝑧)

)

. (B.3)

where the function 𝑔′ ∶ R2 → R2 is given in closed-form in Eqs. (B.9)—
B.10) the proof. This equilibrium is unique within the generalized linear

class.

1. If 𝛴𝑧 is invertible, then the equilibrium price vector is
𝑃 = 𝑔′

(

1
𝜎2𝑠

(

𝟏 𝑚 + 𝜎2𝑠

(

𝐼 1
𝜎2𝜀

+ 𝟏𝟏′𝛴−1
𝑝

1
𝜌

)

𝑠𝑝 −
𝜎2𝑠
𝜏
𝟏𝜅

))

(B.4)

where the equilibrium price signals coefficient matrix is diagonal

𝐵 =
⎛

⎜

⎜

⎝

𝜎2𝜀
𝜏 0

0 𝜎2𝜀
𝜏

⎞

⎟

⎟

⎠

2. If 𝛴𝑧 is singular and of the form 𝛴𝑧 = 𝟏𝟏′𝜎2𝑧 (i.e., liquidity trade is
identical in the two markets, 𝑧𝐸 = 𝑧𝐷 = 𝜁 for 𝜁 ∼ 𝑁(0, 𝜎2𝑧 )), then
the equilibrium price vector is
𝑃 = 𝑔′

(

1
𝜎2𝑠

(

𝟏 𝑚 + 𝟏𝜎2𝑠

(

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)

𝑠𝑝 −
𝜎2𝑠
𝜏
𝟏𝜅

))

(B.5)

where 𝑠𝑝 = 𝑠 + 𝑏𝜁 is one-dimensional, 𝜎2𝑝 ≡ 1−𝜌2

𝜌2
𝜎2𝜃 + 𝑏2

𝜌2
𝜎2𝑧 with

𝑏 = 𝜎2𝜀
𝜏 , and 𝜎2𝑠 =

(

1
𝜎2𝜃

+ 1
𝜎2𝜀

+ 1
𝜎2𝑝

)−1
.

3. If 𝜌 < 1, and 𝛴𝑧 is singular and not of the form 𝛴𝑧 = 𝟏𝟏′𝜎2𝑧
(i.e., liquidity trade is perfectly positively correlated but with different
variances, or is perfectly negatively correlated, or at least one of the
𝑧𝑗 is constant), then the equilibrium price vector is given by

𝑃 = 𝑔′
(

1
𝜎2𝑠

(

𝟏 𝑚 + 𝜎2𝑠

(

𝐼 1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

𝟏𝑎′
)

𝑠𝑝 −
𝜎2𝑠
𝜏
𝟏𝜅

))

(B.6)

where 𝐵 =
⎛

⎜

⎜

⎝

𝜎2𝜀
𝜏 0

0 𝜎2𝜀
𝜏

⎞

⎟

⎟

⎠

, 𝜎2𝑝 ≡ 1−𝜌2

𝜌2
𝜎2𝜃 , 𝜎

2
𝑠 =

(

1
𝜎2𝜃

+ 1
𝜎2𝜀

+ 1
𝜎2𝑝

)−1
, and

the vector 𝑎 ∈ R2 is defined in the proof.
4. If 𝜌 = 1, and 𝛴𝑧 is singular and not of the form 𝛴𝑧 = 𝟏𝟏′𝜎2𝑧 , then

there exists a fully-revealing equilibrium in which 𝑃𝐷 = min{ , 𝐾}
and 𝑃𝐸 = max{ −𝐾 , 0}.

Proof. Using the expression for trader demand from Lemma 6, the
arket clearing condition yields

∫ 𝑥𝑗𝑑 𝑗 + 𝑧 = 𝟏𝜅

∫ 𝑥𝑗𝑑 𝑗 + 𝑧 − 𝜇𝑧 = 𝟏𝜅 − 𝜇𝑧

𝜏

(

𝟏
∫ 𝜇𝑗𝑑 𝑗
𝜎2𝑠

−
(

𝑔′
)−1 (𝑃 )

)

+ 𝑧 − 𝜇𝑧 = 𝟏𝜅 − 𝜇𝑧

𝑃 = 𝑔′
(

𝟏
∫ 𝜇𝑗𝑑 𝑗
𝜎2𝑠

+ 1
𝜏
(

𝑧 − 𝜇𝑧
)

− 1
𝜏
(

𝟏𝜅 − 𝜇𝑧
)

)

. (B.7)

Because the vector of the liquidity trade 𝑧 enters explicitly multiplied
only by a scalar, we can conclude that in any equilibrium it suffices to
consider only diagonal coefficient matrices 𝐵 with identical elements
on the diagonal. That is, 𝐵 = 𝑏𝐼 for 𝑏 ∈ R still to be determined.
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A closed-form expression for the gradient 𝑔′
( 𝑦1
𝑦2

)

follows from com-
puting the partial derivatives of the function 𝑔 as defined in Lemma 5:

𝜕 𝑔
𝜕 𝑦1

=

⎛

⎜

⎜

⎜

⎜

⎝

𝜎2𝑠 𝑦1 − 𝜎𝑠

𝜙
(

𝐾−𝜎2𝑠 𝑦1
𝜎𝑠

)

𝛷
(

𝐾−𝜎2𝑠 𝑦1
𝜎𝑠

)

⎞

⎟

⎟

⎟

⎟

⎠

×
exp

{ 1
2 𝜎

2
𝑠 𝑦

2
1

}

𝛷

(

𝐾−𝜎2𝑠 𝑦1
𝜎𝑠

)

exp
{ 1
2 𝜎

2
𝑠 𝑦

2
1

}

𝛷

(

𝐾−𝜎2𝑠 𝑦1
𝜎𝑠

)

+exp
{

(𝑦1−𝑦2)𝐾+ 1
2 𝜎

2
𝑠 𝑦

2
2

}

(

1−𝛷

(

𝐾−𝜎2𝑠 𝑦2
𝜎𝑠

)) (B.8)

+𝐾
exp

{

(𝑦1−𝑦2)𝐾+ 1
2 𝜎

2
𝑠 𝑦

2
2

}

(

1−𝛷

(

𝐾−𝜎2𝑠 𝑦2
𝜎𝑠

))

exp
{ 1
2 𝜎

2
𝑠 𝑦

2
1

}

𝛷

(

𝐾−𝜎2𝑠 𝑦1
𝜎𝑠

)

+exp
{

(𝑦1−𝑦2)𝐾+ 1
2 𝜎

2
𝑠 𝑦

2
2

}

(

1−𝛷

(

𝐾−𝜎2𝑠 𝑦2
𝜎𝑠

)) (B.9)

𝜕 𝑔
𝜕 𝑦2

=

⎛

⎜

⎜

⎜

⎜

⎝

𝜎2𝑠 𝑦2 + 𝜎𝑠

𝜙
(

𝐾−𝜎2𝑠 𝑦2
𝜎𝑠

)

1 −𝛷
(

𝐾−𝜎2𝑠 𝑦2
𝜎𝑠

)
−𝐾

⎞

⎟

⎟

⎟

⎟

⎠

×
exp

{

(𝑦1−𝑦2)𝐾+ 1
2 𝜎

2
𝑠 𝑦

2
2

}

(

1−𝛷

(

𝐾−𝜎2𝑠 𝑦2
𝜎𝑠

))

exp
{ 1
2 𝜎

2
𝑠 𝑦

2
1

}

𝛷

(

𝐾−𝜎2𝑠 𝑦1
𝜎𝑠

)

+exp
{

(𝑦1−𝑦2)𝐾+ 1
2 𝜎

2
𝑠 𝑦

2
2

}

(

1−𝛷

(

𝐾−𝜎2𝑠 𝑦2
𝜎𝑠

)) . (B.10)

To complete the proof and derive the explicit expressions in the Propo-
sition, it is convenient to separately consider the cases of positive
definite 𝛴𝑧 and singular 𝛴𝑧.

If 𝛴𝑧 is positive definite, then we can write the conditional moments
explicitly as

𝜇𝑖 = E
[

|𝑠𝑖, 𝑠𝑝
]

= 𝑚 + 𝜎2𝑠

(

𝑠𝑖
𝜎2𝜀

+ 𝟏′𝛴−1
𝑝

1
𝜌
𝑠𝑝

)

, and (B.11)

𝜎2𝑠 = V
(

|𝑠𝑖, 𝑠𝑝
)

=

(

1
𝜎2𝜃

+ 1
𝜎2𝜀

+ 𝟏′𝛴−1
𝑝 𝟏

)−1

(B.12)

where 𝛴𝑝 ≡ 1−𝜌2

𝜌2
𝜎2𝜃𝟏𝟏

′ + 1
𝜌2
𝐵 𝛴𝑧𝐵′. Because 𝛴𝑧 is assumed positive

definite, it follows that 𝐵 𝛴𝑧𝐵′ is positive definite. Furthermore, 𝛴𝑝,
being a sum of a positive definite and positive semidefinite matrix is
itself positive definite and therefore invertible, where it is understood
that we take 𝛴−1

𝑝 = 𝟎 and 𝛴−1
𝑝

1
𝜌 = (𝜌𝛴𝑝)−1 = 𝟎 in the above expressions

when 𝜌→ 0.
Substituting the explicit expression for 𝜇𝑖 in the argument of 𝑔′ in

q. (B.7) and grouping terms yields

𝟏
∫ 𝜇𝑗𝑑 𝑗
𝜎2𝑠

+ 1
𝜏
(

𝑧 − 𝜇𝑧
)

− 1
𝜏
(

𝟏𝜅 − 𝜇𝑧
)

= 𝟏 1
𝜎2𝑠

(

𝑚 + 𝜎2𝑠
1
𝜎2𝜀
𝑠 + 𝜎2𝑠 𝟏

′𝛴−1
𝑝

1
𝜌
𝑠𝑝

)

+ 1
𝜏
(

𝑧 − 𝜇𝑧
)

− 1
𝜏
(

𝟏𝜅 − 𝜇𝑧
)

= 1
𝜎2𝑠

(

𝟏 𝑚 + 𝜎2𝑠

(

𝟏𝟏′𝛴−1
𝑝

1
𝜌
𝑠𝑝 +

1
𝜎2𝜀

(

𝟏𝑠 +
𝜎2𝜀
𝜏
(𝑧 − 𝜇𝑧)

))

−
𝜎2𝑠
𝜏
(𝟏𝜅 − 𝜇𝑧)

)

.

Matching coefficients on the initial conjecture 𝑠𝑝 = 𝟏𝑠 + 𝐵(𝑧 − 𝜇𝑧),
ith 𝐵 = 𝑏𝐼 as derived above, requires 𝑏 = 𝜎2𝜀

𝜏 . The previous expression
now simplifies to
1
𝜎2𝑠

(

𝟏 𝑚 + 𝜎2𝑠

(

𝐼 1
𝜎2𝜀

+ 𝟏𝟏′𝛴−1
𝑝

1
𝜌

)

𝑠𝑝 −
𝜎2𝑠
𝜏
(𝟏𝜅 − 𝜇𝑧)

)

which, upon plugging back into 𝑔′, matches the expression in the
Proposition. Because there is a unique coefficient matrix 𝐵 that satisfies
the initial conjecture, this equilibrium price function is the unique one

ithin the generalized linear class.
If 𝛴𝑧 is singular, then the matrix 𝛴𝑝 that appears above is not

invertible and the above expressions for beliefs do not apply directly.33

33 The cases can be handled in a unified way by re-representing the above
expressions for the conditional moments in forms involving pseudo-inverses of
𝛴𝑝. However, to avoid tedious technical complications, we choose to treat the
case of singular 𝛴 separately.
𝑧

20 
Intuitively, in this case there is only a single shock to liquidity trading
nd so the vector of price-signals 𝑠𝑝 collapse to an informationally-

equivalent one-dimensional signal.
If 𝛴𝑧 is of the form 𝟏𝟏′𝜎2𝑧 (i.e., liquidity trade is perfectly positively

correlated, with identical variance in both markets, as in the baseline
model), then the price statistics themselves are necessarily identical
across both markets (i.e., 𝑠𝑝1 = 𝑠𝑝2). Abusing notation to let 𝑠𝑝 ∈ R
enote this common price statistic and 𝜁 = 𝑧𝐷 − 𝜇𝑧𝐷 = 𝑧𝐸 − 𝜇𝑧𝐸 ∈ R
enote the common liquidity trade shock realization, the expressions
or the conditional moments become

𝜇𝑖 = E
[

|𝑠𝑖, 𝑠𝑝
]

= 𝑚 + 𝜎2𝑠

(

𝑠𝑖
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

𝑠𝑝

)

, and (B.13)

2
𝑠 = V

(

|𝑠𝑖, 𝑠𝑝
)

=

(

1
𝜎2𝜃

+ 1
𝜎2𝜀

+ 1
𝜎2𝑝

)−1

(B.14)

where 𝜎2𝑝 ≡ 1−𝜌2

𝜌2
𝜎2𝜃 +

1
𝜌2
𝑏2𝜎2𝑧 and it is understood that we take 1

𝜎2𝑝
= 0

nd 1
𝜌𝜎2𝑝

= 0 in the above expressions when 𝜌 = 0.
Substituting this explicit expression for 𝜇𝑖 in the argument of 𝑔′ in

Eq. (B.7) (recalling that 𝜁 ∈ R denotes the common liquidity trade
realization in this case) and grouping terms yields

𝟏
∫ 𝜇𝑗𝑑 𝑗
𝜎2𝑠

+ 1
𝜏
𝟏𝜁 − 1

𝜏
(

𝟏𝜅 − 𝜇𝑧
)

= 𝟏 1
𝜎2𝑠

(

𝑚 + 𝜎2𝑠
1
𝜎2𝜀
𝑠 + 𝜎2𝑠

1
𝜌𝜎2𝑝

𝑠𝑝

)

+ 𝟏 1
𝜏
𝜁 − 1

𝜏
(

𝟏𝜅 − 𝜇𝑧
)

= 1
𝜎2𝑠

(

𝟏 𝑚 + 𝟏𝜎2𝑠

(

1
𝜌𝜎2𝑝

𝑠𝑝 +
1
𝜎2𝜀

(

𝑠 +
𝜎2𝜀
𝜏
𝜁

))

−
𝜎2𝑠
𝜏
(𝟏𝜅 − 𝜇𝑧)

)

.

Matching coefficients on the initial conjecture 𝑠𝑝 = 𝑠 + 𝑏(𝑧 − 𝜇𝑧), with
𝐵 = 𝑏𝐼 as derived above, requires 𝑏 = 𝜎2𝜀

𝜏 . The previous expression now
implifies to
1
𝜎2𝑠

(

𝟏 𝑚 + 𝟏𝜎2𝑠

(

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)

𝑠𝑝 −
𝜎2𝑠
𝜏
(𝟏𝜅 − 𝜇𝑧)

)

which, upon plugging back into 𝑔′, matches the expression in the
roposition.

If 𝛴𝑧 is singular but not of the form 𝟏𝟏′𝜎2𝑧 (i.e., the liquidity trade
is perfectly positively correlated but has different variances in the two
markets, or is perfectly negatively correlated, or is constant in at least
one of the markets), then price statistics 𝑠𝑝 = (𝑠𝑝1, 𝑠𝑝2) can be combined
to solve for 𝑠. That is, there exists a vector 𝑎 ∈ R2 such that 𝑠 = 𝑎′𝑠𝑝.34

Hence, the conditional moments for trader 𝑖 are

𝜇𝑖 = E
[

|𝑠𝑖, 𝑠𝑝
]

= 𝑚 + 𝜎2𝑠

(

𝑠𝑖
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

𝑎′𝑠𝑝

)

, and

𝜎2𝑠 = V
(

|𝑠𝑖, 𝑠𝑝
)

=

(

1
𝜎2𝜃

+ 1
𝜎2𝜀

+ 1
𝜎2𝑝

)−1

,

where 𝜎2𝑝 ≡ 1−𝜌2

𝜌2
𝜎2𝜃 is strictly positive since 𝜌 < 1 and it is understood

that we take 1
𝜎2𝑝

= 0 and 1
𝜌𝜎2𝑝

= 0 in the above expressions when 𝜌 = 0.
Substituting this explicit expression for 𝜇𝑖 in the argument of 𝑔′ in

Eq. (B.7) and grouping terms yields

𝟏
∫ 𝜇𝑗𝑑 𝑗
𝜎2𝑠

+ 1
𝜏
(

𝑧 − 𝜇𝑧
)

− 1
𝜏
(

𝟏𝜅 − 𝜇𝑧
)

= 𝟏 1
𝜎2𝑠

(

𝑚 + 𝜎2𝑠

(

𝑠𝑖
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

𝑎′𝑠𝑝

))

+ 1
𝜏
(

𝑧 − 𝜇𝑧
)

− 1
𝜏
(

𝟏𝜅 − 𝜇𝑧
)

34 It can be shown that 𝑎 =
( V(𝑧𝐸 )

V(𝑧𝐸 )−C(𝑧𝐷 ,𝑧𝐸 )
V(𝑧𝐷 )

V(𝑧𝐷 )−C(𝑧𝐷 ,𝑧𝐸 )

)

when the correlation is
±1, which is finite given the form of 𝛴𝑧 under consideration in this case. If
V(𝑧 ) = 0 or V(𝑧 ) = 0, one can take 𝑎 = (1, 0) or 𝑎 = (0, 1), respectively.
𝐷 𝐸
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= 1
𝜎2𝑠

(

𝟏 𝑚 + 𝜎2𝑠

(

𝟏 1
𝜌𝜎2𝑝

𝑎′𝑠𝑝 +
1
𝜎2𝜀

(

𝟏𝑠 +
𝜎2𝜀
𝜏
(𝑧 − 𝜇𝑧)

))

−
𝜎2𝑠
𝜏
(𝟏𝜅 − 𝜇𝑧)

)

.

Matching coefficients on the initial conjecture 𝑠𝑝 = 𝑠 + 𝐵(𝑧 − 𝜇𝑧), with
= 𝑏𝐼 as derived above, requires 𝑏 = 𝜎2𝜀

𝜏 . The previous expression now
implifies to
1
𝜎2𝑠

(

𝟏 𝑚 + 𝜎2𝑠

(

𝐼 1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

𝟏𝑎′
)

𝑠𝑝 −
𝜎2𝑠
𝜏
(𝟏𝜅 − 𝜇𝑧)

)

(B.15)

which, upon plugging back into 𝑔′, matches the expression in the
Proposition. Because there is a unique matrix 𝐵 satisfying the ini-
tial conjecture, we again have that this price is unique within the
generalized linear class.

Finally, if 𝜌 = 1 in the previous case, then in equilibrium traders
can directly infer 𝜃 = 𝑠 = 𝑎′𝑠𝑝 from the vector of asset prices. Because
payoffs are riskless given observation of 𝜃, the equilibrium prices must
hen be 𝑃𝐷 = min{𝑚 + 𝜃 , 𝐾} and 𝑃𝐸 = max{𝑚 + 𝜃 − 𝐾 , 0} to preclude
rbitrage. This set of prices is not of the posited generalized linear form,
ut it is now easily confirmed that such fully-revealing prices constitute
n equilibrium. □

Appendix C. Equilibrium with multiple firms

In this section we characterize the equilibrium in a multi-asset
ersion of the model in which there are 𝑁 firms, each exposed to a
ystematic risk factor, and each with a potentially different amount of
ebt outstanding. Specifically, there are 𝑁 ≥ 1 firms, indexed by 𝑛.
irm 𝑛’s total cash flow per unit/share is

𝑛 = 𝑚𝑛 + 𝜃𝑛 + 𝛽𝑛𝐹

where 𝑚𝑛 and 𝛽𝑛 are constants. The idiosyncratic shocks 𝜃𝑛 ∼ 𝑁
(

0, 𝜎2𝜃
)

are independent across firms, and 𝐹 ∼ 𝑁
(

0, 𝜎2𝐹
)

is a systematic factor.
There is a factor asset with payoff 𝐹 = 𝑚𝐹 + 𝐹 that is directly

tradeable and is in supply 𝜅 ≥ 0. Each firm has both debt and equity
outstanding, all in zero net supply, so that firms are ‘‘small’’ relative
to the overall economy. We allow for arbitrary differences in leverage
across firms, with 𝐾𝑛 denoting the face value of debt for firm 𝑛.
To condense notation, let 𝜓𝑛

(

𝑛
)

= min
{

𝑛, 𝐾𝑛
}

denote the payoff
function for the debt of firm 𝑛. As in the baseline model, we 𝑉𝑛𝐷 =
𝜓𝑛

(

𝑛
)

and 𝑉𝑛𝐸 = 𝑛 − 𝜓𝑛
(

𝑛
)

denote the debt and equity payoffs as
random variables, and for completeness we note that the factor asset
payoff is always simply equal to its underlying cash flow 𝑉𝐹 = 𝐹 . We
let 𝑃𝑛𝐷 and 𝑃𝑛𝐸 denote the endogenous prices of each firm 𝑛’s debt and
equity and let 𝑃𝐹 denote the endogenous price of the factor asset.

Investors receive private signals about each firm’s cash flow

𝑠𝑖𝑛 = 𝜃𝑛 + 𝜀𝑖𝑛

where 𝜀𝑖𝑛 ∼ 𝑁
(

0, 𝜎2𝜀
)

are mutually independent. As in the main
model, we continue to allow investors to agree to disagree about the
information content of one another’s signals. Specifically, each investor
𝑖 believes that other investors’ signals are of the form

𝑠𝑗 𝑛 = 𝜌𝜃𝑛 +
√

1 − 𝜌2𝜉𝑖𝑛 + 𝜀𝑗 𝑛
where 𝜉𝑖𝑛 ∼ 𝑁

(

0, 𝜎2𝜃
)

are mutually independent.
Finally, we assume that there are exogenous liquidity traders who

rade to gain exposures to the idiosyncratic portion of each firm’s
ash flow 𝜃𝑛. In particular, for a given firm 𝑛, liquidity traders submit
emands 𝑧𝑛 ∼ 𝑁

(

0, 𝜎2𝑧
)

in the debt and equity of firm 𝑛 and simultane-
usly submit demand −𝛽𝑛𝑧𝑛 in the factor asset. To ensure that liquidity
emand is truly idiosyncratic, we continue to assume that the 𝑧𝑛 are
ndependent across firms 𝑛. We let 𝑧𝐹 = −∑𝑁

𝑛=1 𝛽𝑛𝑧𝑛 concisely denote
he total liquidity demand in the factor asset.

In the derivation, it will be convenient to use vector/matrix no-
ation. We let objects without subscripts denote vectors of firm-level
bjects (i.e., vectors of all firms/assets excluding the factor asset).
or instance,  =

(

 ,… ,
)

is the vector of firm cash flows,
1 𝑁

21 
with 𝑚 =
(

𝑚1,… , 𝑚𝑁
)′ the vector of expected cash flows, 𝛽 =

(

𝛽1,… , 𝛽𝑁
)′ the vector of cash-flow betas, etc. We let objects with ⋅⃗

denote vectors augmented with the factor asset in the last slot. For
instance, ⃗ =

(

1,… ,𝑁 ,𝐹
)

is the overall vector of cash flows,
with 𝑚⃗ =

(

𝑚1,… , 𝑚𝑁 , 𝑚𝐹
)′ the vector of expected cash flows, and

𝛽 =
(

𝛽1,… , 𝛽𝑁 , 1
)′ the vector of cash flow betas. In the expressions

below, we let 𝐼𝑘 denote a 𝑘 × 𝑘 identity matrix, 𝟏𝑘 a 𝑘-vector of ones,
𝟎𝑘 a 𝑘-vector of zeros, and 𝟎𝑗×𝑘 a 𝑗 × 𝑘 matrix of zeros. To eliminate
notational clutter we will sometimes drop the subscripts that explicitly
label the dimensions of these objects — it should be understood that
they are conformable with the expressions in which they appear (e.g., it
will be clear from the context what is the appropriate dimension of a
given identity matrix 𝐼 , whether 𝟎 represents a vector or a matrix, etc.).

C.1. Beliefs

As in the main model in the text, we consider equilibria of the
generalized linear form, in which there is an 𝑁-dimensional vector of
price statistics that can be represented in form

𝑠𝑝 = 𝑠 + 𝐵 𝑧
where 𝑠 ≡

(

𝑠1,… , 𝑠𝑁
)

≡
(

∫ 𝑠𝑗1𝑑 𝑗 ,… , ∫ 𝑠𝑗 𝑁𝑑 𝑗
)

is the vector of ag-
regate signals, and where 𝐵 is a nonsingular 𝑁 × 𝑁 matrix to be
etermined, with generic entry 𝑏𝑚𝑛 in row 𝑚 and column 𝑛.

We begin by characterizing trader beliefs in an arbitrary gener-
alized linear equilibrium of the posited form. Under this conjecture,
the beliefs in both levered and unlevered versions of the economy
remain conditionally normal though, in principle, they may be asso-
ciated with different conditional moments since the matrix 𝐵 could
differ across these economies. Using standard updating formulas, the
conditional distribution of ⃗ for any trader 𝑖 is conditionally normal
with conditional mean vector and variance matrix given by

𝜇𝑖 ≡ E𝑖
[

⃗
]

=
( 𝜇𝑖
𝑚𝑓

)

𝜇𝑖 ≡ E𝑖 [] = 𝑚 + V𝑖 (𝜃)

(

1
𝜎2𝜀
𝑠𝑖 + 𝛴−1

𝑝
1
𝜌
𝑠𝑝

)

𝛤 ≡ V𝑖
(

⃗
|

|

|

|

𝑠𝑖, 𝑠𝑝
)

=
(

V𝑖(𝜃)+𝜎2𝐹 𝛽 𝛽′ 𝜎2𝐹 𝛽
𝜎2𝐹 𝛽

′ 𝜎2𝐹

)

V𝑖 (𝜃) =

((

1
𝜎2𝜃

+ 1
𝜎2𝜀

)

𝐼𝑁 + 𝛴−1
𝑝

)−1

where 𝛴𝑝 ≡
1−𝜌2

𝜌2
𝜎2𝜃𝐼 +

1
𝜌2
𝜎2𝑧𝐵 𝐵′. To condense notation, it is understood

that we set 𝛴−1
𝑝 and 𝛴−1

𝑝
1
𝜌 to 𝟎 in the above expressions when 𝜌 = 0,

since traders optimally place zero weight on prices when updating in
this case. Note further that for 0 < 𝜌 ≤ 1, the inverse 𝛴−1

𝑝 is always
ell-defined. Because 1−𝜌2

𝜌2
𝜎2𝜃𝐼 is positive semidefinite (positive definite

if 𝜌 < 1) and because 𝐵 is conjectured to be nonsingular and therefore
𝐵 𝐵′ is positive definite, it follows that 𝛴𝑝 is the sum of a positive semi-
definite and positive definite matrix. Hence, 𝛴𝑝 is itself positive definite
and therefore invertible.

C.2. Unlevered economy

We begin by characterizing the equilibrium in the case that all firms
are unlevered. As in the baseline model, the equilibrium price vector
in the unlevered economy plays a key role in the representation of the
equilibrium prices in the levered case. Let 𝑃𝑛𝑈 denote the unlevered
equity price for firm 𝑛, with 𝑃𝑈 =

(

𝑃1𝑈 ,… , 𝑃𝑁 𝑈
)

the vector of such
prices, and 𝑃𝑈 =

(

𝑃1𝑈 ,… , 𝑃𝑁 𝑈 , 𝑃𝐹
)

this vector augmented with the
factor asset price.

Lemma 7. Suppose that under each investor’s information set, ⃗ is
conditionally normally distributed with mean 𝜇𝑖 and variance matrix 𝛤 .
Then, there is a linear equilibrium in which the vector of equilibrium prices
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has the representation

𝑃𝑈 = ∫ 𝜇𝑖𝑑 𝑖 − 1
𝜏
𝛤
((

𝟎
𝜅

)

− 𝑧
)

.

This equilibrium price vector can be written in terms of the underlying
random variables and parameters as

𝑃𝑈 =
⎛

⎜

⎜

⎝

𝑚+V𝑖(𝜃)

(

1
𝜎2𝜀

+ 1
𝜎2𝑝

1
𝜌

)

𝑠𝑝−𝛽
1
𝜏 𝜎

2
𝐹 𝜅

𝑚𝐹−
1
𝜏 𝜎

2
𝐹 𝜅

⎞

⎟

⎟

⎠

where the equilibrium price signal coefficient matrix is diagonal, 𝐵 = 𝜎2𝜀
𝜏 𝐼 ,

and 𝜎2𝑝 =

(

1−𝜌2

𝜌2
𝜎2𝜃 +

1
𝜌2
𝜎2𝑧

(

𝜎2𝜀
𝜏

)2
)

. Consequently, (i) the conditional

ariance matrix of idiosyncratic cash flow shocks is diagonal:
V𝑖 (𝜃) = 𝜎2𝑠 𝐼 (C.1)

with 𝜎2𝑠 ≡
(

1
𝜎2𝜃

+ 1
𝜎2𝜀

+ 1
𝜎2𝑝

)−1
, and (ii) the overall conditional variance

atrix of cash flows is

𝛤 =
(

𝜎2𝑠 𝐼+𝜎
2
𝐹 𝛽 𝛽′ 𝜎2𝐹 𝛽

𝜎2𝐹 𝛽
′ 𝜎2𝐹

)

. (C.2)

Proof. We begin by solving the partial equilibrium demand prob-
lem for an arbitrary trader. Let 𝑥𝑖𝑛 denote investor 𝑖’s demand for
he unlevered equity of firm 𝑛, with 𝑥𝑖 =

(

𝑥𝑖1,… , 𝑥𝑖𝑁
)′ and 𝑥⃗𝑖 =

𝑥𝑖1,… , 𝑥𝑖𝑁 , 𝑥𝑖𝐹
)′. Given the conditional normality of ⃗ , investor 𝑖’s

xpected utility at the trading stage is

E𝑖
[

− exp
{

−1
𝜏

(

𝑥⃗′𝑖
(

⃗ − 𝑃𝑈
)

+ 𝜅 𝑃𝐹
)}

|

|

|

|

𝑠𝑖, 𝑠𝑝
]

= − exp
{

−1
𝜏

(

𝑥⃗′𝑖
(

𝜇𝑖 − 𝑃𝑈
)

+ 𝜅 𝑃𝐹
)

+ 1
2

1
𝜏2
𝑥⃗′𝑖𝛤 ⃗𝑥𝑖

}

.

Maximizing over 𝑥⃗𝑖 yields demand function
𝑥⃗𝑖 = 𝜏 𝛤−1

(

𝜇𝑖 − 𝑃𝑈
)

.

Aggregating across traders and enforcing the market-clearing condition
ields
(

𝟎
𝜅

)

= ∫ 𝜏 𝛤−1
(

𝜇𝑖 − 𝑃𝑈
)

𝑑 𝑖 + 𝑧

⇒ 𝑃𝑈 = ∫ 𝜇𝑖𝑑 𝑖 − 1
𝜏
𝛤
((

𝟎
𝜅

)

− 𝑧
)

, (C.3)

which matches the first representation in the Lemma.
To further characterize the equilibrium 𝐵 and write the prices in

the second form in the lemma, note that, using the belief expressions
from Appendix C.1, we have

∫ 𝜇𝑖𝑑 𝑖 =
(

𝑚+V𝑖(𝜃)
(

1
𝜎2𝜀
𝑠̄+𝛴−1

𝑝
1
𝜌 𝑠𝑝

)

𝑚𝐹

)

and
𝛤
((

𝟎
𝜅

)

− 𝑧
)

=
(

V𝑖(𝜃)+𝜎2𝐹 𝛽 𝛽′ 𝜎2𝐹 𝛽
𝜎2𝐹 𝛽

′ 𝜎2𝐹

)

((

𝟎
𝜅

)

−
( 𝑧

−𝛽′𝑧

))

=
(

𝛽 𝜎2𝐹 𝜅
𝜎2𝐹 𝜅

)

−
( V𝑖(𝜃)𝑧

0

)

.

Substituting back in to Eq. (C.3) and collecting terms yields
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⇒ 𝑃𝑈 =

(

𝑚+V𝑖(𝜃)
(

1
𝜎2𝜀
𝑠̄+𝛴−1

𝑝
1
𝜌 𝑠𝑝

)

𝑚𝐹

)

−

(

1
𝜏 𝛽 𝜎2𝐹 𝜅
1
𝜏 𝜎

2
𝐹 𝜅

)

+
(

1
𝜏 V𝑖(𝜃)𝑧

0

)

=
⎛

⎜

⎜

⎝

𝑚+V𝑖(𝜃)
(

1
𝜎2𝜀
𝑠̄+𝛴−1

𝑝
1
𝜌 𝑠𝑝+

1
𝜏 𝑧

)

−𝛽 1
𝜏 𝜎

2
𝐹 𝜅

𝑚𝐹−
1
𝜏 𝜎

2
𝐹 𝜅

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝑚+V𝑖(𝜃)
(

1
𝜎2𝜀

(

𝑠̄+ 𝜎2𝜀
𝜏 𝑧

)

+𝛴−1
𝑝

1
𝜌 𝑠𝑝

)

−𝛽 1
𝜏 𝜎

2
𝐹 𝜅

𝑚𝐹−
1
𝜏 𝜎

2
𝐹 𝜅

⎞

⎟

⎟

⎠

.

Grouping terms, to satisfy the initial conjecture about 𝑠𝑝, we must have
hat the equilibrium coefficient matrix 𝐵 satisfies

𝐵 =
𝜎2𝜀
𝜏
𝐼 ,

which is diagonal. Hence,

𝑃𝑈 =
⎛

⎜

⎜

⎝

𝑚+V𝑖(𝜃)
(

1
𝜎2𝜀

+𝛴−1
𝑝

1
𝜌

)

𝑠𝑝−𝛽
1
𝜏 𝜎

2
𝐹 𝜅

𝑚𝐹−
1
𝜏 𝜎

2
𝐹 𝜅

⎞

⎟

⎟

⎠

with V𝑖 (𝜃) =
((

1
𝜎2𝜃

+ 1
𝜎2𝜀

)

𝐼 + 𝛴−1
𝑝

)−1
, and 𝛴𝑝 = 𝜎2𝑝𝐼 where 𝜎2𝑝 =

1−𝜌2

𝜌2
𝜎2𝜃 + 1

𝜌2
𝜎2𝑧

(

𝜎2𝜀
𝜏

)2
. Plugging the expression for 𝛴𝑝 back into the

xpression for 𝑃𝑈 , plugging the expression for V𝑖(𝜃) back into the
xpression for 𝛤 , and collecting terms yields the expressions in the

Proposition. □

C.3. Levered economy

Now, consider the setting in which firms have leverage. Our goal in
his section is to establish the following result.

Proposition 7. There exists an equilibrium in the financial market. The
vector of equilibrium asset prices has the representation

𝑃 = 𝑔′
⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

𝟏2𝑒′1
⋮

𝟏2𝑒′𝑁
𝑒′𝐹

⎞

⎟

⎟

⎟

⎠

𝛤−1
(

∫ 𝜇𝑖𝑑 𝑖 + 1
𝜏
𝛤 ⃗𝑧 − 1

𝜏
𝛤
(

𝟎𝑁
𝜅

)

)

⎞

⎟

⎟

⎟

⎠

(C.4)

where 𝑒𝑛 ∈ R𝑁+1 and 𝑒𝐹 ∈ R𝑁+1 are vectors with ones in the 𝑛th and
𝑁 + 1)st elements, respectively, and zeros in all other elements, and the
unction 𝑔′ ∶ R2𝑁+1 → R2𝑁+1 is the gradient of a function given in

closed-form in Eq. (C.10) in the proof.
The equilibrium price vector can be written in terms of the underlying

random variables and parameters as

𝑃 = 𝑔′
⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

𝟏2𝑒′1
⋮

𝟏2𝑒′𝑁
𝑒′𝐹

⎞

⎟

⎟

⎟

⎠

𝛤−1𝑃𝑈

⎞

⎟

⎟

⎟

⎠

(C.5)

where 𝑃𝑈 is the vector of unlevered prices from Lemma 7 in which the
quilibrium price signal coefficient matrix is diagonal 𝐵 = 𝜎2𝜀

𝜏 𝐼 .
Furthermore, this vector of prices can be understood as a vector of

isk-neutral expected payoffs under the joint cash flow distribution

⃗ ∼Q 𝑁
(

𝑃𝑈 , 𝛤
)

(C.6)

Under the generalized linear equilibrium conjecture, the 𝑁 + 1
dimensional vector of cash flows ⃗ is jointly normally distributed with
mean vector 𝜇𝑖 and variance matrix 𝛤 characterized in Appendix C.1
above. We can use this fact to derive the conditional distribution
of the overall 2𝑁 + 1 dimensional vector of security payoffs 𝑉 =
((

𝑉1𝐷, 𝑉1𝐸
)

,…
(

𝑉𝑁 𝐷, 𝑉𝑁 𝐸
)

, 𝑉𝐹
)

, which is the key step in the equilib-
rium derivation.

Let 𝑢 =
((

𝑢1𝐷, 𝑢1𝐸
)

,… ,
(

𝑢𝑁 𝐷, 𝑢𝑁 𝐸
)

, 𝑢𝐹
)′ ∈ R2𝑁+1 be an arbitrary

vector and let 𝑢𝐸 ,𝐹 =
(

𝑢1𝐸 ,… , 𝑢𝑁 𝐸 , 𝑢𝐹
)′ ∈ R𝑁+1 be the subvector of

elements associated with the equity security ‘‘slots’’ in 𝑢, including the
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factor security. Explicitly integrating against the joint density of the
cash flows ⃗ ∈ R𝑁+1, the conditional MGF of 𝑉 ∈ R2𝑁+1 can be written

E𝑖
[

exp
{

𝑢′𝑉
}]

= ∫ exp

{ 𝑁
∑

𝑛=1
𝑢𝑛𝐷𝜓𝑛

(

𝑣𝑛
)

+
𝑁
∑

𝑛=1
𝑢𝑛𝐸

(

𝑣𝑛 − 𝜓𝑛
(

𝑣𝑛
))

+ 𝑢𝐹 𝑣𝐹

}

× 1
(2𝜋)−(𝑁+1)∕2

|𝛤 |1∕2
exp

{

−1
2
(

𝑣 − 𝜇𝑖
)′ 𝛤−1 (𝑣 − 𝜇𝑖

)

}

𝑑 ⃗𝑣 (C.7)

= ∫ exp

{( 𝑁
∑

𝑛=1

(

𝑢𝑛𝐷 − 𝑢𝑛𝐸
)

𝜓𝑛
(

𝑣𝑛
)

)

+ 𝑢′𝐸 ,𝐹 𝑣
}

× 1
(2𝜋)−(𝑁+1)∕2

|𝛤 |1∕2
exp

{

−1
2
(

𝑣 − 𝜇𝑖
)′ 𝛤−1 (𝑣 − 𝜇𝑖

)

}

𝑑 ⃗𝑣 (C.8)

= exp
{ 1
2
(

𝛤−1𝜇𝑖 + 𝑢𝐸 ,𝐹
)′ 𝛤

(

𝛤−1𝜇𝑖 + 𝑢𝐸 ,𝐹
)

− 1
2
(

𝛤−1𝜇𝑖
)′ 𝛤

(

𝛤−1𝜇𝑖
)

}

× ∫
1

(2𝜋)−(𝑁+1)∕2
|𝛤 |1∕2

exp
{

(

∑𝑁
𝑛=1(𝑢𝑛𝐷−𝑢𝑛𝐸 )𝜓𝑛(𝑣𝑛)

)

− 1
2
(

𝑣−𝛤
(

𝛤−1𝜇𝑖+𝑢𝐸 ,𝐹 ))′𝛤−1(𝑣−𝛤
(

𝛤−1𝜇𝑖+𝑢𝐸 ,𝐹 ))
}

𝑑 ⃗𝑣 (C.9)

where the first equality writes the expectation explicitly as an integral
and writes the debt and equity payoffs as functions of the underlying
cash flows, the second equality groups terms in the exponential, and
he final equality completes the square in the exponential.

Let 𝑦 =
((

𝑦1𝐷, 𝑦1𝐸
)

,… ,
(

𝑦𝑁 𝐷, 𝑦𝑁 𝐸
)

, 𝑦𝐹
)′ ∈ R2𝑁+1 be an arbitrary

vector and let 𝑦𝐸 ,𝐹 =
(

𝑦1𝐸 ,… , 𝑦𝑁 𝐸 , 𝑦𝐹
)

∈ R𝑁+1 denote the subvector
associated with the equity security ‘‘slots’’. Define the function 𝑔 ∶
R2𝑁+1 → R by

𝑔
(

𝑦
)

= log
(

exp
{1
2
𝑦′𝐸 ,𝐹𝛤 𝑦𝐸 ,𝐹

}

× ∫
1

(2𝜋)−(𝑁+1)∕2
|𝛤 |1∕2

exp
{

∑𝑁
𝑛=1(𝑦𝑛𝐷−𝑦𝑛𝐸 )𝜓𝑛(𝑣𝑛)

− 1
2 (𝑣−𝛤 𝑦𝐸 ,𝐹 )′𝛤−1(𝑣−𝛤 𝑦𝐸 ,𝐹 )

}

𝑑 ⃗𝑣) (C.10)

and note that when 𝑦 =
((

𝑦1, 𝑦1
)

,… ,
(

𝑦𝑁 , 𝑦𝑁
)

, 𝑦𝐹
)′ has the same

argument within each pair of firm-level slots, we have

𝑔
((

𝑦1, 𝑦1
)

,… ,
(

𝑦𝑁 , 𝑦𝑁
)

, 𝑦𝐹
)

= log
(

exp
{1
2
𝑦′𝐸 ,𝐹𝛤 𝑦𝐸 ,𝐹

}

∫
1

(2𝜋)−(𝑁+1)∕2
|𝛤 |1∕2

exp
{

− 1
2 (𝑣−𝛤 𝑦𝐸 ,𝐹 )′𝛤−1(𝑣−𝛤 𝑦𝐸 ,𝐹 )

}

𝑑 ⃗𝑣
)

= 1
2
𝑦′𝐸 ,𝐹𝛤 𝑦𝐸 ,𝐹

where the second equality uses the fact that the integral in the first
quality is simply the integral of an 𝑁 + 1 dimensional normal density
ith mean vector 𝛤 𝑦𝐸 ,𝐹 and variance matrix 𝛤 over all of R𝑁+1 and
ence has a value of one.

Let 𝑒𝑛 ∈ R𝑁+1 and 𝑒𝐹 ∈ R𝑁+1 be the vectors with ones in the 𝑛th and
𝑁 + 1)st elements, respectively, and zeros in all other elements. With
he above definition of 𝑔, we can therefore write the MGF in Eq. (C.9)
s

E𝑖
[

exp
{

𝑢′𝑉
}]

= exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑔

⎛

⎜

⎜

⎜

⎜

⎜

⎝

( 𝑢1𝐷
𝑢1𝐸

)

+𝟏2𝑒′1𝛤
−1𝜇𝑖

⋮
( 𝑢𝑁 𝐷
𝑢𝑁 𝐸

)

+𝟏2𝑒′𝑁𝛤
−1𝜇𝑖

𝑢𝐹+𝑒′𝐹 𝛤
−1𝜇𝑖

⎞

⎟

⎟

⎟

⎟

⎟

⎠

− 𝑔

⎛

⎜

⎜

⎜

⎜

⎝

𝟏2𝑒′1𝛤
−1𝜇𝑖

⋮

𝟏2𝑒′𝑁𝛤
−1𝜇𝑖

𝑒′𝐹 𝛤
−1𝜇𝑖

⎞

⎟

⎟

⎟

⎟

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

We record for completeness that, under this representation, 𝑔 is pre-
cisely the cumulant generating function (CGF) of 𝑉 .

Now, using this expression for the conditional MGF, we can write
the problem for an arbitrary investor 𝑖 as

maxE𝑖
[

− exp
{

−1 (

𝑥⃗′𝑖
(

𝑉 − 𝑃
)

+ 𝜅 𝑃𝐹
)}]
𝑥⃗𝑖 𝜏

23 
= max
𝑥⃗𝑖

− exp

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑔

⎛

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎝

𝟏2𝑒′1𝛤
−1𝜇𝑖

⋮

𝟏2𝑒′𝑁𝛤
−1𝜇𝑖

𝑒′𝐹 𝛤
−1𝜇𝑖

⎞

⎟

⎟

⎟

⎟

⎠

− 1
𝜏
𝑥⃗𝑖

⎞

⎟

⎟

⎟

⎟

⎠

− 𝑔

⎛

⎜

⎜

⎜

⎜

⎝

𝟏2𝑒′1𝛤
−1𝜇𝑖

⋮

𝟏2𝑒′𝑁𝛤
−1𝜇𝑖

𝑒′𝐹 𝛤
−1𝜇𝑖

⎞

⎟

⎟

⎟

⎟

⎠

+ 1
𝜏
𝑥⃗′𝑖𝑃 − 1

𝜏
𝜅 𝑃𝐹

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

Given that the CGF 𝑔(⋅) is strictly convex, twice continuously differ-
ntiable, and finite on all of R2𝑁+1, this objective function is twice

continuously differentiable, strictly concave, and defined on all of
R2𝑁+1. Hence the first-order condition is necessary and sufficient for
an optimum, and the optimum is unique whenever a solution to the
FOC exists. Rearranging the FOC yields the optimal demand

𝑥⃗𝑖 = 𝜏

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

𝟏𝑒′1𝛤
−1𝜇𝑖
⋮

𝟏𝑒′𝑁𝛤
−1𝜇𝑖

𝑒′𝐹 𝛤
−1𝜇𝑖

⎞

⎟

⎟

⎟

⎠

−
(

𝑔′
)−1

(

𝑃
)

⎞

⎟

⎟

⎟

⎠

where we have used the fact that 𝑔 is strictly convex to conclude that
the gradient 𝑔′ is injective and therefore invertible on its range.

We claim that the range of 𝑔′ is the set of no-arbitrage prices. Let

𝑆 =
{(

𝑣1𝐷, 𝑣1𝐸 ,… , 𝑣𝑁 𝐷, 𝑣𝑁 𝐸 , 𝑣𝐹
)

∈ R2𝑁+1 ∶
(

𝑣𝑛𝐷 < 𝐾𝑛, 𝑣𝑛𝐸 = 0) or
(

𝑣𝑛𝐷 = 𝐾𝑛, 𝑣𝑛𝐸 > 0
)

∀𝑛

𝑣𝐹 ∈ R

}

denote the support of the overall payoff vector 𝑉 . As in the baseline
setting, the range of 𝑔′ is the closed convex hull of 𝑆. This again follows
rom results about exponential family distributions in Barndorff-Nielsen

(2014). Because the function 𝑔 is defined on all of R2𝑁+1 and fur-
hermore because this set is open, the exponential family described
y 𝑔 is ‘‘regular’’. Hence, it follows from Theorem 8.2 in Barndorff-
ielsen (2014) that the exponential family is ‘‘steep’’ and therefore

rom Theorem 9.2 in Barndorff-Nielsen (2014) that the gradient 𝑔′ maps
2𝑁+1 onto the interior of the closed convex hull of 𝑆, int conv(𝑆). This

set coincides with the set of candidate prices in which each firm’s debt
price is strictly less than its face value 𝐾𝑛, each firm’s equity price is
trictly greater than zero, and the price of the factor asset can take any
alue, which is precisely the set of prices that do not admit arbitrage.

We can now enforce the market clearing condition, where we use
he fact that liquidity trade is identical within each firm’s securities,
(

𝑧𝑛𝐷, 𝑧𝑛𝐸
)′ = 𝟏2𝑒′𝑛𝑧:

⎛

⎜

⎜

⎝

𝟎2
⋮

𝟎2
𝜅

⎞

⎟

⎟

⎠

= ∫ 𝑥⃗𝑖𝑑 𝑖 +
⎛

⎜

⎜

⎜

⎝

𝟏2𝑒′1𝑧

⋮

𝟏2𝑒′1𝑧

𝑒′𝐹 𝑧

⎞

⎟

⎟

⎟

⎠

⇒ 𝑃 = 𝑔′

⎛

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎝

𝟏2𝑒′1𝛤
−1 ∫ 𝜇𝑖𝑑 𝑖
⋮

𝟏2𝑒′𝑁𝛤
−1 ∫ 𝜇𝑖𝑑 𝑖

𝑒′𝐹 𝛤
−1 ∫ 𝜇𝑖𝑑 𝑖

⎞

⎟

⎟

⎟

⎟

⎠

− 1
𝜏

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝟎2
⋮

𝟎2
𝜅

⎞

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎝

𝟏2𝑒′1
⋮

𝟏2𝑒′𝑁
𝑒′𝐹

⎞

⎟

⎟

⎟

⎠

𝑧

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

(C.11)

Because
⎛

⎜

⎜

⎝

𝟎2
⋮

𝟎2
𝜅

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝟏2𝑒′1

(

𝟎𝑁
𝜅

)

⋮

𝟏2𝑒′𝑁

(

𝟎𝑁
𝜅

)

𝑒′𝐹

(

𝟎𝑁
𝜅

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝟏2𝑒′1
⋮

𝟏2𝑒′𝑁
𝑒′𝐹

⎞

⎟

⎟

⎟

⎠

(

𝟎𝑁
𝜅

)

we can further write the

argument of 𝑔′ above as
⎛

⎜

⎜

⎜

⎜

⎝

𝟏2𝑒′1𝛤
−1 ∫ 𝜇𝑖𝑑 𝑖
⋮

𝟏2𝑒′𝑁𝛤
−1 ∫ 𝜇𝑖𝑑 𝑖

𝑒′𝐹 𝛤
−1 ∫ 𝜇𝑖𝑑 𝑖

⎞

⎟

⎟

⎟

⎟

⎠

− 1
𝜏

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝟎2
⋮

𝟎2
𝜅

⎞

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎝

𝟏2𝑒′1
⋮

𝟏2𝑒′𝑁
𝑒′𝐹

⎞

⎟

⎟

⎟

⎠

𝑧

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

𝟏2𝑒′1
⋮

𝟏2𝑒′𝑁

⎞

⎟

⎟

⎟

(

𝛤−1
∫ 𝜇𝑖𝑑 𝑖 + 1

𝜏
𝑧 − 1

𝜏

(

𝟎𝑁
𝜅

)

)

⎝ 𝑒′𝐹 ⎠
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=

⎛

⎜

⎜

⎜

⎝

𝟏2𝑒′1
⋮

𝟏2𝑒′𝑁
𝑒′𝐹

⎞

⎟

⎟

⎟

⎠

𝛤−1
(

∫ 𝜇𝑖𝑑 𝑖 + 1
𝜏
𝛤 ⃗𝑧 − 1

𝜏
𝛤
(

𝟎𝑁
𝜅

)

)

.

As in the unlevered case, we obtain that the equilibrium price signal
oefficient matrix is 𝐵 = 𝜎2𝜀

𝜏 𝐼 by plugging in for 𝜇𝑖 from the expression
n Appendix C.1 above, grouping terms, and enforcing the initial linear

conjecture on 𝑠𝑝.
With this value of 𝐵 pinned down, we recognize that ∫ 𝜇𝑖𝑑 𝑖+ 1

𝜏 𝛤 ⃗𝑧−
1
𝜏 𝛤

( 𝟎𝑁
𝜅
)

is precisely the vector of prices from the unlevered economy,
𝑈⃗ . Therefore, the equilibrium price vector in Eq. (C.11) can be written

𝑃 = 𝑔′
⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

𝟏2𝑒′1
⋮

𝟏2𝑒′𝑁
𝑒′𝐹

⎞

⎟

⎟

⎟

⎠

𝛤−1𝑃𝑈

⎞

⎟

⎟

⎟

⎠

.

Differentiating the expression for 𝑔(⋅) defined above yields, upon in-
spection, that this expression is equivalent to representing each secu-
rity’s price as the expectation of the security’s payoff under a risk-
eutral joint distribution for cash flows given by ⃗ ∼Q 𝑁

(

𝑃𝑈 , 𝛤
)

.

Appendix D. Limited liability

Our baseline model can capture the limited liability feature of
levered equity (when 𝐾 ≥ 0). However, it does not capture the limited
liability feature of debt: debt payoffs in the model are unbounded
below. Furthermore, in the case that the firm is unlevered, equity
payoffs are unbounded below. In this section, we alter our baseline
model by specifying that firm cash flows follow a distribution that is
bounded below by zero. This ensures that the payoffs on all securities
satisfy limited liability.

In particular, suppose that the firm’s cash flows  follow a trun-
ated 𝑁(𝑚, 𝜎2𝜃 ) distribution, truncated below at zero. The unconditional
ensity of  is

𝑓 (𝑣) =
𝟏{𝑣≥0}

1
√

2𝜋 𝜎2𝜃
exp

{

− 1
2
(𝑣−𝑚)2

𝜎2𝜃

}

1 −𝛷
(

−𝑚
𝜎𝜃

) . (D.1)

We continue to assume that the firm has both debt and equity out-
standing. In order to keep the equilibrium non-trivial, we assume that
the face value of debt satisfies 𝐾 > 0.

We continue to assume that investors observe private signals of the
form

𝑠𝑖 = ( − 𝑚) + 𝜀𝑖

where 𝜀 ∼ 𝑁(0, 𝜎2𝜀 ) and perceive others signal as

𝑠𝑗 = 𝜌 ( − 𝑚) +
√

1 − 𝜌2𝜉𝑖 + 𝜀𝑗 (D.2)

where 𝜉𝑖 ∼ 𝑁(0, 𝜎2𝜉 ) is independent of all other random variables.
As in the baseline model, we also continue to assume that liquidity
traders submit identical demands 𝑧 ∼ 𝑁(0, 𝜎2𝑧 ) in both the debt and
quity of the firm. Finally, we also consider to search for equilibria
n the generalized linear class, in which security prices depend on the
nderlying random variable through a linear statistic

𝑠𝑝 = 𝑠 + 𝑏𝑧 (D.3)

with 𝑏 an endogenous constant to be determined.
The next proposition characterizes the equilibrium.

Proposition 8. Suppose that the firm cash flow  is unconditionally
istributed as a truncated normal, truncated below by zero, with parameters
and 𝜎2𝜃 . Then there exists a generalized linear equilibrium, unique within

his class. In this equilibrium:

1. Each investor’s conditional distribution of firm cash flow  is trun-
cated normal with parameters 𝜇 and 𝜎2 that are identical to those
𝑖 𝑠 o

24 
in the baseline model.
2. The equilibrium prices of debt and equity can be represented as the

securities’ expected payoffs under a risk-neutral cash flow distribu-
tion. The risk-neutral cash flow distribution is truncated normal with
parameters 𝑃𝑈 and 𝜎2𝑠 that are identical to those in the baseline
model.35

Proof. The proof takes a similar form to the derivation in the baseline
odel, and so we omit some of the algebraic details to focus on the key
ifferences.

Under the generalized linear conjecture, Bayes’ rule implies that the
onditional density for an arbitrary investor 𝑖 satisfies
𝑓|𝑠𝑖 ,𝑠𝑝

(

𝑣|𝑠𝑖, 𝑠𝑝
)

∝ 𝑓 (𝑣) 𝑓𝑠𝑖 ,𝑠𝑝 |
(

𝑠𝑖, 𝑠𝑝|𝑣
)

∝ 𝟏{𝑣≥0} exp
{

−1
2
(𝑣 − 𝑚)2

𝜎2𝜃

}

exp

⎧

⎪

⎨

⎪

⎩

−1
2

(

𝑠𝑖 − (𝑣 − 𝑚)
)2

𝜎2𝜀
− 1

2

(

𝑠𝑝
𝜌
− (𝑣 − 𝑚)

)2

𝜎2𝑝

⎫

⎪

⎬

⎪

⎭

∝ 𝟏{𝑣≥0} exp
⎧

⎪

⎨

⎪

⎩

−1
2

(

1
𝜎2𝜃

+ 1
𝜎2𝜀

+ 1
𝜎2𝑝

)

𝑣2 +
⎛

⎜

⎜

⎝

𝑚
𝜎2𝜃

+
𝑚 + 𝑠𝑖
𝜎2𝜀

+
𝑚 + 𝑠𝑝

𝜌

𝜎2𝑝

⎞

⎟

⎟

⎠

𝑣

⎫

⎪

⎬

⎪

⎭

∝ 𝟏{𝑣≥0} exp
{

−1
2

(

𝑣 − 𝜇𝑖
)2

𝜎2𝑠

}

where 𝜎2𝑝 = 1−𝜌2

𝜌2
𝜎2𝜉 +

1
𝜌2
𝜎2𝑧𝑏

2 and where

𝜇𝑖 = 𝑚 + 𝜎2𝑠

(

1
𝜎2𝜀
𝑠𝑖 +

1
𝜎2𝑝

1
𝜌
𝑠𝑝

)

(D.4)

𝜎2𝑠 =

(

1
𝜎2𝜃

+ 1
𝜎2𝜀

+ 1
𝜎2𝑝

)−1

. (D.5)

Hence, the conditional cash flow distribution remains truncated normal
but with parameters 𝜇𝑖 and 𝜎2𝑠 in place of 𝑚 and 𝜎2𝜃 . We can use
this to derive the conditional MGF of the vector of security payoffs
𝑉𝐷, 𝑉𝐸

)

= (min { , 𝐾} ,max { −𝐾 , 0}):
E𝑖

[

exp
{

𝑢𝐷𝑉𝐷 + 𝑢𝐸𝑉𝐸
}]

= ∫

𝐾

0
exp

{

𝑢𝐷𝑣
}

1
√

2𝜋 𝜎2𝑠 exp
{

− 1
2
(𝑣−𝜇𝑖)2
𝜎2𝑠

}

1 −𝛷
(

− 𝜇𝑖
𝜎𝑠

) 𝑑 𝑣

+ ∫

∞

𝐾
exp

{

𝑢𝐷𝐾 + 𝑢𝐸 (𝑣 −𝐾)
}

1
√

2𝜋 𝜎2𝑠 exp
{

− 1
2
(𝑣−𝜇𝑖)2
𝜎2𝑠

}

1 −𝛷
(

− 𝜇𝑖
𝜎𝑠

) 𝑑 𝑣

= exp
{

1
2
𝜎2𝑠

(

𝜇𝑖
𝜎2𝑠

+ 𝑢𝐷

)2

− 1
2
𝜎2𝑠

(

𝜇𝑖
𝜎2𝑠

)2
}

𝛷
⎛

⎜

⎜

⎝

𝐾−𝜎2𝑠

(

𝜇𝑖
𝜎2𝑠

+𝑢𝐷

)

𝜎𝑠

⎞

⎟

⎟

⎠

−𝛷
⎛

⎜

⎜

⎝

−𝜎2𝑠

(

𝜇𝑖
𝜎2𝑠

+𝑢𝐷

)

𝜎𝑠

⎞

⎟

⎟

⎠

1 −𝛷
(

− 𝜇𝑖
𝜎𝑠

)

+ exp
{

(

𝑢𝐷 − 𝑢𝐸
)

𝐾 + 1
2
𝜎2𝑠

(

𝜇𝑖
𝜎2𝑠

+ 𝑢𝐸

)2

− 1
2
𝜎2𝑠

(

𝜇𝑖
𝜎2𝑠

)2
}

1 −𝛷
⎛

⎜

⎜

⎝

𝐾−𝜎2𝑠

(

𝜇𝑖
𝜎2𝑠

+𝑢𝐸

)

𝜎𝑠

⎞

⎟

⎟

⎠

1 −𝛷
(

− 𝜇𝑖
𝜎𝑠

) .

Defining the function 𝑔 ∶ R2 → R as

35 Note that for easy comparability of the expressions for equilibrium
price and returns, we abuse notation by continuing to let 𝑃𝑈 = 𝑚 +
2
𝑠

((

1
𝜎2𝜀

+ 1
𝜌𝜎2𝑝

)

(𝑠 + 𝑏𝑧) − 𝜅
𝜏

)

. The actual equity price in the unlevered version

f the truncated normal economy is itself nonlinear and is not equal to 𝑃 .
𝑈
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Fig. D.8. Limited Liability Comparative Statics
his figure compares expected returns under our baseline model to those under the model considered in this section. The parameters are set to: 𝜎2𝜃 = 𝜎2𝜀 = 𝑚 = 𝜏 = 𝐾 = 𝜎2𝑧 = 1; 𝜅 =

0; 𝜌 = 0.5.
p

t

w
c

𝑔

(

𝑦𝐷
𝑦𝐸

)

≡ log

(

exp
{1
2
𝜎2𝑠 𝑦

2
𝐷

}

(

𝛷

(

𝐾 − 𝜎2𝑠 𝑦𝐷
𝜎𝑠

)

−𝛷

(

−𝜎2𝑠 𝑦𝐷
𝜎𝑠

))

(D.6)

+ exp
{

(

𝑦𝐷 − 𝑦𝐸
)

𝐾 + 1
2
𝜎2𝑠 𝑦

2
𝐸

}

(

1 −𝛷
(

𝐾 − 𝜎2𝑠 𝑦𝐸
𝜎𝑠

)))

,

(D.7)

we can concisely write the MGF as

E𝑖
[

exp
{

𝑢′𝑉
}]

= exp
{

𝑔

(

𝑢 + 𝟏
𝜇𝑖
𝜎2𝑠

)

− 𝑔

(

𝟏
𝜇𝑖
𝜎2𝑠

)}

,

which is of the exponential family form. It follows that the demand
unction of investor 𝑖 is

𝑥𝑖 = 𝜏

(

𝟏
𝜇𝑖
𝜎2𝑠

−
(

𝑔′
)−1 (𝑃 )

)

. (D.8)
25 
Imposing the market-clearing condition and rearranging yields equilib-
rium price vector

𝑃 = 𝑔′
⎛

⎜

⎜

⎝

𝟏
∫ 𝜇𝑖𝑑 𝑖 + 1

𝜏 𝜎
2
𝑠 𝑧 −

1
𝜏 𝜎

2
𝑠𝜅

𝜎2𝑠

⎞

⎟

⎟

⎠

. (D.9)

Plugging in the expression for 𝜇𝑖 from (D.4), grouping terms, and im-
osing the generalized linear conjecture, we find that there is a unique

solution 𝑏 = 𝜎2𝜀
𝜏 for the price signal coefficient. Finally, recognizing that

with 𝑏 = 𝜎2𝜀
𝜏 we have ∫ 𝜇𝑖𝑑 𝑖+ 1

𝜏 𝜎
2
𝑠 𝑧−

1
𝜏 𝜎

2
𝑠𝜅 = 𝑃𝑈 , where 𝑃𝑈 is as defined

in the baseline model, we can write the equilibrium price vector as

𝑃 = 𝑔′
(

𝟏
𝑃𝑈
𝜎2𝑠

)

. (D.10)

Differentiating the expression for 𝑔 above yields, upon inspection, that
he debt and equity prices can be interpreted as expected payoffs under

a risk-neutral distribution for the cash flow  that is truncated normal,
ith parameters 𝑃𝑈 and 𝜎2𝑠 , truncated below at zero. To see this,

onsider the equity (the expression for debt is analogous). We have
𝜕
𝜕 𝑦 𝑔

( 𝑦𝐷
𝑦𝐸

)

|

|

|

|𝑦 =𝑦 = 𝑃𝑈
𝐸 𝐸 𝐷 𝜎2𝑠
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⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜎2𝑠 𝑦𝐸−𝐾+𝜎𝑠
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(
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)

1−𝛷

(

𝐾−𝜎2𝑠 𝑦𝐸
𝜎𝑠

)

⎞
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⎟

⎟

⎟
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𝜎𝑠
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2 𝜎

2
𝑠 𝑦
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𝐸
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|

|

|

|𝑦𝐸=𝑦𝐷=
𝑃𝑈
𝜎2𝑠
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𝜙
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𝛷
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−𝑃𝑈
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𝜙
(

𝐾−𝑃𝑈
𝜎𝑠
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(
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𝜎𝑠
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⎟

⎟

⎟

⎠

1 −𝛷
(

𝐾−𝑃𝑈
𝜎𝑠

)

1 −𝛷
(

−𝑃𝑈
𝜎𝑠

) ,

which is precisely the expectation of max{0, −𝐾} for

 ∼ 𝑇 𝑟𝑢𝑛𝑐 𝑎𝑡𝑒𝑑 𝑁 𝑜𝑟𝑚𝑎𝑙
(

𝑃𝑈 , 𝜎2𝑠
|

|

|

|

 ≥ 0
)

. □

This proposition demonstrates that, as in the baseline model, se-
curity prices can be expressed as their expected payoffs under a risk-
eutral distribution with mean and variance parameters 𝑃𝑈 and 𝜎2𝑠 ,
espectively. The key difference is that this distribution is now the

truncated normal, truncated below at zero. However, expected returns
no longer follow simple analytical expressions as in the main text. Thus,
we next numerically calculate expected returns to assess whether our
main findings are robust.

Fig. D.8 illustrates the findings, comparing the results under limited
liability to our baseline results. The figure reveals that the qualitative
implications of our model continue to hold: private information quality,
liquidity-trading volatility, and default risk impact expected debt and
equity returns similarly to as in our baseline model. However, the lower
right-hand plot reveals that there are two intuitive differences relative
to the baseline model. First, as default risk converges to zero, expected
equity returns converge to zero in our baseline model, but to a strictly
negative value under limited liability. The reason is that, even when the
firm is unlevered, limited liability causes the equity payoffs to remain
positively skewed.

Second, for high levels of default risk, debt earns negative expected
returns under limited liability. Intuitively, when the firm is extremely
close to default, given limited liability, debt payoffs resemble those of
n equity security, and thus become convex. In particular, debt has
imited downside and large upside in the (unlikely) event that the
irm produces high cash flows. We have confirmed across a range of
arameters that this reversal only applies to firms with default risk that
xceeds 50%, which represents an extremely small proportion of traded
tocks, even among those with junk debt (e.g., Hilscher and Wilson,

2017).

Data availability

Code for figures (Original data) (Mendeley Data)
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